Let $F in C^1(Omega, ^{n})$ and $fin C^2(Omega)$, where $Omega$ is an open subset of $ ^{n}$ with $n$ even. We describe the structure of the set of points in $Omega$ at which the equality $D f = F$ and a certain non-integrability condition on $F$ hold. This result generalizes the second statement of cite[Theorem 3.1]{Ba}.
Structure of prescribed gradient domains for non-integrable vector fields / Delladio, Silvano. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 198 (2019):3(2019), pp. 685-691. [10.1007/s10231-018-0793-1]
Structure of prescribed gradient domains for non-integrable vector fields
Delladio, Silvano
2019-01-01
Abstract
Let $F in C^1(Omega, ^{n})$ and $fin C^2(Omega)$, where $Omega$ is an open subset of $ ^{n}$ with $n$ even. We describe the structure of the set of points in $Omega$ at which the equality $D f = F$ and a certain non-integrability condition on $F$ hold. This result generalizes the second statement of cite[Theorem 3.1]{Ba}.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DelladioFinalVersion.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
255.37 kB
Formato
Adobe PDF
|
255.37 kB | Adobe PDF | Visualizza/Apri |
Delladio2019_Article_StructureOfPrescribedGradientD.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
382.59 kB
Formato
Adobe PDF
|
382.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione