We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.
Linear Stochastic Dyadic Model / Bianchi, Luigi Amedeo; Morandin, Francesco. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 183:2(2021), pp. 2001-2022. [10.1007/s10955-021-02753-x]
Linear Stochastic Dyadic Model
Bianchi, Luigi Amedeo;
2021-01-01
Abstract
We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bianchi-Morandin2021_Article_LinearStochasticDyadicModel.pdf
accesso aperto
Descrizione: Articolo pubblicato
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
436.53 kB
Formato
Adobe PDF
|
436.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione