Non-Intrusive Load Monitoring (NILM) enables the disaggregation of the global power consumption, measured from a single smart electrical meter, into appliance-level details. State-of-the-Art is based on Machine Learning methods and on the fusion of time- and frequency-domain features. Running compute-demanding and low-latency NILM on low-cost MCU-based meters is currently an open challenge. This paper addresses the optimization of the feature spaces and the computational and storage cost reduction for SoA NILM algorithms on memory- and compute-limited MCUs. We compare four supervised learning techniques on different classification scenarios and characterize the overall NILM pipeline's implementation. Experimental results demonstrate that optimizing the feature space enables edge-based NILM with 95.15% accuracy, resulting in a small drop compared to the most-accurate technique (96.19%), while achieving up to 5.45x speed-up and 80.56% storage reduction. Furthermore, we show that low-latency NILM relying only on current measurements achieves 80% accuracy, allowing cost reduction by removing voltage sensors.
Trimming Feature Extraction and Inference for MCU-based Edge NILM: a Systematic Approach / Tabanelli, Enrico; Brunelli, Davide; Acquaviva, Andrea; Benini, Luca. - In: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. - ISSN 1551-3203. - 2022, 18:2(2022), pp. 943-952. [10.1109/TII.2021.3078186]
Trimming Feature Extraction and Inference for MCU-based Edge NILM: a Systematic Approach
Brunelli, Davide;
2022-01-01
Abstract
Non-Intrusive Load Monitoring (NILM) enables the disaggregation of the global power consumption, measured from a single smart electrical meter, into appliance-level details. State-of-the-Art is based on Machine Learning methods and on the fusion of time- and frequency-domain features. Running compute-demanding and low-latency NILM on low-cost MCU-based meters is currently an open challenge. This paper addresses the optimization of the feature spaces and the computational and storage cost reduction for SoA NILM algorithms on memory- and compute-limited MCUs. We compare four supervised learning techniques on different classification scenarios and characterize the overall NILM pipeline's implementation. Experimental results demonstrate that optimizing the feature space enables edge-based NILM with 95.15% accuracy, resulting in a small drop compared to the most-accurate technique (96.19%), while achieving up to 5.45x speed-up and 80.56% storage reduction. Furthermore, we show that low-latency NILM relying only on current measurements achieves 80% accuracy, allowing cost reduction by removing voltage sensors.File | Dimensione | Formato | |
---|---|---|---|
TXT_TII-1-NILM.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.46 MB
Formato
Adobe PDF
|
4.46 MB | Adobe PDF | Visualizza/Apri |
Trimming_Feature_Extraction_and_Inference_for_MCU-Based_Edge_NILM_A_Systematic_Approach.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione