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Abstract
We discuss a stochastic interacting particles’ system connected to dyadic models of turbu-
lence, defining suitable classes of solutions and proving their existence and uniqueness. We
investigate the regularity of a particular family of solutions, called moderate, and we con-
clude with existence and uniqueness of invariant measures associated with such moderate
solutions.

Keywords Dyadic models · Invariant measures · Moderate solutions · Continuous-time
Markov chains

1 Introduction

In this paperwe consider a stochastic systemof interacting particles, introduced and discussed
in [14]: ⎧

⎪⎨

⎪⎩

dXn = kn−1Xn−1 ◦ dWn−1 − kn Xn+1 ◦ dWn, n ≥ 1

Xn(0) = Xn, n ≥ 1

X0(t) ≡ σ, t ≥ 0,

(1)

where kn := λn , with λ > 1, theWn are independent Brownian motions with ◦ dW denoting
Stratonovich stochastic integration, X is a random initial condition, and σ is a nonnegative
deterministic forcing, a term not present in [14].

It is closely related to dyadic models of turbulence, an interesting simplification of the
energy cascade phenomenon, which have been extensively studied in the physical literature,
as well as the mathematical one. We mention here just some results: in [7–9,11] one can find
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dyadic models of a form similar to the one here, linearised by means of Girsanov’s theorem,
where [6,10,13,19,21] deal with other variants of the dyadic models. We refer to the review
papers [1,12], too, for further reading and references.

The σ in (1) is a deterministic forcing, a feature that (1) shares with other dyadic models,
see for example [15,16]. Such forcing is usually introduced to provide a steady flow of energy
and allow for solutions that are stationary in time: dyadic models, even when formally energy
preserving, dissipate energy, through the so-called anomalous dissipation.

In some cases, one considers dyadic models with additive stochastic forcing, for example
[5,18], where the noise is 1-dimensional, and [23], where it acts on all components. The
model (1) considered in this paper is itself stochastic, through the random initial condition
X , and the infinite-dimensionalmultiplicative noise (Wn)n , which formally conserves energy.
Other examples linked to this one in the literature are the already mentioned [7–9,11] and
[14].

Unlike classical dyadic models, the particle system (1) considered in this paper is linear.
This is not surprising: as already mentioned, stochastic linear dyadic models arise from
nonlinear ones through Girsanov’s theorem. Moreover, the coefficients in such models are
growing exponentially, and the associated operator, though linear, is still nontrivial to deal
with. Additionally, as mentioned in [14], systems similar to the one discussed here play a
role in modelling quantum spin chains and heat conduction.

The main results in this paper are the following: we define two classes of solutions for
our system, proper solutions and moderate ones, a more general class. For both classes we
prove existence and uniqueness, but the natural setting for the uniqueness is that of moderate
solutions, a class that had already been introduced in [14]. On the other hand, we prove that,
under very mild assumptions on the initial conditions, moderate solutions are much more
regular than hinted to by the definition: in particular they have finite energy for positive
times. Finally, we move on to invariant measures. By focusing on the more regular solutions
suggested by the regularity theorem we just mentioned, we can improve the result in [14],
showing that for moderate solutions there exists a unique invariant measure, with support in
the space of finite energy solutions.

Before moving on, let us briefly give the general structure of the paper. We begin with
the definition of the model and of proper solutions in Sect. 2, where we also prove the
existence of such solutions. In Sect. 3 it is the turn of moderate solutions, and their existence
and uniqueness. After that, in Sect. 4, we take an apparent detour, considering a related
continuous-timeMarkov chain, which will allow us to better characterize moderate solutions
and show that they are quite regular. Finally, in Sect. 5, we show existence and uniqueness
of invariant measures for our system.

2 Model and Proper Solutions

The model studied in this paper is the following linear and formally conservative system of
interacting particles, introduced in [14]:

⎧
⎪⎨

⎪⎩

dXn = kn−1Xn−1 ◦ dWn−1 − kn Xn+1 ◦ dWn, n ≥ 1

Xn(0) = Xn, n ≥ 1

X0(t) ≡ σ, t ≥ 0.

(2)

Here, for n ≥ 0, the coefficients are kn := λn , for some λ > 1, the Wn are independent
Brownian motions on a given filtered probability space (Ω,F,Ft , P), and ◦ dW denotes
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the Stratonovich stochastic integration, X is an F0-measurable random initial condition, and
σ ≥ 0 is a constant and deterministic forcing term.

We can rewrite each differential equation in Itō form:

dXn = kn−1Xn−1dWn−1 − kn Xn+1dWn

+1

2
d[kn−1Xn−1,Wn−1] − 1

2
d[kn Xn+1,Wn],

where, by (2)

d[Xn−1,Wn−1] = −kn−1Xndt, n ≥ 2, and d[Xn+1,Wn] = kn Xndt, n ≥ 1,

and rewrite (2) in the following way
⎧
⎪⎨

⎪⎩

dX1 = σdW0 − k1X2dW1 − 1
2k

2
1X1dt

dXn = kn−1Xn−1dWn−1 − kn Xn+1dWn − 1
2 (k

2
n−1 + k2n)Xndt, n ≥ 2

X(0) = X .

(3)

We consider as initial condition X an F0-measurable random variable, as mentioned,
which will usually take values in some space Hs , for s ∈ R, where

Hs :=
{

x ∈ R
N : ‖x‖Hs :=

(∑

n≥1

k2sn x2n
)1/2

< ∞
}

.

Remark 1 These spaces have nice properties: they are Hilbert and separable. We also have
that Hs ⊆ H p for p < s, and ‖ · ‖H p ≤ ‖ · ‖Hs . Notice, moreover, that H0 = l2. The
l2 norm is identified as the energy of the configuration and the spaces Hs may be seen as
corresponding to the usual function spaces (see [13] for a thorough explanation in a related
model).

We introducenow thedefinitionof proper solutionswhichwill be our startingpoint towards
the more general moderate solutions, proposed in [14], that here appear in Definition 2.

Definition 1 Given a filtered probability space (Ω,F,Ft , P), an F0-measurable random
variable X , taking values in some Hs , and a sequence of independent Brownian motions
(Wn)n≥0, we say that a process X = (Xn(t))n≥1,t∈[0,T ] is a componentwise solution with
initial condition X , if it has adapted, continuous components and satisfies system (3).

If a componentwise solution X is in L2([0, T ] × Ω; l2) and Xn ∈ L4([0, T ] × Ω) for all
n ≥ 1, we say that X is a proper solution.

The requirement of finite fourth moments, which appears in the definition of proper solu-
tion, is a technical assumption needed in Proposition 1, which shows that second moments
of a proper solution solve a closed system of equations (see also [9], [11]). Fourth moments
play also a role in Theorem 1.

Let us now state and prove the following existence result for proper solutions with initial
conditions with finite energy.

Theorem 1 For any initial condition X ∈ L4(Ω,F0; l2), there exists at least a proper solu-
tion X ∈ L∞([0, T ]; L4(Ω; l2)). Moreover,

E‖X(t)‖2l2 ≤ E‖X‖2l2 + σ 2t t ∈ [0, T ], (4)

and if σ = 0, then with probability 1,

‖X(t)‖l2 ≤ ‖X‖l2 t ∈ [0, T ]. (5)
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Proof For N ≥ 3, consider the following SDE in RN , which represents a Galerkin approxi-
mation of the original problem (3):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX (N )
1 = σdW0 − k1X

(N )
2 dW1 − 1

2k
2
1X

(N )
1 dt

dX (N )
n = kn−1X

(N )
n−1dWn−1 − kn X

(N )
n+1dWn − 1

2 (k
2
n−1 + k2n)X

(N )
n dt, n = 2, . . . , N − 1

dX (N )
N = kN−1X

(N )
N−1dWN−1 − 1

2k
2
N−1X

(N )
N dt

X (N )
n (0) = Xn, n = 1, . . . , N .

(6)
This system has a strong solution with finite fourth moments which we consider embedded
in l2 for simplicity. We compute

d‖X (N )‖2l2 =
∑

n≥1

d
(
(X (N )

n )2
) = 2

∑

n≥1

X (N )
n dX (N )

n +
∑

n≥1

d[X (N )
n ].

Now (dropping the index (N ) in the next two equations not to burden the notation too much),

2
∑

n≥1

XndXn = 2σ X1dW0 − k21X
2
1dt −

N−1∑

n=2

(k2n−1 + k2n)X
2
ndt − k2N−1X

2
Ndt,

and

∑

n≥1

d[Xn] = σ 2dt + k21X
2
2dt +

N−1∑

n=2

(k2n−1X
2
n−1 + k2n X

2
n+1)dt + k2N−1X

2
N−1dt,

hence

d‖X (N )‖2l2 = 2σ X (N )
1 dW0 + σ 2dt,

yielding

‖X (N )(t)‖2l2 = ‖X (N )(0)‖2l2 + 2σ
∫ t

0
X (N )
1 (s)dW0(s) + σ 2t, a.s. (7)

From here we can bound the second moment (with respect to Ω) of this l2 norm,

E‖X (N )(t)‖2l2 ≤ E‖X‖2l2 + σ 2t, (8)

and hence by (7) again and by Itō isometry, we can also bound the fourth moment,

E‖X (N )(t)‖4l2 ≤ 3E‖X‖4l2 + 12σ 2
∫ t

0
E

[(
X (N )
1 (s)

)2]ds + 3σ 4t2

≤ 3E‖X‖4l2 + 12σ 2
∫ t

0

(
E‖X‖2l2 + σ 2s

)
ds + 3σ 4t2

= 3‖X‖4L4(Ω;l2) + 12σ 2T ‖X‖2L2(Ω;l2) + 9σ 4T 2 =: L,

for all t ∈ [0, T ], and N ≥ 3, which we can also write as

‖X (N )‖L∞([0,T ];L4(Ω;l2)) ≤ L1/4, N ≥ 3. (9)

Consequently the sequence X (N ) is bounded in L∞([0, T ]; L4(Ω; l2)), which is the dual
of L1([0, T ]; L4/3(Ω; l2)). Since the latter is separable (see for example [20] for details),
sequential Banach–Alaoglu theorem applies and there is a subsequence X (Nk ) which con-
verges in the weak* topology to some limit X∗ for k → ∞. A fortiori, there is also weak
convergence in L p([0, T ] × Ω; l2), for all 1 < p ≤ 4, and in particular for p = 2.
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The components X (N )
n for n ≥ 1 belong to L2([0, T ] × Ω;R) and are progressively

measurable. The subset of progressively measurable processes is a linear subspace of L2

which is complete, hence closed in the strong topology. Thus it is closed also in the weak
topology. Since X (Nk )

n converges to X∗
n in the weak topology of L2([0, T ] × Ω;R), we

conclude that X∗
n is progressively measurable.

Now we need to pass to the limit in (3). By (6) the processes X (N )
n satisfy

X (N )
n (t) − X (N )

n (0) = kn−1

∫ t

0
X (N )
n−1(s)dWn−1(s) − kn

∫ t

0
X (N )
n+1(s)dWn(s)

−1

2
(k2n−1 + k2n)

∫ t

0
X (N )
n (s)ds,

for N > n. The maps

V �→
∫ t

0
V (s)dWn(s) and V �→

∫ t

0
V (s)ds

are linear and (strongly) continuous operators from L2([0, T ] × Ω) to L2(Ω), hence they
are weakly continuous so we can pass to the limit (see Remark 2, below) and conclude that
the processes X∗

n also satisfy system (3).
A posteriori, from these integral equations, it follows that there is a modification X of

X∗ such that all its components are continuous, hence X is a componentwise solution in
L2([0, T ] × Ω; l2).

To conclude that X is a proper solution, we only need to check that the components are
in L4. For all n ≥ 1,

‖Xn‖4L4([0,T ]×Ω)
≤ ‖X∗‖4L4([0,T ]×Ω;l2) ≤ lim inf

k→∞ ‖X (Nk )‖4L4([0,T ]×Ω;l2) ≤ LT ,

where the third inequality is a consequence of bound (9) and the second one of the weak
lower semicontinuity of the norm, i.e. that in a Banach space, if a sequence converges weakly,
then the norm of the limit is bounded by the limit inferior of the norms.

Then, to prove the bound on energy (4), we take ameasurable set D ⊂ [0, T ], integrate (8)
on D and pass to the limit with the weak lower semicontinuity of the L2(D × Ω; l2) norm,
to get

∫

D
E‖X(t)‖2l2dt ≤ lim inf

k

∫

D
E‖X (Nk )(t)‖2l2dt ≤

∫

D

(
E‖X‖2l2 + σ 2t

)
dt .

By the arbitrariness of D, the bound (4) must hold for a.e. t . Now, if it still failed for some
t0, then one could find ε > 0 and an integer m such that E

∑
n≤m Xn(t0)2 − ε would also

exceed the bound, but by the continuity of the trajectories and the finiteness of the sum this
would give a contradiction.

Finally, to prove the last statement, we follow ideas from [9]. If σ = 0, by (7), we have

‖X (N )‖l2 ≤ ‖X‖l2 P-a.s. on all [0, T ] and for all N .

we now integrate the square of this inequality on A := {‖X‖l2 > ‖X‖l2} ⊂ [0, T ] × Ω

and pass to the limit with the weak lower semicontinuity of the L2(A; l2) norm, to get that
A must be L ⊗ P-negligible. Then for all m ≥ 1 also {(t, ω) : ∑

n≤m Xn(t)2 > ‖X‖2
l2

} is
negligible, and hence by continuity of trajectories,

P
(
sup
t

∑

n≤m

Xn(t)
2 ≤ ‖X‖2l2

)
= 1,
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and we can conclude by intersecting over all m. ��
Remark 2 Passing to the limit in the integral equations is standard but made somewhat tricky
by the different spaces involved, so we expand it here for sake of completeness. First of all,
we fix n ≥ 1. We start now from the fact that X (N )

n → X∗
n in weak-L2([0, T ] × Ω). For

t ∈ [0, T ], let Ln,t from L2([0, T ] × Ω) to L2(Ω) be formally defined by

Ln,t (x) := kn−1

∫ t

0
xn−1(s)dWn−1(s) − kn

∫ t

0
xn+1(s)dWn(s)

−1

2
(k2n−1 + k2n)

∫ t

0
xn(s)ds.

Since the integral operators areweakly continuous, Ln,t (X (N )) → Ln,t (X∗) in weak-L2(Ω),
for all t ∈ [0, T ]. On the other hand X (N )

n (0) → X∗
n(0) a.s. since by construction it is

eventually constant. Therefore X (N )
n (t) → X∗

n(0) + Ln,t (X∗) =: Zt in weak-L2(Ω), for all
t . It is now enough to strengthen the convergence to weak-L2([0, T ] × Ω) to conclude that
X∗
n = Z and hence that it solves the integral equations.
To this end, take any Y ∈ L2([0, T ] × Ω). For a.e. t we have that Yt ∈ L2(Ω), so by

weak convergence

g(N )(t) := E[Yt X (N )
n (t)] → E[Yt Zt ] =: h(t).

By Cauchy–Schwarz inequality and the uniform bound given by (8) we get

|g(N )(t)| ≤ ‖Yt‖L2 · ‖X (N )
n (t)‖L2 ≤ C‖Yt‖L2 ∈ L2(0, T ),

so by dominated convergence
∫ T

0
E[Yt X (N )

n (t)]dt →
∫ T

0
E[Yt Zt ]dt,

and we are done.

We now take a first look at the second moments of a proper solution: they solve a linear
system. We will see later on that such property can be used to get useful estimates on the
solutions themselves.

Proposition 1 Let X be a proper solution with initial condition X such that for all n ≥ 1

Xn ∈ L2(Ω). For all n ≥ 1 and t ∈ [0, T ], let un(t) := E[Xn(t)2] and un := E[X2
n].

Then u ∈ L1
([0, T ]; l1(R+)

)
and it satisfies the following linear system

{
u′
1 = σ 2 − k21u1 + k21u2

u′
n = k2n−1un−1 − (k2n−1 + k2n)un + k2nun+1, n ≥ 2,

(10)

with initial condition u.

Proof It follows from (3), by applying Itō formula to X2
n , that

d(X2
n) = 2XndXn + d[Xn],

where

d[Xn] = k2n−1X
2
n−1dt + k2n X

2
n+1dt, n ≥ 1,
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hence

d(X2
1) = 2σ X1dW0 − 2k1X1X2dW1 − k21X

2
1dt + σ 2dt + k21X

2
2dt,

and

d(X2
n) = 2kn−1Xn−1XndWn−1 − 2kn Xn Xn+1dWn

− (k2n−1 + k2n)X
2
ndt + k2n−1X

2
n−1dt + k2n X

2
n+1dt, n ≥ 2.

By the definition of proper solution, Xn ∈ L4([0, T ]×Ω) for all n, so the stochastic integrals
above are true martingales, and taking expectations and differentiating, we get

{
d
dt E[X2

1] = σ 2 − k21E[X2
1] + k21E[X2

2]
d
dt E[X2

n] = −(k2n−1 + k2n)E[X2
n] + k2n−1E[X2

n−1] + k2n E[X2
n+1], n ≥ 2.

In other words, the second moments of the components satisfy system (10).
The fact that u(0) = u is obvious and u ∈ L1([0, T ]; l1) follows from the definition of

proper solution, since X ∈ L2([0, T ] × Ω; l2). ��
There is furthermore a unique constant solution to system (10) satisfied by the second

moments of proper solutions. This constant solution has an explicit form, as shown in the
following result.

Proposition 2 System (10) has a unique constant solution u(t) ≡ s in l1(R), with explicit
form sn = σ 2λ−2n(1 − λ−2)−1 for n ≥ 1. In particular, s ∈ Hβ for all β < 1.

Proof Assume s = (sn)n is such a solution. Then
{

σ 2 − k21s1 + k21s2 = 0

k2n−1sn−1 − (k2n−1 + k2n)sn + k2nsn+1 = 0, n ≥ 2.

Wewant towrite a recursion for the differences of consecutive elements: we have s1−s2 =
σ 2 · k−2

1 , and also

sn − sn+1 = k2n−1 · k−2
n (sn−1 − sn), n ≥ 2.

Recall now, that kn = λn = kn1 , so sn −sn+1 = λ−2(sn−1−sn), and by recursion sn −sn+1 =
λ−2nσ 2 for all n ≥ 1, yielding that for any m > 1,

s1 − sm =
m∑

n=1

(sn − sn+1) = σ 2
m∑

n=1

λ−2n = σ 2 λ−2 − λ−2m

1 − λ−2 .

In order to have the explicit form of this solution, we use now the fact that s ∈ l1 and so
sm → 0:

s1 = σ 2 λ−2 − λ−2m

1 − λ−2 + sm = σ 2 λ−2

1 − λ−2 ,

and for any n, we get sn = σ 2λ−2n(1 − λ−2)−1. It is immediate to verify that this is in fact
a solution in l1. ��
Remark 3 We will prove uniqueness of the solutions of this system in Theorem 4, in Sect. 4.
Then Proposition 2 will tell us that in system (3), if the initial condition is chosen with second

123



   20 Page 8 of 22 L. A. Bianchi, F. Morandin

moments of the form just shown, then proper solutions have higher regularity than their defini-
tion requires, living in L∞([0, T ]; L2(Ω; H1−

), and their components have constant second
moments. This suggests the existence of invariant measures supported on configurations with
H1−

regularity, which in fact will be found in Sect. 5, at the end of the paper.

3 Moderate Solutions

The definition of proper solution given inDefinition 1 is in some sense too strong, in particular
for the assumptions on X in Theorem 1, so we would like to consider a more general class of
solutions. Consequently, we present here the concept of moderate solutions, as introduced
in [14] to identify a natural space to prove existence and uniqueness in, with much weaker
requirements on initial conditions. Later, in Theorem 5, we will show that moderate solutions
are actually almost as regular as proper solutions.

Some of the following results are similar to those in [14], but we include full proofs here
nevertheless, given that some details differ, that we have an additional forcing term, and for
overall completeness.

Definition 2 We say that a componentwise solution X is a moderate solution with initial
condition X if: X ∈ L2(Ω; H−1), X ∈ L2([0, T ] × Ω; H−1) and there exists a sequence
(X (N ))N≥1 of proper solutions converging to X in L2([0, T ] × Ω; H−1) as N → ∞, such

that their initial conditions X
(N )

converge to X in L2(Ω; H−1).
If a moderate solution is in L2([0, T ] × Ω; l2), we call it a finite energy (moderate)

solution.

Remark 4 Clearly all proper solutions with initial conditions in L2(Ω, H−1) are finite energy
solutions, as can be seen by taking the constant sequence.

The key result to prove existence and uniqueness of the moderate solution is the following
lemma, which has a statement similar to Lemma 2.7 from [14] and shares the same proof
strategy.

Lemma 1 If a process X ∈ L2([0, T ] × Ω; l2) has second moments un(t) := E[Xn(t)2]
which satisfy system (10) with σ = 0, then

E‖X(t)‖2H−1 ≤ E‖X(0)‖2H−1 , for all t ∈ [0, T ].
Proof Recall that, by definition, for all t ≥ 0, E‖X(t)‖2

H−1 = ∑
n≥1 k

−2
n un(t). For N ≥ 1,

if we sum up to N and differentiate, we have

d

dt

N∑

n=1

k−2n
n un =

N∑

n=1

k−2
n u′

n

= k−2
1 (−k21u1 + k21u2)

+
N∑

n=2

k−2
n

(
k2n−1un−1 − (k2n−1 + k2n)un + k2nun+1

)

= −u1 + u2 +
N∑

n=2

(
λ−2un−1 − (λ−2 + 1)un + un+1

)

= −(1 − λ−2)u1 − λ−2uN + uN+1 ≤ uN+1,
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hence

N∑

n=1

k−2n
n un(t) ≤

N∑

n=1

k−2n
n un(0) +

∫ t

0
uN+1(s)ds.

Passing to the limit as N → ∞, the integral converges to zero, since X ∈ L2([0, T ]×Ω; l2),
concluding the proof. ��

We can now prove the uniqueness result for moderate solutions.

Theorem 2 If X and X̃ are two moderate solutions with the same initial condition X ∈
L2(Ω, H−1), defined on [0, T ] and [0, T̃ ], with T ≤ T̃ , then X = X̃ in [0, T ] almost surely.
Proof ByDefinition 2, it is easy to see that X− X̃ is a moderate solution defined on [0, T ] for
the model with σ = 0 and with zero initial condition, so without loss of generality we assume

σ = 0, X = 0 and X̃ = 0. Let X (N ) and X
(N )

be as in Definition 2. For all N ≥ 1, X (N )

is a proper solution of the model with σ = 0, so by Proposition 1 we can apply Lemma 1,
yielding that for all t ∈ [0, T ]

E‖X (N )(t)‖2H−1 ≤ E‖X (N )‖2H−1 .

By integrating we get
∫ T

0
E‖X (N )(t)‖2H−1dt ≤ T E‖X (N )‖2H−1 .

Taking the limit for N → ∞, we have that the L2([0, T ] × Ω; H−1)-norm of X is zero.
Finally, by the continuity of trajectories, it is easy to conclude that X(t) = 0 for all t , almost
surely. ��
Corollary 1 Since proper solutions are moderate solutions, uniqueness holds in the class of
proper solutions too, whatever the initial condition. This means in particular that the inequal-
ities (4) and (5) hold in general for proper solutions with initial conditions in L4(Ω; l2) and
that the sequence of approximants (X (N ))N≥1 in Definition 2 is uniquely determined by their
initial conditions.

To conclude this section, we now state and prove the existence result for moderate solu-
tions, using once again Lemma 1.

Theorem 3 For all X ∈ L2(Ω; H−1) there exists amoderate solution X with initial condition
X, such that

E‖X(t)‖2H−1 ≤ 2E‖X‖2H−1 + 2σ 2t, for all t ∈ [0, T ]. (11)

Moreover the approximants (X (N ))N≥1 of X can be taken as the unique proper solutions
with the following initial conditions

X
(N )

n := −N ∨ (Xn1n≤N ) ∧ N , n ≥ 1. (12)

Proof By virtue of Theorem 1 and Corollary 1, there exists a unique proper solution Z of (3)
with zero initial condition. Below we will exhibit a moderate solution X for the model with
σ = 0 and initial condition X . Then, by linearity, Z + X will be the required moderate
solution.
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We can assume σ = 0. For N ≥ 1, let X
(N ) ∈ L∞(Ω, l2) be defined as in (12).

Then, by Theorem 1 and Corollary 1, there exists a unique proper solution X (N ) with initial

condition X
(N )

. In view of Definition 2, we will show that (X (N ))N≥1 is a Cauchy sequence

in L2([0, T ] × Ω; H−1) and that X
(N ) → X in L2(Ω; H−1), as N → ∞.

For all M, N ≥ 1, the difference X (M) −X (N ) is a proper solution, hence by Proposition 1
we can apply Lemma 1, yielding that

∫ T

0
E‖X (M)(t) − X (N )(t)‖2H−1dt ≤ T E‖X (M) − X

(N )‖2H−1 . (13)

Thus, if we can prove the convergence for the sequence of initial conditions, we also get the
Cauchy property for the sequence (X (N ))N≥1. To this end, consider themeasurable functions,
on Ω × N defined by

ψ(ω, n) := k−2
n Xn(ω)2, and ψ(N )(ω, n) := k−2

n

(
X

(N )

n (ω) − Xn(ω)
)2

, N ≥ 1.

Clearly ψ(N ) → 0 pointwise, as N → ∞, and also in L1(Ω × N), since ψ(N ) ≤ ψ ∈
L1(Ω × N). On the other hand we have,

‖X (N ) − X‖2L2(Ω;H−1)
= E‖X (N ) − X‖2H−1

= E
∑

n≥1

k−2
n (X

(N )

n − Xn)
2 = ‖ψ(N )‖L1(Ω×N).

Hence X
(N ) → X in L2(Ω; H−1), as N → ∞, then by (13) the sequence (X (N ))N≥1 has

the Cauchy property and there exists the limit X ∈ L2([0, T ] × Ω; H−1).
To conclude the proof of the existence statement, we need to show that X admits a

modificationwhich is a componentwise solution, that is, X has amodificationwith continuous
adapted trajectories, which solves system (3). This is completely standard and a simpler
version of the argument in the proof of Theorem 1, with strong L2 convergence in place of
weak L2 convergence.

To prove the bound (11) of the H−1 norm, we can notice that Lemma 1 applies to the
approximants X (N ) and, taking the limit, the same inequality holds for X . Then it is enough
to recall that when σ > 0 we need to take the auxiliary proper solution Z into account, for
which (4) applies, so that, with the H−1 norm controlled by the l2 one,

E‖X(t) + Z(t)‖2H−1 ≤ 2E‖X(t)‖2H−1 + 2E‖Z(t)‖2H−1 ≤ 2E‖X‖2H−1 + 2σ 2t .

��

4 Regularity of Moderate Solutions

Now that we have introduced moderate solutions and shown their existence and uniqueness’
results, let us go back to the second moments’ system (10), and delve deeper into it. We can
show a Markov chain associated with our system. This is not surprising, as it is the case for
other models in the dyadic family (see for example [8,9,11,14]). This associated process will
allow us to prove sharper estimates on the norm of solutions, leading us to Theorem 5 at the
end of this section, which states that moderate solutions are, in a sense, much more regular
than one would expect from the definition.
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Let Π be the infinite matrix defined by

Πi, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−k21 j = i = 1

−k2i−1 − k2i j = i ≥ 2

k2i−1 j = i − 1

k2i j = i + 1

for i, j ≥ 1,

or, in an equivalent way,

Π =

⎛

⎜
⎜
⎜
⎜
⎝

−k21 k21 0 0 . . .

k21 −k21 − k22 k22 0 . . .

0 k22 −k22 − k23 k23 . . .

0 0 k23 −k23 − k24 . . .

. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

.

With this definition, Π is the stable and conservative q-matrix associated to a continuous-
time Markov chain on the positive integers (see [4] for a comprehensive discussion). The
corresponding Kolmogorov equations are

u′ = uΠ, u ∈ L∞(R+; l1(R+)) (forward)

u′ = Πu, u ∈ L∞(R+; l∞(R+)). (backward)

Since Π is symmetric, both the forward and the backward equations are formally equiv-
alent to system (10) with σ = 0. From now on we will refer in particular to the forward
equations, because we will be studying the second moments of the finite energy solutions of
the original system, which will belong to the class L∞([0, T ]; l1(R+)).

The forward equations are well-posed. In particular, it is a general fact (see for example
Theorem 2.2 in [4] and references therein) that, for a q-matrix such as Π , there exists a
transition function f = ( fi, j (t))i, j≥1,t≥0 such that, for all i ≥ 1, fi,· is a solution of the
forward equations with initial condition δi,·, and, for all j ≥ 1, f·, j is a solution of the
backward equations with initial condition δ·, j . This is called the minimal transition function
associated with the q-matrix Π , and has some nice properties, for example

∑
j fi, j ≤ 1

(which is used in the proof of Theorem 4 below). Its uniqueness depends on the form and
properties ofΠ , and in our case classical results (see [4], again) show that there is uniqueness
in the class of solutions of the forward equations while there are infinitely many solutions in
the class of solutions of the backward equations.

Nonetheless, we need a statement of uniqueness in a larger class, because we consider
l1(R) instead of l1(R+), and L∞([0, T ], l1) instead of L∞(R+, l1).

Lemma 2 Let u ∈ l1 and f be the minimal transition function of Π . Then

u j (t) :=
∑

i≥1

ui fi, j (t), i ≥ 1

defines a solution u of the forward equations in the class L∞(R+; l1) with initial condition
u.

Proof Since f is a transition function, it is non-negative and
∑

j≥1 fi, j (t) ≤ 1 for all i ≥ 1
and all t ≥ 0, so in particular,

‖u(t)‖l1 ≤
∑

i, j≥1

|ui | fi, j (t) ≤ ‖u‖l1 .
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Formal differentiation gives

u′
j (t) =

∑

i≥1

ui f
′
i, j (t) =

∑

i,k≥1

ui fi,k(t)Πk, j =
∑

k≥1

uk(t)Πk, j ,

however, to conclude we must check that differentiation commutes with the sum over i :
∑

i,k≥1

|ui fi,k(t)Πk, j | ≤
∑

i≥1

|ui |
∑

k≥1

|Πk, j | ≤ C( j)‖u‖l1 < ∞.

��
The following theorem mimics results in [4], but requires a new proof nevertheless, as

already mentioned, since we are considering different spaces.

Theorem 4 For all T > 0 there is uniqueness of the solution for the forward equations in
the class L1([0, T ]; l1(R)), for any initial condition. The same holds for system (10), that is,
when σ > 0.

Proof By linearity, suppose by contradiction that u is a nonzero solution in L1([0, T ]; l1)
with null initial condition and σ = 0 (this applies to both cases). We start by constructing
another solution ũ defined on the whole [0,∞). Let τ ≤ T be a time such that u(τ ) �= 0 but
‖u(τ )‖l1 < ∞. Let ũ = u on [0, τ ] and extend it after τ with the minimal transition function
f ,

ũ j (t + τ) =
∑

i≥1

ui (τ ) fi, j (t), j ≥ 1, t ≥ 0.

By Lemma 2, ũ is a solution of the forward equations in the class L1([0, T ]; l1) ∩
L∞([T ,∞), l1) and in particular we can define the residuals r = (ri (λ))i≥1,λ>0 as

r(λ) :=
∫ ∞

0
λe−λt ũ(t)dt ∈ l1.

Then by integrating by parts using ũ(0) = 0,

r(λ) =
∫ ∞

0
e−λt ũ′(t)dt =

∫ ∞

0
e−λt ũ(t)Πdt,

we get the algebraic relation λr(λ) = r(λ)Π , that is
{

λr1 = k21(r2 − r1)

λri = k2i (ri+1 − ri ) − k2i−1(ri − ri−1), i ≥ 2.

These can be solved recursively: either ri = 0 for all i ≥ 1, or ri/r1 > 1 for all i ≥ 2. To
quickly see this, one can prove by induction on i that ri/r1 > ri−1/r1 ≥ 1. The base case for
i = 2 comes from the first equation, while the inductive step comes from the second one:

k2i

(
ri+1

r1
− ri

r1

)

= λ
ri
r1

+ k2i−1

(
ri
r1

− ri−1

r1

)

> 0.

We had r(λ) ∈ l1, so r(λ) = 0 for all λ > 0 yielding ũ = 0 and hence a contradiction. ��
Remark 5 With this proof, l1 is the best space we can get: if we relax to l1

−
, we do not get

the contradiction, since the ri ’s might not explode, and one can actually show that

k2i

(
ri+1

r1
− ri

r1

)
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converges to a constant.

We are now able to characterize the evolution in time of the second moments as a trans-
formation through Π of the second moments at time 0.

Proposition 3 Let σ = 0 and f be the minimal transition function ofΠ . If X is the moderate
solution with initial condition X ∈ L2(Ω, H−1), then for all j ≥ 1 and t ∈ [0, T ],

E[X2
j (t)] =

∑

i≥1

E[X2
i ] fi, j (t) < ∞. (14)

Proof For i ≥ 1 and t ∈ [0, T ], let ui (t) := E[(Xi (t))2], ui := E[X2
i ] and vi (t) :=

∑
h≥1 uh fh,i (t).
As a first step, we prove the statement in the case that X ∈ L2(Ω; l2) and X is a proper

solution. In this case u ∈ l1, Lemma 2 applies, and so v is a solution of the forward equations
in L∞(R+; l1). On the other hand, by Proposition 1 and since σ = 0, u is a solution of the
forward equations in L1([0, T ]; l1). Both have initial condition u, so by Theorem 4, u = v

on [0, T ].
We turn to the general case of X moderate solution. For N ≥ 1, let X (N ) and X

(N )
be

approximating sequences. We can take the initial conditions X
(N )

in the form presented
in (12) without loss of generality, given that the moderate solution is unique by Theorem 2.
Let u(N )

i (t), u(N )
i and v

(N )
i (t) be defined accordingly.

Notice that X
(N ) ∈ L∞(Ω; l2), so, by the first step, (14) holds for the approximants X (N )

and X
(N )

, for N ≥ 1

u(N )
j (t) = E[(X (N )

j (t))2] =
∑

i≥1

E[(X (N )

i )2] fi, j (t) =
∑

i≥1

u(N )
i fi, j (t) = v

(N )
j (t).

Taking the limit as N → ∞, u(N )
i increases monotonically to ui for all i ≥ 1, hence

for all t ∈ [0, T ] the right-hand side converges monotonically to v j (t). As for the left-hand

side, since X (N )
j → X j in L2([0, T ] × Ω), it is not difficult to verify that u(N )

j → u j in

L1(0, T ). By the uniqueness of the limit (L1 and pointwise monotone), the identity in (14)
is proved, as well as the finiteness for a.e. t . Since u j is bounded uniformly on [0, T ] by (11)
and v

(N )
j ≤ u j , the result extends to all t . ��

We can now link back to moderate solutions and their connection with the minimal tran-
sition function.

Proposition 4 The second moments of a moderate solution always solve system (10) compo-
nentwise.

Proof Let X be a moderate solution with approximating sequence X (N ), N ≥ 1. Let
u(N )
i (t) := E[(X (N )

i (t))2], as in the proof of Proposition 3. We are interested in (10), of
which u(N ) is a solution. In integral form we can rewrite them as

u(N )
1 (t) = u(N )

1 (0) + σ 2t −
∫ t

0
k21u

(N )
1 (s)ds +

∫ t

0
k21u

(N )
2 (s)ds

u(N )
j (t) = u(N )

j (0) +
∫ t

0
k2j−1u

(N )
j−1(s)ds −

∫ t

0
(k2j−1 + k2j )u

(N )
j (s)ds

+
∫ t

0
k2j u

(N )
j+1(s)ds
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for j ≥ 2.
Since u(N )

j → u j on [0, T ] a.e. and in L1, we can pass to the limit in the left-hand side and
inside each of the integrals at the right-hand side, yielding that the identity holds for u j for
a.e. t . Now the continuity of the trajectories of X j together with the bound given by Eq. (11)
allows us to conclude that u j is continuous in t . Since the right-hand side is also continuous,
we can remove the “a.e.” and the statement is proved. ��

Proposition 3 is the key tool to control theflowof energy between components formoderate
solutions and it ensures that nothing different happens with respect to proper solutions.
Estimates on the minimal transition function f will now allow us to compute different norms
and get regularity results for the moderate solutions.

4.1 Transition Function Estimates

Let (S,S,P) be a probability space with a continuous-time Markov chain on the positive
integers (ξt )t≥0, with the property of being the minimal process associated with Π , that is

fi, j (t) = P(ξt = j |ξ0 = i) =: Pi (ξt = j), i, j ≥ 1, t ≥ 0,

where f is the minimal transition function. We will not fix the law of ξ0 which will not be
relevant, as we will be always conditioning on this random variable.

The arguments in the following lemmas are very similar to the ones in Lemmas 10 to 14
in [8], but are restated and proven again here, with the right generality for this paper and
compatible notation.

Lemma 3 Let f be the minimal transition function and Tj the total time spent by ξ in state
j , for j ≥ 1. Let moreover Ei denote the expectation with respect to Pi . Then,

∫ ∞

0
fi, j (t)dt = Ei (Tj ) = λ−2(i∨ j)

1 − λ−2 = k−2
i∨ j

1 − k−2
1

.

Proof The first equality is trivial since both terms are equal to
∫ ∞

0
Ei (1ξt= j )dt .

We turn to the second one. Let (τn)n≥0 be the jumping times of ξ , that is τ0 := 0 and

τn+1 := inf{t > τn : ξt �= ξτn }, n ≥ 0.

Let (ζn)n≥0 denote the discrete-time Markov chain embedded in ξ , that is ζn := ξτn for
n ≥ 0. For every state j ≥ 1, let Vj denote the total number of visits to j ,

Vj :=
∑

n≥0

1ζn= j .

Then, by the strong Markov property and conditioning on the initial state ξ0, Vj is a mixture
of a Dirac δ0 and a geometric random variable. Specifically, let

πi, j := Pi (ζn �= j, ∀n ≥ 0),

then

Vj (Pi ) = πi, jδ0 + (1 − πi, j )Geom(P j (ζ1 = j + 1)π j+1, j ),
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where we used the fact that the Markov chain is nearest-neighbour and that π j−1, j = 0.
For each visit of ξ to site j , the time spent there is an exponential random variable with

rate −Π j, j (recall that Π has a negative diagonal). By the strong Markov property again,
these variables are independent among them and with Vj . Consequently, we only have to
compute

Ei (Tj ) = Ei (Vj )

−Π j, j
= 1

−Π j, j
· 1 − πi, j

P j (ζ1 = j + 1)π j+1, j
= 1

Π j, j+1
· 1 − πi, j

π j+1, j
.

Notice that for j ≥ 2,

P j (ζ1 = j + 1) = Π j, j+1

−Π j, j
= k2j

k2j + k2j−1

= λ2 j

λ2 j + λ2( j−1)
= 1

1 + λ−2 =: θ >
1

2
,

independent of j , while for j = 1 the same quantity is 1. Then ζ is a simple random walk on
the positive integers, reflected in 1, with positive drift 2θ − 1. It is now an exercise to prove
that

πi, j =
{
1 − ( 1−θ

θ

)i− j
i > j

0 i ≤ j
,

that is, πi, j = 1 − λ−2[(i− j)∨0]. Substituting, we can conclude

Ei (Tj ) = 1

k2j
· λ−2[(i− j)∨0]

2θ−1
θ

= λ−2(i∨ j)

2 − 1/θ
= k−2

i∨ j

1 − k−2
1

.

��

When the chain starts from i , all states j ≥ i are visited with probability one, and the
times Tj have exponential distribution. In particular the following holds.

Corollary 2 For j ≥ 1 the law of Tj , conditional on ξ0 = 1, is exponential with mean λ−2 j

1−λ−2 .

Theminimal process ξt is uniquely defined up to the time of the first infinity (also known as
the explosion time), τ := ∑

j≥1 Tj and after that one can assume that it rests in an absorbing
boundary state b outside the usual state-space of the positive integers. To estimate the total
energy of a solution it will be important to deal with

∑
j≥1 fi, j (t) ≤ 1 which will be strictly

less than 1 when there is a positive probability that the chain has reached b.

∑

j≥1

fi, j (t) =
∑

j≥1

Pi (ξt = j) = Pi

(∑

j≥1

Tj > t
)

=: Pi (τ > t). (15)

Lemma 4 There exists a time t > 0 such that P1(τ > t) < 1.

Proof Let us start the proof by noticing that we have a lower bound on P(τ > t) given by
e−(λ2−1)2t . We can now introduce the sequence ϑn = αnk−2

n , where α = (λ2 − 1)2λ−2 is a
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constant. Observe that
∑∞

n=1 ϑn = 1. Now we have

P(τ > t) =P
(∑

n

Tn >
∑

n

ϑnt
)

≤P
( ∞⋃

n=1

{Tn > ϑnt}
)

≤
∞∑

n=1

P(Tn > ϑnt)

=
∞∑

n=1

exp
{

− 1 − λ−2

λ−2n ϑnt
}

=
∞∑

n=1

exp
{

− (λ2 − 1)3

λ4
nt

}

=
(
exp

{ (λ2 − 1)3

λ4
t
}

− 1
)−1

,

and any t > log 2 · λ4(λ2 − 1)−3 satisfies our claim. ��
In the following lemma, we show that it is enough to show the strict inequality P(τ >

t) < 1 for just any single time t , and then it holds for all positive times.

Lemma 5 Assume that there exists a time t̃ such that P(τ > t̃) < 1. Then P(τ > t) < 1 for
all t > 0.

Proof First of all, we notice that P(τ > t) ≤ P(τ > s), for all 0 < s ≤ t : we can read this
from the Chapman–Kolmogorov equations,

P(τ > t) =
∞∑

n=1

P(τ > t − s|ξ0 = n)P(ξs = n) ≤
∞∑

n=1

P(ξs = n) = P(τ > s).

This tells us that the map P(τ > t) is not increasing in t , and in particular it is always less
than 1 for t ≥ t̃ . Now suppose that there exists a t < t̃ such that P(τ > t) = 1. Then, for
any 0 < s < t ,

1 = P(τ > t) =
∞∑

n=1

P(τ > s|ξ0 = n)P(ξt−s = n)

≤
∞∑

n=1

P(ξt−s = n) = P(τ > t − s),

but the last term is still a probability, so all the terms must be equal to 1. In particular, this
means that P(τ > s|ξ0 = n) = 1 for all n.

Finally, we consider

1 > P(τ > t̃) =
∞∑

n=1

P(τ > s|ξ0 = n)P(ξt̃−s = n) = P(τ > t̃ − s),

and we can keep repeating it to show that for all t < t̃ , P(τ > t) < 1. ��
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The following result tells us that by considering processes conditioned to a staring point
in 1, we actually took the worst case scenario. The proof is a standard exercise in continuous
time Markov chains.

Lemma 6 For all j ≥ 1, P j (τ > t) ≤ P1(τ > t).

By combining Lemmas 4, 5 and 6, we have that

Pi (τ > t) < 1, i ≥ 1, t > 0 (16)

4.2 Moderate Solutions are Finite Energy

We get now to the first application of the results in the previous subsection: we use them
in the following proposition, to show anomalous dissipation of average energy for moderate
solutions starting from finite energy initial conditions. The latter hypothesis will be dropped
afterwards.

Proposition 5 Let X ∈ L2(Ω; l2) and let X be the moderate solution with initial condition
X. Then X is a finite energy solution. Moreover, if σ = 0 and X �= 0, then for all t ∈ (0, T ],
we have ‖X(t)‖L2(Ω;l2) < ‖X‖L2(Ω;l2).

Proof We start from the second statement, so let σ = 0 and fix t > 0. We can rewrite the
energy at time t thanks to Proposition 3 and Eqs. (14) and (15), as

E[‖X(t)‖2l2 ] =
∑

j≥1

E[X2
j (t)] =

∑

j≥1

∑

i≥1

E[X2
i ] fi, j (t) =

∑

i≥1

E[X2
i ]Pi (τ > t).

Then we can exploit the strict inequalities (16) for all i ≥ 1 to get the result.
Turning to the first statement, by uniqueness and linearity, we can decompose X as the

sum of a proper solution with zero initial condition and amoderate solution with zero forcing.
Applying what we proved above, bound (4) and triangle inequality, yields the result. ��

The next result states formally that moderate solutions are “almost” finite energy solution,
in the sense that whatever the initial condition, they jump into l2 immediately (in fact they
jump into H1−

).

Theorem 5 Letσ = 0. Let X be themoderate solutionwith initial condition X ∈ L2(Ω; Hα),
with α ≥ −1. Then X ∈ L2([0, T ]×Ω; Hβ) for all β < min(1, α + 1), with norm bounded
by a constant depending on β and the law of X, but not on T ,

‖X‖L2([0,T ]×Ω;Hβ ) ≤ Cβ,LX
< ∞. (17)

In particular:

i. for all initial conditions, X ∈ L2([0, T ] × Ω; Hβ) for all β < 0;
ii. if X ∈ L2(Ω; Hα) for α > −1, then X ∈ L2([0, T ] × Ω; l2);
iii. if X ∈ L2(Ω; l2), then X ∈ L2([0, T ] × Ω; Hβ) for all β < 1;
iv. for all initial conditions, X ∈ L2([ε, T ] × Ω; Hβ) for all ε > 0 and β < 1.

Proof By Proposition 3 and Lemma 3, we can explicitly compute all the L2([0, T ] × Ω)-

norms of the components of X . Let us define u component by component as ui := E[X2
i ]
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for i ≥ 1, and fix α and β satisfying the hypothesis, in particular β < 1 and α > β − 1.
Then, recalling that k j = λ j , with λ > 1,

‖X‖2L2([0,T ]×Ω;Hβ )
=

∫ T

0

∑

i, j≥1

k2βj ui fi, j (t)dt

≤
∑

i, j≥1

k2βj ui

∫ ∞

0
fi, j (t)dt

= C
∑

j≥1

∑

i≥ j

k−2
i k2βj ui + C

∑

j≥1

j−1∑

i=1

k−2+2β
j ui

= C
∑

i≥1

k−2
i ui

i∑

j=1

k2βj + C
∑

i≥1

ui
∑

j>i

k−2+2β
j

≤ C
∑

i≥1

k−2
i ui

i∑

j=1

k2βj + C ′ ∑

i≥1

k−2+2β
i ui .

The second infinite sum is equal to ‖X‖2
L2(Ω;Hβ−1)

, which is finite because β − 1 < α. If

β > 0, the finite sum is bounded by a constant times k2βi , hence the first infinite sum behaves
like the second one. If β ≤ 0, the finite sum is bounded by a constant or by i , hence the
expression is again controlled by finite quantities.

The points i, ii and iii are immediately verified by substituting suitable values of α and β.
As for iv, it is a trivial consequence of the previous ones applied to subsequent time intervals.

��

This important result has two interesting consequences. First, we can recover a similar
bound on the L2 norm even if we consider the unforced case (i.e. σ = 0), however, in this
case, the bound depends on T , too. Second, we can show that the evolution of the L2 norm
is continuous, as soon as we have t > 0.

Corollary 3 The assumption that σ = 0 can be dropped from Theorem 5, with the only
difference that

‖X‖2L2([0,T ]×Ω;Hβ )
≤ C ′

β,LX
· (1 + T ) < ∞, (18)

holds instead of (17).

Proof By linearity and uniqueness of moderate solutions, we decompose the solution as
X = Y +Z , where Z has zero forcing and Y has constant secondmoments of components. To
this end, let (sn)n be as in the statement ofProposition2, and letY be theuniqueproper solution
with forcing σ and deterministic initial condition Y defined by Y n := √

sn . By Proposition 1,
the secondmoments of Y satisfy system (10), so by uniqueness and Proposition 2, the second
moments of the components of Y are constant, and thus Y (t) ∈ L2(Ω; Hs) for all t ≥ 0 and
all s < 1. By hypothesis X ∈ L2(Ω; Hα). Then Z := X − Y ∈ L2(Ω; Hr ) for all r ≤ α,
r < 1. Let Z be the moderate solution with no forcing and with initial condition Z , to which
Theorem 5 applies. Then X = Y + Z has the same regularity as Z , and if β is like in the
statement of that theorem,
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‖X‖2L2([0,T ]×Ω;Hβ )
≤ 2‖Y‖2L2([0,T ]×Ω;Hβ )

+ 2‖Z‖2L2([0,T ]×Ω;Hβ )

≤ 2T ‖Y‖2L2(Ω;Hβ )
+ 2Cβ,LZ

.

��

Corollary 4 For any moderate solution X and for all s < 1 the L2(Ω; Hs)-norm of X is
finite and continuous on (0, T ]. In particular, X(t) ∈ l2 a.s. for all positive t .

Proof Fix s < 1, and let ‖·‖ denote the L2(Ω; Hs)-norm.By the last statement of Theorem5,
we know that ‖X(t)‖ is finite for a.e. t ∈ (0, T ]. Let (tn)n be a sequence of such times
converging to some t , and suppose by contradiction that limn ‖X(tn)‖ does not exists or is
different from ‖X(t)‖, which may or may not be finite. Then without loss of generality we
can deduce that there exists a subsequence (nk)k and a real a, such that

lim sup
k

‖X(tnk )‖ < a < ‖X(t)‖.

Then there exists j0 such that

j0∑

j=1

k2sj E[X2
j (t)] > a2.

The left-hand side is a finite sum of seconds moments, hence it is continuous in t by Propo-
sition 3, yielding that for k large also ‖X(tnk )‖ > a, which is a contradiction. ��

5 Invariant Measure

This final section deals with invariant measures for the transition semigroup associated with
moderate solutions. We prove that there exists one with support on H1− ⊂ l2 which is the
unique one among those with support on H−1.

Let (Pt )t≥0 be the transition semigroup associated to the moderate solutions, meaning
that for all A ⊂ H−1 measurable, x ∈ H−1, ϕ ∈ Cb(H−1) and t ≥ 0, we define

Pt (x, A) := P(Xx (t) ∈ A), and Ptϕ(x) := E[ϕ(Xx (t))].
where Xx is the moderate solution with deterministic initial condition X = x . (Notice that
we are not specifying T : the solution can be taken on any interval [0, T ], with T ≥ t , and
the semigroup is well-defined thanks to Theorem 2.)

Theorem 6 The semigroup Pt associated to moderate solutions, admits an invariant measure
supported on l2.

Proof By Corollary 4, Pt (x, l2) = 1 for all t > 0 and x ∈ H−1, so it makes sense to consider
the semigroup restricted to l2.

To prove existence, we rely on Corollary 3.1.2 in [17], which states that there exists an
invariant measure for a Feller Markov semigroup Pt . This holds under the assumption that
for some probability measure ν and sequence of times Tn ↑ ∞, the sequence (R∗

Tn
ν)n≥1 is

tight, where R∗
t is the operator on probability measures associated to Pt , defined by

123



   20 Page 20 of 22 L. A. Bianchi, F. Morandin

R∗
t ν(A) := 1

t

∫ t

0

∫

l2
Ps(x, A)ν(dx)ds,

for every probability measure ν on l2 and measurable set A of l2.
Let us start with the tightness. Choose ν = δ0 and let β ∈ (0, 1). The compact set to verify

tightness will be the Hβ -norm closed ball of radius r , which is compact under the l2 norm,

B(r) := {x ∈ l2 : ‖x‖Hβ ≤ r}.
Then, for all T > 0,

R∗
T ν(B(r)) = 1

T

∫ T

0
Pt (0, B(r))dt = 1

T

∫ T

0
P(‖X0(t)‖Hβ ≤ r)dt

≥ 1 − 1

T

∫ T

0
r−2E‖X0(t)‖2Hβdt = 1 − 1

T
r−2‖X0‖2L2([0,T ]×Ω;Hβ )

.

Now Corollary 3 applies, and by (18) we get that there exists a constant C such that
R∗
T ν(B(r)) ≥ 1 − Cr−2 for all T and all r , which proves the tightness.
Let us now move on to the Feller property: to show that it holds, we follow an argument

similar to the one hinted to in [14]. For x ∈ l2 and σ ∈ R, let Xx,σ denote the unique
moderate solution with deterministic initial condition X = x and forcing σ . Then, if x and
y are two points il l2, we have,

E[‖Xx,σ (t) − X y,σ (t)‖2l2 ] = E[‖Xx−y,0(t)‖2l2 ] ≤ ‖x − y‖2l2 , t ≥ 0, (19)

where we used uniqueness, linearity (whence forcing terms cancel out) and Proposition 5.
Now consider a sequence xn → x in l2. By Eq. (19), Xxn ,σ −→ Xx,σ in L2(Ω; l2), hence

in probability and in law, meaning that for all ϕ ∈ Cb(l2):

Ptϕ(xn) = E[ϕ(Xxn ,σ (t))] → E[ϕ(Xx,σ (t))] = Ptϕ(x),

which gives us the continuity of the semigroup Pt . ��
Remark 6 Theorem 6 can be improved to H1−

regularity. In fact, again by Corollary 4,
Pt (x, Hs) = 1 for all s < 1, t > 0 and x ∈ H−1, so actually the invariant measure has
support on H1− := ⋂

s<1 H
s .

To prove the uniqueness of the invariant measure, we use the strategy shown in [5]: we
formulate the problem as a Kantorovich problem in transport of mass (see for example
[2,3,22]) and proceed by showing a contradiction caused by assuming the existence of two
different invariant measures.

Theorem 7 There is a unique invariant measure supported on H−1 for the semigroup asso-
ciated with moderate solutions.

Proof Let us assume, by contradiction, that there are two different invariant measuresμ1 and
μ2. We can define the set Γ = Γ (μ1, μ2) of admissible transport plans γ from μ1 to μ2,
that is the set of joint measures which have the μi as marginals.

We can also define the functional Φ on Γ in the following way: for γ ∈ Γ

Φ(γ ) =
∫

l2×l2
‖x − y‖2l2dγ (x, y),
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that is, we take as cost function c(x, y) = ‖x − y‖2
l2
. We claim that there exists an optimal

transport map in Kantorovich problem, that is a γ0 ∈ Γ such that Φ(γ0) ≤ Φ(γ ) for all
γ ∈ Γ .

Then we can consider the random vector (X
(1)

, X
(2)

), with joint distribution γ0, and in
particular marginal distributionsμ1 andμ2. Let X (1) and X (2) be the moderate solutions with

initial conditions X
(1)

and X
(2)

, respectively. Sinceμ1 andμ2 are invariantmeasures, for each
t > 0 the random vector (X (1)(t), X (2)(t)) has a joint law γt ∈ Γ . Consequently we have

E‖X (1) − X
(2)‖2l2 =

∫

l2×l2
‖x − y‖2l2dγ0(x, y) = Φ(γ0) ≤ Φ(γt )

=
∫

l2×l2
‖x − y‖2l2dγt (x, y) = E‖X (1)(t) − X (2)(t)‖2l2

To conclude the proof, we need a contradiction, e.g. a contraction property of the solu-
tions. Let us define X := X (1) − X (2). By linearity and uniqueness, this is the moderate

solution of the problem with σ = 0 and initial condition X := X
(1) − X

(2) ∈ L2(Ω; H−1).
If ‖X‖L2(Ω;l2) = ∞, the contradiction is given by Corollary 4. If instead the l2 is finite,
Proposition 5 applies, and we have the contraction

E(‖X(t)‖2l2) < E(‖X‖2l2), t > 0.

Weare left with the claim. By Theorem 1.5 in [2], it is enough to check that c is lower semi-
continuous and bounded from below. To prove the former, consider converging sequences
x (n) → x and y(n) → y in H−1. If x−y /∈ l2 then‖x (n)−y(n)‖l2 = +∞definitely, because l2

is a closed subspace of H−1, and otherwise therewould be a subsequence inside l2 converging
to a point outside of it.On the other hand, if x−y ∈ l2, then for all ε > 0 there exists k such that

k∑

i=1

(x − y)2i ≥ ‖x − y‖2l2 − ε/2.

Convergence in H−1 implies convergence of components, so there exists n0 such that for
n ≥ n0

k∑

i=1

(x (n) − y(n))2i ≥
k∑

i=1

(x − y)2i − ε/2,

yielding that c(x (n), y(n)) ≥ c(x, y) − ε definitely. ��
Remark 7 This result only applies to invariant measures for moderate solutions. It is however
possible to construct wilder componentwise solutions that are stationary, such as theGaussian
one discussed in [14].
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