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Abstract—Non-Intrusive Load Monitoring (NILM) en-
ables the disaggregation of the global power consumption
of multiple loads, taken from a single smart electrical
meter, into appliance-level details. State-of-the-Art ap-
proaches are based on Machine Learning methods and
exploit the fusion of time- and frequency-domain fea-
tures from current and voltage sensors. Unfortunately,
these methods are compute-demanding and memory-
intensive. Therefore, running low-latency NILM on low-
cost, resource-constrained MCU-based meters is currently
an open challenge. This paper addresses the optimization
of the feature spaces as well as the computational and
storage cost reduction needed for executing SoA NILM
algorithms on memory- and compute-limited MCUs. We
compare four supervised learning techniques on different
classification scenarios and characterize the overall NILM
pipeline’s implementation on a MCU-based Smart Mea-
surement Node. Experimental results demonstrate that op-
timizing the feature space enables edge MCU-based NILM
with 95.15% accuracy, resulting in a small drop compared
to the most-accurate feature vector deployment (96.19%)
while achieving up to 5.45× speed-up and 80.56% storage
reduction. Furthermore, we show that low-latency NILM
relying only on current measurements reaches almost 80%
accuracy, allowing a major cost reduction by removing
voltage sensors from the hardware design.
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I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) enables
the disaggregation of the electric power consump-
tion of individual appliances from a single mea-
surement point. Modern smart meters indeed allow
reading voltage and current data almost in real-time.
Coupled with NILM disaggregation, it is possible to
obtain the power breakdown of energy loads without
deploying distributed on-appliance metering nodes,
thus increasing flexibility and reducing costs. While
NILM has been studied for decades and nowa-
days, effective algorithms are available, it has been
adopted mainly for statistical information collection
on a daily basis. Today, innovative services can be
potentially delivered based on near real-time edge-
based load recognition, such as anomaly detection
in industrial appliances and increased security in
domestic contexts.
State-of-art NILM approaches leverage high-
dimensional feature spaces and computational
resource-demanding ML algorithms to bring tan-
gible benefits in load disaggregation accuracy [1].
Indeed, multi-feature approaches impose high mem-
ory and computing requirements making cloud-
computing deployment mandatory [2]. Figure 1
shows the standard server-based NILM framework
architecture in a household implementation. A lo-
cal meter performs power measurements, while
a server-side back-end performs compute-intensive
feature extraction and classification algorithms.
High bandwidth communication is required for data
uplink between the two sides.
Cloud-computing frameworks suffer from scalabil-
ity issues in terms of communication latency, band-
width, and privacy [3]. Furthermore, they could put
at risk customers privacy, revealing energy profiles,
and daily activities [4]. Bringing NILM execution
on-edge (or even on the smart meter board) would
enable faster end-user corrective actions to reduce
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Fig. 1: Non-Intrusive Load Monitoring Architecture
1) Cloud-Based 2) Edge-Based.

energy consumption, react to damages, or trigger
alarms. For instance, recent studies highlight how
near real-time (i.e., during monitoring) feedback on
appliance power consumption could lead to energy
savings over 5-20%, against 0-10% of cloud-based
systems [5].
The key practical challenge with edge-NILM is
that low-cost MCU-based devices (either edge or
metering nodes) have very limited resource bud-
gets, especially SRAM memory and Flash storage.
The on-chip memory is 6 orders of magnitude
smaller than cloud-based systems, making unmod-
ified cloud algorithms deployment on MCU unfea-
sible. Consequently, there is need to explore the
memory-latency-accuracy trade-off, leveraging op-
timized feature spaces to achieve memory-efficient
and lightweight frameworks suitable for edge de-
vices.

An additional challenge for edge-NILM is that
many SoA algorithms use features requiring high
load sampling frequency. Low-cost commercial
smart meters lack proper analog front-ends, capable
of a suitable sampling frequency, as well as digital
back-ends for processing of the high-throughput
digitized samples. Research-oriented solutions use
high-end platforms not suitable for low-power and
low-cost edge deployment.To overcome both these
shortcomings, we exploit a custom MCU-based
Smart Measurement Node described in [6]. The me-
ter features an adequate analog back-end, allowing
extracting a wide range of features moving beyond
standard low-frequency features extracted by com-

mercial meters. On this device, we developed a
novel approach to enable the deployment at the edge
of four SoA Machine Learning NILM algorithms on
different load scenarios. We explore the memory-
latency-accuracy trade-off by varying feature di-
mensionality, and we pinpoint optimal characteriza-
tion points leading to lightweight models without
sacrificing model performance. The methodology
proposed allows moving from expensive high-end
platforms toward more cost-efficient edge solutions.
The contributions of this paper are:

1) We designed a NILM framework, consisting
of data extraction and classification software
modules optimized for edge devices such as the
Smart Measurement Node. To this purpose, we
performed a Mean Decrease Accuracy analy-
sis to reduce the feature space with minimal
information loss. We thus identified the most
relevant time- and frequency-domain features
in disaggregating load profiles depending on
the classification scenarios.

2) Using the developed framework, we present a
comprehensive investigation of memory size,
performance, and accuracy in feature extrac-
tion and classification stages, characterizing
SRAM/Flash memory requirements and ex-
ecution cycles. According to worst-case ex-
traction requirements (full feature vector), we
determine classification run-time constraints:
8.295 Mcycles, 498 kB Flash storage and
72 kB SRAM memory.

3) We compare four memory-constrained super-
vised learning techniques available in the liter-
ature on different load classification scenarios,
highlighting their trade-offs in terms of mem-
ory size, performance, and accuracy.

4) We reduce the feature space to 5 components
enabling a RF-based edge-NILM with 95.15%
accuracy. The optimized feature vector results
in a small accuracy drop (1.04%) compared
to the most-accurate feature vector deployment
(96.19%) while reaching up to 5.45× speed-up
and 80.56% storage reduction.

5) We demonstrate that adding frequency-domain
features enhances accuracy by almost 3% with
respect to using only time-domain components
(86.66%), thus attaining 89.84%. Furthermore,
we show that 35 frequency-domain features
enable a low-latency edge-NILM to reach
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roughly 80% accuracy, with nearly no drop
compared to full feature deployment, while
leading to a significant cost decrease in remov-
ing voltage sensors from the hardware design.

The paper is organized as follows. In Section
II, we present related works, and we discuss the
latest approaches for load disaggregation. Section III
describes the hardware of the Smart Measurement
Node. Section IV highlights the crucial stages of the
NILM framework, including data acquisition, fea-
tures extraction, and disaggregation. Experimental
results of our exploration of feature extraction and
disaggregation algorithms are reported in section
V. Concluding remarks and plans for future works
complete this paper.

II. RELATED WORK

Since Hart et al. [7] firstly introduced NILM,
several works proposed steady-state model-driven
approaches to distinguish appliances based on dif-
ferent feature spaces. The method performs well
on ordinary ON/OFF appliances but fails when
applied to more sophisticated ones, such as Fi-
nite State Machine (FSM) loads or Continuously
Variable Devices (CVD). On the other hand, also
using transient-state features [8] can offer useful
appliance-level information. However, a high sam-
pling rate is mandatory to collect reliable measure-
ments, and different turn-on and off transients raise
significant issues.
Along with the growing interest in ML, ML-based
NILM methods gained popularity. J. Kelly et al. [9]
firstly applied Neural Networks (NN) to NILM
using data sampled at 1Hz. A recent approach [10]
extracts EMI features in the frequency domain sam-
pling at 1MHz and classifies using a kNN algo-
rithm. To handle the issue of labeling a massive
amount of data, in [11], the authors present a semi-
supervised multi-label Temporal Convolutional Net-
work (TCN)-based framework to extract load signa-
tures from the aggregate real power (P). While Basu
et al. [12] focused on generating meta-features from
energy readings to improve disaggregation perfor-
mance, Bernard et al. [1] proposed the fusion of
low, mid, and high-frequency features. These works
exhibit outstanding accuracy in monitoring several
types of loads. However, the high computational and
memory demand prevents running real-time NILM
based on these methods on low-cost MCU-based

devices.
To avoid the computational limitation of MCUs,
many solutions rely on cloud-based systems. In [13],
the authors acquire measurements from local me-
ters with a sampling rate of up to 3kHz, while a
cloud framework runs fully-connected NNs. Green
et al. [14] leverage a powerful cloud back-end
which processes multi-feature vectors with multiple
algorithms and combines their output to enhance
load recognition.
Recently the design of online power meters has
gained an increasing interest in several research
groups. Barsocchi et al. [15] proposed an easy-
to-install led-probe-based smart meter to collect
low-frequency power features and a Finite State
Machine (FSM) running on the integrated Arduino
platform. On the market side, Neurio and Open En-
ergy developed low-cost easy-to-install Raspberry-
and Arduino-based commercial devices. The meters
support low sampling rates enabling low-frequency
features acquisition for monitoring household power
consumption. Unfortunately, none of the previous
solutions features high-frequency analog front-ends
and proper onboard resources to perform advanced
on-sensor processing. Their deployment demands
transmitting data to third-party cloud services to
retrieve appliance-level information.
A few works focused on designing sensing devices
featuring high-end platforms. In [16], the authors
deploy a DAQ card coupled with a high-cost high-
power E660 Intel Atom Processor to extract power
features and run an ANN. Sirojan et al. [17] pro-
posed a MLP technique developing a meter by use
of a Xilinx Field-Programmable Gate Array (FPGA)
and ARM Cortex-A9 Processor, both integrated on
the National Instruments (NI) myRIO-1900. These
smart meters are too costly and power-demanding
for commercial edge solutions.

III. SYSTEM ARCHITECTURE

This section describes the hardware platform
designed and deployed for the experiments: the
Smart Measurement Node. The meter integrates
two microcontroller units (MCUs), as shown in
Figure 2. The STM32F4 is a high-performance 32-
bit STMicroelectronics (STM) MCU based on the
ARM Cortex-M4 core with 512kB of Flash memory
and 96kB of SRAM. Running at 84MHz, the CPU
delivers 105 DMIPS/285 CoreMark performance
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Fig. 2: Smart Measurement Node

executing from Flash memory, with 0-wait states
due to STM’s Adaptive Real-Time (ART) accel-
erator, which speeds up instruction fetch accesses
to on-chip memories. The dynamic power scaling
enables the current consumption to be as low as
128µA/MHz in run mode, while 9µA in stop mode.
The Cortex-M4 implements an extension of the
Thumb/Thumb-2 Instruction Set Architecture (ISA)
supporting DSP instructions, such as single-cycle
16/32-bit, single-cycle dual 16-bit MAC, 8/16-bit
SIMD arithmetic, but also saturation arithmetic and
HW divide. The presence of the single-precision
Floating Point Unit (FPU) improves a wide range
of addressable applications. The second MCU is
GAP8, a commercial 32-bit ultra-low-power IoT-
edge computing engine that embeds a RISC-V
multi-core processor derived from the PULP open-
source project. In this work, the STM32F4 is in
charge of measurement settings, data acquisition
and processing, and eventually streaming results to
a server. In future works, we will deploy GAP8
to speedup and parallelize NILM algorithms at the
edge.
To acquire voltage and current samples, the Smart
Measurement Node includes an analog front-end
consisting of two LTC1407A modules, a dual-
channel Analog-to-Digital Converter (ADC) from
Linear Technology. The ADC features a sampling
rate of 1.5 Msps while recording simultaneously
and a 14 bit resolution with 16384 discrete digital
values. Consequently, the 0-2.5 V unipolar full-
scale input range results in a voltage resolution of
152 µV. The 80 dB Common-Mode Rejection Ratio

(CMRR) at 100kHz enables to remove common-
mode noise properly by measuring signals differen-
tially from the source. Moreover, the 74dB Signal-
to-Noise Ratio (SNR) at 100kHz enhances the ADC
low-noise performance, while the 14mW power
dissipation emphasizes its energy efficiency. In ad-
dition, the analog stage offers an Isolated Interface,
consisting of a voltage divider and a Shunt resistor
to measure voltage and current, and a Non-Isolated
Interface, enabling the usage of Rogowski Coils
and Hall-Effect Sensors. We deployed the Isolated
Interface in our work because it enables direct and
simultaneous current and voltage sampling.
The board additionally embeds the WF121 Wi-
Fi module by Bluegiga Technologies. The device
provides a 2.4 GHz 802.11 b/g/n radio and a 32-bit
MCU, which offers low-level programming drivers
and an API for several applications. Sending 256-
byte-sized packets to a server awaiting the receiv-
ing end, we tested the Wi-Fi bandwidth. The test
resulted in a bandwidth of 800 kbps on a 2.56 Mb
transmission size, which translates into an upload
sample rate of 57 ksps (28.5 ksps, respectively) with
a 14-bit sample resolution.
The firmware starts with a preparatory phase, which
sets up a Wi-Fi connection to the client-server
and puts the Wi-Fi module in streaming mode. By
setting with an advanced control timer a sampling
rate of 20kHz, the ADC starts collecting current and
voltage measurements. Since STM HAL low-level
drivers support only multiples of bytes, we store
two 14-bit samples in 4-Byte-Arrays, and we mark
buffer overflows using the 4 remaining bits. The
Serial Peripheral Interface (SPI) streams acquired
data operating at a frequency of 16Mbps, while on
the active MCU, the Direct Memory Access (DMA)
manages the reception. We average two successive
measurements to reduce the noise, which ends in
an effective sampling rate of 10kHz. An interrupt
triggers the MCU, which extracts the features and
starts the classification process. We transmit the
result via Universal Synchronous-Asynchronous Re-
ceiver/Transmitter (USART) to the Wi-Fi module,
therefore readily streamed to the receiving client.

IV. NILM FRAMEWORK

As depicted in Figure 3, our NILM framework
consists of three stages. A data acquisition sys-
tem collects voltage and current measurements at



5

Fig. 3: NILM Framework

a sampling frequency of 10kHz. When a 100ms
time-window of acquisitions (1000 samples per
channel) is available, the feature extraction stage
extracts time- and frequency-domain features. Thus,
if a variation of P exceeding a pre-characterized
threshold is detected (i.e., a switching event), the
framework enters the disaggregation state in which
the classification is performed. The disaggregation
methodology differs according to the classification
scenario:

• Single-Appliance: The recognition method
works in a simplified setting with only one
active appliance at a time. When P exceeds
the threshold in the time-window j, we feed the
extracted feature vector to a ML model, which
attempts to recognize the active device provid-
ing a label for j. This setting can be considered
as a reference for the accuracy results in the
more complex multi-appliance scenario. Also,
we implemented a baseline scenario (Single-
Appliance #1) and a more challenging one
(Single-Appliance #2) to study the impact of
using frequency domain features when loads
have similar time-domain features. Using a
single appliance at a time allowed to better
understand the impact of these features on load
recognition.

• Multi-Appliance: This recognition method sup-
ports the case in which multiple appliances are
active in overlapped time windows. It works by
observing features in a time interval across a
switching event. For this reason, a constraint
for this method to work is that two switching
events from different appliances do not take
place during the observation interval. When a
variation of P over the threshold is detected,
we calculate the differential feature vector ∆F ,
described in Equation (1). As depicted by Fig-

ure 4, ∆F combines features from different
intervals around the switching event marked by
the P variation. Precisely, we consider features
in the time windows immediately preceding
(Fj−1) and following (Fj+1) the event, as well
as 10 and 20 time windows before (Fj−10,
Fj−20), and after (Fj+10, Fj+20) the event. The
averaged feature vectors result in two inter-
mediate vectors, whose subtraction leads to
∆F . Thus, the ML model tries to infer the
activated load returning a class for the time-
window j. To correctly compute the ∆F , it
is assumed that loads are not turned on si-
multaneously within the overall ∆F windows,
that is 41 ∗ 100ms = 4.1s. As discussed
in Section V-B, this method achieves slightly
lower accuracy compared to Single-Appliance
methods but enables multiple load recognition.

Concerning the power threshold, our previous
work [6] includes a characterization study of the
power threshold, which led to 5W as the most
effective one for detecting switching events.

∆Fj =
Fj−20 + Fj−10 + Fj−1

3
−Fj+1 + Fj+10 + Fj+20

3
(1)

Fig. 4: ∆F Calculation

A. Data Acquisition

The data acquisition system acquires aggregated
load measurements at a sampling frequency of
10kHz to identify distinctive load patterns in both
Single-Appliance and Multi-Appliance scenarios.
To train the disaggregation algorithms, we adopted
the Domestic Appliances Dataset (DAD) collected
with the Smart Measurement Node in [6], openly
accessible at [18]. The recorded appliances are
both linear and non-linear and belong to the fol-
lowing categories described in the literature [7]:
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ON/OFF loads, Finite State Machine (FSM) appli-
ances, and Continuously Variable Devices (CVD).
We divided the DAD into 3 sections to set up 2
Single-Appliance and 1 Multi-Appliance datasets,
described in Section V-B.

B. Feature Extraction
To identify active appliances, a set of high-quality

features must be extracted from raw measurement
data. Since NILM features are highly dependent
on the sampling rate, we divide them between
time- and frequency-domain features in this work.
Among the plethora of possible choices, we picked
features that already proved their ability to enhance
the disaggregation process. As claimed by [9], the
use of power-related features allows discriminating
simple linear loads. For that purpose, within the
100ms-long time-frame, we calculate the instanta-
neous power, then we average it and compute the
Real (P ), Reactive (Q), and Apparent Power (|S|).
However, these simple time-domain features lack
effectiveness with FSM and CVD loads. In [10]
the authors showed that Electromagnetic Interfer-
ence (EMI) signals enable a finer differentiation of
similar switching mode power supplies. Therefore,
we compute the Fast Fourier Transform (FFT) of
electric current samples over the same time-frame.
The resulting sampling frequency of 10kHz enables
determining current harmonics until 5kHz at a res-
olution of 10Hz. Since odd current harmonics rep-
resent typical features for load disaggregation [19],
we extract 50Hz odd current harmonics.

C. Mean Decrease Accuracy Analysis
To reduce NILM computing and memory re-

quirements, we performed a Mean Decrease Accu-
racy (MDA) Analysis [20]. We also tested Princi-
pal Components Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE). We report
below the dimensionality reduction method giving
the best results on average across all three scenarios,
namely MDA analysis. The study aims at reducing
the dimensionality without jeopardizing information
loss. The core idea is to measure the features im-
portance by observing the accuracy decrease when
left out. After training the ML model on the full
feature vector, we define the testing set accuracy as a
baseline. To increase robustness in feature selection,
we introduce controlled noise by randomly shuffling

feature values and compute the testing set accuracy
with the resulting dataset. By comparing baseline vs.
actual accuracy, we calculate the performance loss
due to the shuffled variable. To a higher accuracy
loss corresponds a more important feature.

Model Time Complexity Space Complexity
KNN O(fdim × Datasetsize) O(fdim × Datasetsize)
MLP O(

∑l−1
i=0 Ini × Outi) O(Nweights + Nbias)

RF O(fdim × Ntrees) O(fdim × Ntrees)
SVM O(fdim × Nsv) O(fdim × Nsv)

TABLE I: Algorithms Time and Space Complexity

D. Disagreggation Algorithms

Edge nodes have tight constraints. For that
purpose, enabling load monitoring on such
platforms requires lightweight and memory-
efficient models. In this work, we deployed four
SoA disaggregation algorithms developed and
demonstrated in cloud-based environments. In table
I, we show how the feature dimensionality (fdim)
affects their time and space complexity.
1) k-Nearest Neighbor (kNN) recently gained
prominence as a load monitoring classification
algorithm on server-based systems [21]. kNN non-
parametric nature enables the learning of predictive
functions directly from data. However, computing
and storage requirements are linearly dependent on
the feature space dimensionality (fdim).
2) Support Vector Machine (SVM) is a model
that has proved successful in several classification
scenarios [22]. SVM rationale is to separate the
feature space by finding a set of hyper-planes
in high-dimensional space. Separating data with
low dimensional feature spaces requires a large
Support Vector (SV) set. Thus, increasing memory
and computing effort. On the other hand, high
dimensional feature spaces handily solve the
separation problem with fewer SVs. However, high
dimensionality becomes again demanding in terms
of memory and computation.
3) Neural Networks (NN) demonstrated
a huge potential when applied to energy
disaggregation [23]. The capability to learn
non-linear functions makes MLP an attractive
solution for NILM. However, increasing the
scenario complexity and feature space dimension,
MLP becomes highly compute-demanding and
memory-hungry if not properly tuned.
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4) Random Forest (RF) classifiers applied to load
monitoring can achieve excellent results in different
classification contexts [24]. The model consists
of several decision trees created at training time,
which provide a class prediction for an input object.
Then the model aggregates the votes to decide
the final class. The RF storage usage is highly
dependent on the number of trees (Ntrees) in the
forest and the space dimensionality (fdim). Thus,
a methodology is mandatory to obtain a feasible
model for edge-devices.

V. EVALUATION

This section discusses the results of our feature
space optimization strategy. Firstly, we show the
computing and memory effort required to extract
time- and frequency-domain features on the ARM
Cortex-M4 core. Then, we introduce three load
monitoring scenarios, and we describe the most sig-
nificant memory-performance-accuracy trade-offs,
also accompanied by precision and recall measure-
ments. Then we compare framework run-time char-
acteristics to determine the best-suited algorithms
for edge-NILM.
The methodology used for each scenario and algo-
rithm consists of the following stages:

1) Initial Grid Search on the full feature vector.
2) Mean Decrease Accuracy (MDA) analysis for

sorting the features in descending order of
importance.

3) Model training and testing by adding one fea-
ture at a time from the ranked vector. We
applied a Grid Search to each point for hyper-
parameters fine-tuning.

4) Selection of feature vector points satisfying
edge constraints while remaining within a 5%
accuracy drop from the most-accurate point.

A. Feature Extraction Requirements

Table II shows the feature extraction memory
occupation and execution cycles required to com-
pute each component on the ARM Cortex-M4
core. We reported the computational effort in terms
of Multiply-Accumulate (MAC) operations. Since
MCU-based devices have tight memory constraints,
we also report the run-time SRAM memory and
Flash storage requirements.
RawConv refers to the calibration procedure applied

to raw ADC samples after the data logging. Multi-
plying and adding by gain and offset coefficients,
we calculate calibrated current and voltage mea-
surements. Converting both samples signals require
15 Kcycles. When processing only electric current
samples, the MCU takes only 6 Kcycles.
To compute the features, we operate on a 100ms-
long time-frame over 1000 samples per channel.
Real (P ) and apparent (|S|) power can be extracted
with 17K and 11K cycles, respectively. Instead,
since the reactive power (Q) depends directly on
P and |S| (Q =

√
|S|2 − P 2), its computing effort

can vary from a 79 cycles best-case to a 28 Kcycles
worst-case.
To extract 50Hz odd current harmonics, we use
the FFT routine from ARM CMSIS-DSP software
library. The FFT spectrum results in 100 real and
imaginary components per time-frame at the ex-
pense of almost 66 Kcycles and 18 kB of Flash
memory to store twiddle coefficients and bit reversal
lookup tables. Without reordering FFT components,
we can save few kBs of storage and 4 Kcycles
(resulting in 62 Kcycles).
As shown in the table, the full feature vector ex-
traction requires almost 105 Kcycles (62 + 28 +
15 Kcycles) and 14 kB Flash storage in the worst
case. To evaluate the time available for classifica-
tion, we consider that extraction and classification
must fit within the 100ms of the time window. Since
STM32F4 operates at 84 MHz (100ms at 84MHz
= 8.4 Mcycles), considering the 105 Kcycles used
for the feature extraction, we have 8.295 Mcycles
available for the classification task. Considering
memory constraints, we have a total of 512 kB
Flash memory, of which 14 kB are occupied by
the extraction task (i.e., 498 kB available). Finally,
the total SRAM is 96 kB, of which the extraction
process takes 24 kB.

B. Disaggregation Algorithms Trade-off Analysis

This section reports significant trade-off analysis
results on the disaggregation algorithms applied to
various monitoring scenarios. For single appliance
scenarios, we discuss RF and SVM models. In
contrast, we discuss the MLP trade-off for the multi-
appliance scenario because it is more relevant and
suitable to scale for a large number of appliances.
A full report of deployment results is given in
Section V-C.
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SRAM (kB) Flash (kB) MAC (k) Cycles (K)
RawConvV&I 8 - 4 15
RawConvI 4 - 2 9
P 4 - 2 17
|S| - - 2 11
Q1 - - 0.04 0.08
Q2 4 - 2.04 17
Q3 - - 2.04 11
Q4 4 - 4.04 28
FFT1024 4 17.6 10.24 66
FFT1024

5 4 14.1 10.24 62
Full Vector 24 14.1 18.24 105

TABLE II: Feature Extraction Resource Usage
1with P & |S|, 2without P, 3without |S|, 4without P & |S|,

5without reordering FFT components. ("-" implies negligible
values)

1) RF in Single-Appliance Scenario #1: The
scenario investigated below represents a domestic
context consisting of household appliances: cell
phone charger, monitor, fan at minimum, medium
and maximum speed, light bulb, and 2011 MacBook
Pro in idle state. The deployed dataset comprises
non-overlapping recordings resulting in 7 classes.
The main plot in Figure 5 represents the testing
accuracy achieved using 2 RF models featuring a
different number of trees (100 vs. 500). Accuracy
trends up to 5 features do not change significantly.
When using more than 5 features, to achieve slightly
higher accuracy is necessary to raise the number of
trees to 500. However, it requires a Flash storage
ranging from 553kB to 727kB to store the tree-
by-tree code, exceeding the available MCU flash
capability. To reduce the model memory footprint
and enable load monitoring at the edge, we chose
to limit the number of trees. The configuration with
5 features and 100 trees provides a good trade-
off achieving 95.15% accuracy with 1.04% drop
compared to 96.19% obtained using 71 features and
500 trees. Figures 5a and 5b shows the memory
footprint and worst-case branch number for the two
configurations.
As shown in Table III, reducing the 71-dimensional
feature vector to 5 components leads to almost 2%
precision and recall drop. Thus, absolute values
remain high, around 92%. Recall results denote
the model’s ability to recognize almost all relevant
loads without skipping load activations. On the other
side, high precision means that only real activations
are detected, with very low false positives. The
extraction process requires 105 Kcycles for both
configurations, but what distinguishes the config-

urations is the classification stage. The optimized
configuration requiring 4.84 Kcyles leads to 5.45×
speedup and 80.57% Flash usage decrease. Regard-
ing the overall framework, the speedup slows down
to 1.2× since the extraction execution time is one
order of magnitude larger, while the Flash decrease
remains high (78.86%).

2) SVM in Single-Appliance Scenario #2: In
this section, we analyze the trade-off involved
in the application of SVM to a different Single-
Appliance load monitoring scenario. The scenario
reflects a more challenging context where the
electric loads have similar time-domain feature
distributions, making the recognition process
harder. The deployed dataset consists of HP and
Samsung laptops, which varies the thread count
and the running task resulting in 10 classes. To
highlight the challenge in recognizing these loads,
in Figure 6, we represented the dataset in a P
vs. |S| graph, which are the most significant
features according to the MDA analysis. Instances
are colored according to the classes. From the
plot, we observe that clusters partially overlap
(e.g., HP 1 Thread/Samsung Idle and HP 2
Threads/HP 3 Threads), and in some cases (e.g.,
Samsung Video/Samsung 1 Thread and Samsung 3
Threads/Samsung 4 Threads) distinguishing them
relying only on P and |S| is not possible. For
that purpose, the additional contribution given by
frequency-domain features is required.
In Figure 7, we show testing accuracy, MAC,
and Flash usage trends when adding one MDA-
ordered feature at a time in the feature space.
On the left-most side of the plot, deploying
only 1 feature demands singular high resources
due to the dataset’s hard linear separability
with low-dimensional feature spaces. Thereby, a
large number of SVs is mandatory to maximize
the margin around the separating hyperplane.
Increasing the space dimension to 2 features
improves data separability. The SVM needs fewer
SVs to find the optimal hyperplane, leading to
a minimum resource requirement. Expanding the
space dimension further has a reduced impact
on the number of SVs. Consequently, computing
and memory efforts grow almost linearly with the
increase of dimensionality.

Using only time-based features (P and |S|, first
two left-most side points), the model achieves
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Feature Vector Dim
F. Extraction RF Overall Framework (F. Extraction + RF)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Flash
Red. (%)

Cycles
(K) Speedup Accuracy

(%)
Precision

(%)
Recall

(%)

71 (500 trees) 14.1 105 649.4 26.4 663.5 / 131.4 / 96.19 93.99 93.99
5 (100 trees) 14.1 105 126.2 4.84 140.3 78.86 109.84 1.2x 95.15 92.04 91.83

TABLE III: RF-based Single-Appliance #1 Load Detection Performance On ARM Cortex-M4

Feature Vector Dim
F. Extraction SVM Overall Framework (F. Extraction + SVM)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Flash
Red. (%)

Cycles
(K) Speedup Accuracy

(%)
Precision

(%)
Recall

(%)

103 14.1 105 871.9 2065 886 / 2170 / 89.08 89.06 89.16
36 14.1 105 343.55 795 357.65 59.63 900 2.41x 89.84 89.86 89.90

36 + Optimization 14.1 105 343.61 562 357.71 59.63 667 3.25x 89.84 89.86 89.90

TABLE IV: SVM-based Single-Appliance #2 Load Detection Performance on ARM Cortex-M4

Fig. 5: RF Accuracy-Flash Trade-Off on
Single-Appliance #1 Dataset

86.66% accuracy. Adding frequency-based features,
we supply extra information useful to improve
device recognition. The accuracy grows up to
89.84% at 36 features, obtaining an incremental
gain for each added feature till reaching a plateau.
Using more features causes SVM overfitting
leading to a slight accuracy degradation, reaching
89.07% accuracy in the full feature case. Moreover,
a full feature vector implementation would require
almost 103-dimensional 1.95K floating-point SVs
and 17.55K Dual Coefficients, meaning almost
872 kB Flash storage and 218K MAC to run
the inference. As shown in Table IV, decreasing
feature vector dimensionality from 103 to 36
results in a slight precision and recall increase
(∼0.8%) due to SVM overfitting when using
103 features. However, in absolute value, results
are lower (∼2%) than in the previous scenario.
This result can be explained by the fact that the

Single-Appliance #2 scenario consists of appliances
characterized by more similar time-domain feature
distributions, complicating the identification task.
This overall leads, in terms of results, to a higher
fraction of both false positives and negative.
The new optimized feature space requires about
344 kB Flash storage and 795 Kcycles for the
processing stage, while the extraction stage
demands 105 Kcycles and few kBs. As a result, the
overall system achieves 2.41× speed up and a Flash
decrease of 59.63% with respect to the full feature
vector implementation. Optimizing the run-time
with loop unrolling and improving the allocation
of registers by placing accumulation variables
into local registers, we achieve an execution time
of 562 Kcycles, leading to a 3.25× overall speedup.

Fig. 6: Single-Appliance #2 Dataset Instances

To further test frequency-domain features ability
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Fig. 7: SVM Accuracy-Flash-MACs Trade-Offs on
Single-Appliance #2 Scenario

Fig. 8: SVM Accuracy-Flash-MACs Trade-Offs on
Single-Appliance

#2 Scenario with only frequency-domain features

to enhance load recognition in complex scenarios,
we also trained the SVM model leaving out time-
domain features (P, |S| and Q). The accuracy trend in
Figure 8 reveals that identifying challenging devices
is still possible, with approximately 80% reached
near 35 features. Then the model gets to a plateau
with no valuable enhancement. Deploying 35 fea-
tures demands 467 kB Flash storage and 117K MAC
to run the SVM inference, meaning an edge imple-
mentation is feasible. Moreover, since frequency-
domain features rely only on current harmonics, its
deployment would allow removing voltage sensors
from the smart meter resulting in a substantial bill
of materials cost reduction.

3) MLP in Multi-Appliance Scenario: The Multi-
Appliance Scenario has been developed to en-
able load disaggregation in a more-realistic con-
text, where appliances can overlap. We deployed
a dataset consisting of domestic loads totaling 5
classes: fan at minimum speed, electric coffee ma-

chine, light bulb, monitor, and power bank. The
Grid Search led to 2-Layers MLP with 800 and
100 neurons as the most performing architecture.
In Figure 9, we represent testing accuracy, MAC,
and Flash usage trends adding one MDA-ranked
feature at a time in the feature space. Deploying
low-dimensional feature spaces (left-most side of
the plot) requires low resource usage but it is not
accurate enough. Increasing the feature space di-
mension makes growing memory and computational
costs linearly, while MLP accuracy boosts up to a
plateau at 34 features, resulting in no significant
accuracy improvement beyond that. When adding
the 32nd feature (Reactive Power - Q), the accuracy
has a significant increase passing from 75.63% to
91.25%. The jump is due to the lack of correlation
information between features of the MDA analysis.
As shown in Table V, reaching the top accuracy

Fig. 9: MLP-based Multi-Appliance load disaggregation
performance

point (92.75%) demands almost a full feature vector
deployment (100 features). However, the model
requires 646 kB Flash memory, which is well above
the MCU capability. Limiting the feature vector to
34 components, MLP achieves 91.63% accuracy
with a 1.12% drop regarding the top accuracy
point. Decreasing the feature vector dimensionality
increases false positives and negatives, leading to
precision and recall drop (∼1.5%). Compared to the
Single-Appliance #1 scenario, the Multi-Appliance
scenario consists of switching appliances that can
overlap. As a result, overall accuracy, precision, and
recall are lower than scenario #1 but still acceptable,
highlighting the capability of distinguishing loads
among each other. Moreover, the optimized feature
vector decreases the MLP size by 32.27%, and
with 1.082 Mcycles to run an inference speedups
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Feature Vector Dim
F. Extraction MLP Overall Framework (F. Extraction + MLP)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Cycles
(K)

Flash
(kB)

Flash
Red. (%)

Cycles
(K) Speedup Accuracy

(%)
Precision

(%)
Recall

(%)

100 14.1 105 645.62 1588 659.72 / 1693 / 92.75 91.69 91.82
34 14.1 105 432.7 1081 446.8 32.27 1186 1.43x 91.63 90.02 90.49
34 + Optimization 14.1 105 434.1 861.7 448.2 32.06 966.7 1.75x 91.63 90.02 90.49

TABLE V: MLP-based Multi-Appliance Load Detection Performance On ARM Cortex-M4

the execution time of 1.47×. Adopting run-time
optimizations, such as loop unrolling and registers
allocation improvement, reduces the execution time
to 861.7 Kcycles leading to a 1.84× speed-up.
From the experimental evaluation of other dimen-
sionality reduction methods, we conclude by noting
that in the case of deployments specifically tailored
to multi-appliance scenarios, the PCA achieves bet-
ter results in terms of recall (94.17%) and precision
(92.58%), and comparable accuracy results.

C. Overall Framework Characterization

By combining the MDA analysis with the
memory-performance-accuracy trade-off evaluation,
we report the NILM framework characterization in
each scenario. In Figure 10, we show the computing
and memory cost required by NILM algorithms with
optimized feature spaces, highlighting the frame-
works featuring the smallest Flash footprint with
red borders. Finally, we summarize in Table VI
advantages and disadvantages of using each algo-
rithm. We reported the resources and the metric
from which an edge-based NILM implementation
depends more: memory occupation, execution time,
and accuracy. The ’+’ symbol represents a trend
highly fittable in resource-constrained MCUs (low
memory consumption, low latency, and high ac-
curacy). In contrast, the ’−’ symbol highlights a
tendency that is highly likely to make unfeasible
the adoption of the model on-the-edge with different
scenarios and setups.

Latency Memory Accuracy
SVM + − +

RF + + +

MLP − − +

kNN − − −

TABLE VI: Algorithm Advantages and Disadvantages

VI. DISCUSSION

The obtained results demonstrate the feasibility
of edge-based NILM systems. The methodology
used allows reducing feature dimensionality without
undermining load monitoring accuracy in different
scenarios.
In the Single-Appliance #1 context, we show that
reducing a 103-dimensional feature vector to 5 com-
ponents results in a RF model with a modest accu-
racy drop but enables 80.56% Flash usage reduction
and 5.45× speedup. We demonstrate that the use
of frequency-domain features leads to an additional
3% contribution to load recognition accuracy when
time-domain components present similar distribu-
tions. Moreover, we explored using only frequency-
domain features with almost 80% accuracy, leading
to a substantial frontend cost reduction, as voltage
sensors can be removed if the accuracy loss is
deemed to be acceptable.
When multiple loads are active simultaneously,
we prove that, by reducing the features to a 34-
dimensional vector, a 2-Layer MLP model reaches
91.63% accuracy requiring 448kB Flash memory
and almost 862Kcycles, corresponding to a small
execution time of 10.26msec.
Our research provides clear evidence that on-the-
edge load monitoring is possible, as we can reduce
model complexity to fit low-cost MCU-based meters
memory and computational capabilities. Along this
path, it is possible to foresee the application of edge
NILM to innovative services such as Home Energy
Management (HEM) and Anomaly Detection (AD),
entailing more complex multi-appliance scenarios
with additional load types. However, this would
require a larger amount of training data to feed the
training pipeline and complex automatic data anno-
tation systems to address unknown novel appliances.
Moreover, the feature extraction on 100ms-long
time windows might be insufficient for identifying
intermediate power states of complex FSM loads.
All these are directions of future work.
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Fig. 10: Overall Framework Comparison

VII. CONCLUSION

The paper presents a novel strategy to lighten
NILM framework complexity, thus enabling
moving intelligence to the edge. We developed
the study using a flexible and low-power Smart
Measurement Node which features an advanced
analog front-end for dual-channel voltage and
current 14-bit acquisition and 1.5Msps sampling
rate.
After highlighting that model complexity and
feature vector size are highly correlated, we
performed a MDA analysis to reduce the
feature space dimensionality without endangering
information content. Results reveal the most
important features among different scenarios, thus
enabling lowering the dimension with minimal
accuracy loss. Comparing memory, latency, and
accuracy of NILM algorithms, we brought tangible
benefits in lightening feature extraction and
classification workloads by deploying reduced
feature spaces and optimized run-time. We

compare 4 supervised learning techniques available
in the literature on 3 different load classification
scenarios. The study demonstrates that a feature
vector reduction to lowering the computing
effort and memory-footprint is achievable without
undermining NILM accuracy.
Future work will improve the system execution
time using the second ultra-low-power multi-core
available on the meter. Furthermore, we will
investigate in more depth the capacity of current
harmonics to disaggregate loads while analyzing
how different time-window lengths affect the
framework accuracy and extraction cost.
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