We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.

Linear Stochastic Dyadic Model / Bianchi, Luigi Amedeo; Morandin, Francesco. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 183:2(2021), pp. 2001-2022. [10.1007/s10955-021-02753-x]

Linear Stochastic Dyadic Model

Bianchi, Luigi Amedeo;
2021-01-01

Abstract

We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.
2021
2
Bianchi, Luigi Amedeo; Morandin, Francesco
Linear Stochastic Dyadic Model / Bianchi, Luigi Amedeo; Morandin, Francesco. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 183:2(2021), pp. 2001-2022. [10.1007/s10955-021-02753-x]
File in questo prodotto:
File Dimensione Formato  
Bianchi-Morandin2021_Article_LinearStochasticDyadicModel.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 436.53 kB
Formato Adobe PDF
436.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/303991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact