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Abstract. Let F ∈ C1(Ω,Rn) and f ∈ C2(Ω), where Ω is an open subset of Rn with n
even. We describe the structure of the set of points in Ω at which the equality Df = F
and a certain non-integrability condition on F hold. This result generalizes the second
statement of [1, Theorem 3.1].

1. Introduction

Let us consider an open subset Ω of Rn and a vector field F ∈ C1(Ω,Rn). Then, whatever
the choice of f ∈ C2(Ω), the set

Af,F := {x ∈ Ω |Df(x) = F (x)}

has to be somehow “scarcely dense” at each point x ∈ Ω satisfying the condition

(DF (x))t 6= DF (x).(1.1)

Actually, if such a condition occurs then the point x cannot be in the interior of Af,F , by
the Schwarz theorem on mixed derivatives. More interestingly, by [3, Theorem 2.1], the
point x cannot be a (n+ 1)-density point of the set Af,F , i.e., it must be

lim sup
r→0+

Ln(B(x, r) \ Af,F )

rn+1
> 0.

In the special case when n = 2m and

F0(x1, . . . , x2m) = (2xm+1, . . . , 2x2m,−2x1, . . . ,−2xm)

the condition (1.1) is trivially satisfied everywhere by F0 and, according to the Balogh’s
result [1, Theorem 3.1], the set Af,F0 is covered by countably many m-dimensional Lip-
schitz graphs. In particular the Hausdorff dimension of Af,F0 cannot exceed m. This
theorem implies immediately that, given a C2 hypersurface S in R2m+1, the set of points
at which the tangent space of S coincides with the space spanned by the left-invariant
horizontal vector fields of the Heisenberg group Hm over R2m+1 (namely the characteristic
set of S) has Hausdorff dimension less or equal to m, compare [1, Theorem 1.2].
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The main goal of this short paper is a theorem generalizing Balogh’s result above and
describing the structure of the set of points in Af,F satisfying a certain condition which is
stronger than (1.1). In order to formulate such a condition and to state our result, let us
consider the canonical basis {e1, . . . , en} of Rn and a real n× n matrix M . Then define

Γ(M) :=
n∑
i=1

Mei ∧ ei

and (if h is a positive integer)

Γ(M)h := Γ(M) ∧ · · · ∧ Γ(M)︸ ︷︷ ︸
h times

.

Now we can finally state our structure theorem. It establishes that if n = 2m then the
set A∗f,F of all points x ∈ Af,F such that

Γ(DF (x))m 6= 0(1.2)

is covered by a finite family of m-dimensional regularly imbedded C1 submanifolds of R2m

(Theorem 4.1 below).

In the special case considered by Balogh, i.e., when F = F0, the condition (1.2) is verified
at every x ∈ Rn. Indeed a standard computation yields

Γ(DF0(x))m = C(m) e1 ∧ · · · ∧ e2m

for all x ∈ Rn, where C(m) is a positive constant depending only on m. Hence Af,F0 =
A∗f,F0

, thus Balogh’s result follows trivially from our theorem (Corollary 4.1 below).

The proof of our structure theorem is provided in Section 4 and is an elementary argument
combining the classical implicit function theorem with some basic results from multilinear
algebra which are developed in Section 3.

We have eventually to mention a few main results strictly related to this subject that
have been published after [1]. In paper [4], B. Franchi, R. Serapioni and F. Serra Cassano
extended the Balogh’s covering type argument to all stratified groups of step two. The
generalization to arbitrary stratified groups has been proved by V. Magnani through a
different approach based on a coarea inequality [7]. More recently, an estimate for the
size of tangencies of submanifolds with respect to a non-involutive distribution, which
generalizes the Balogh’s theorem above, has been provided in [2].

2. Notation

If m,n are positive integers with m ≤ n then I(n,m) is the set of integer multi-indices
(α1, . . . , αm) such that 1 ≤ α1 < . . . < αm ≤ n. If α ∈ I(n,m) then ᾱ is the complement
in I(n, n − m) of α. Moreover σ(α, ᾱ) is the sign of the permutation of (1, . . . , n) into
(α, ᾱ). The space of m-vectors in Rn is denoted by ΛmRn. If {e1, . . . , en} is a basis of
Rn and α = (α1, . . . , αm) ∈ I(n,m), then we put eα := eα1 ∧ · · · ∧ eαm . Recall that
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{eα}α∈I(n,m) is a basis of ΛmRn. Let Mn(R) denote the space of all n × n matrices with
real entries and consider M ∈ Mn(R). Then M t is the transpose of M . Moreover, if
1 ≤ m ≤ n, define the linear operator ΛmM : ΛmRn → ΛmRn as the one such that
ΛmM(eα) = Meα1 ∧ · · · ∧Meαm , for all α = (α1, . . . , αm) ∈ I(n,m). Observe that, for all
β ∈ I(n,m), one has

ΛmM(eβ) =
∑

α∈I(n,m)

(detMα,β)eα

where Mα,β is the m×m submatrix of M with rows α1, . . . , αm and columns β1, . . . , βm.
The symmetric group of degree m is denoted by Sm. Finally, if Ω is an open subset of
Rn, x ∈ Ω and ψ ∈ C1(Ω,Rm), then Dψ(x) denotes the matrix of the differential of ψ at
x (with respect to the canonical basis).

3. Some basic preliminaries from multilinear algebra.

Proposition 3.1. Let {e1, . . . , en} be the canonical basis of Rn. Consider the operator
Γ : Mn(R)→ Λ2Rn defined as

Γ(M) :=
n∑
i=1

Mei ∧ ei, M ∈Mn(R).

Then Γ has the following properties:

(1) It is linear, namely if r, s ∈ R and M,N ∈Mn(R) then

Γ(rM + sN) = r Γ(M) + sΓ(N).

(2) For all M ∈Mn(R) one has

Γ(M) =
n∑

i,j=1
i<j

(Mij −Mji) ei ∧ ej

where Mij := (Mej) · ei. Hence:

(i) Γ(M t) = −Γ(M);
(ii) Γ(M) = 0 if and only if M is symmetric.

(3) If {u1, . . . , un} is any arbitrary orthonormal basis in Rn and M ∈Mn(R), then

n∑
i=1

Mui ∧ ui = Γ(M).
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Moreover, in the special case when n is even, i.e. n = 2m, the following identities hold
for all M ∈M2m(R):

Γ(M)m := Γ(M) ∧ · · · ∧ Γ(M)︸ ︷︷ ︸
m times

= C(m)
∑

α∈I(2m,m)

[(ΛmM) eα] ∧ eα

= C(m)

 ∑
α∈I(2m,m)

σ(α, ᾱ) detMα,ᾱ

 e1 ∧ · · · ∧ e2m

with C(m) := m! (−1)
m(m−1)

2 .

Proof. Assertion (1) follows immediately from the definition of Γ, while (2) is a standard
computation:

Γ(M) =
n∑

i,j=1

Mji ej ∧ ei

=
n∑

i,j=1
i<j

Mji ej ∧ ei +
n∑

i,j=1
i>j

Mji ej ∧ ei

=
n∑

i,j=1
i<j

Mji ej ∧ ei +
n∑

i,j=1
i<j

Mij ei ∧ ej

=
n∑

i,j=1
i<j

(Mij −Mji) ei ∧ ej.

Also (3) is very easy:

n∑
i=1

Mei ∧ ei =
n∑

i,h,k=1

(ei · uh)(ei · uk)Muh ∧ uk

=
n∑

h,k=1

[
n∑
i=1

(ei · uh)(ei · uk)
]
Muh ∧ uk

=
n∑

h,k=1

(uh · uk)Muh ∧ uk

=
n∑
h=1

Muh ∧ uh.
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Finally, one has

Γ(M)m =

 2m∑
i1=1

Mei1 ∧ ei1

 ∧ · · · ∧
 2m∑
im=1

Meim ∧ eim


= (−1)1+2+···+m−1

2m∑
i1,... ,im=1

Mei1 ∧ · · · ∧Meim ∧ ei1 ∧ · · · ∧ eim

= (−1)
m(m−1)

2

∑
α∈I(2m,m)

∑
λ∈Sm

Meαλ(1) ∧ · · · ∧Meαλ(m)
∧ eαλ(1) ∧ · · · ∧ eαλ(m)

= (−1)
m(m−1)

2

∑
α∈I(2m,m)

#(Sm) [(ΛmM) eα] ∧ eα

= (−1)
m(m−1)

2 m!
∑

α∈I(2m,m)

[(ΛmM) eα] ∧ eα

and

[(ΛmM) eα] ∧ eα =
∑

β∈I(2m,m)

(detMβ,α) eβ ∧ eα = (detMᾱ,α) eᾱ ∧ eα

= σ(ᾱ, α) (detMᾱ,α) e1 ∧ · · · ∧ e2m.

�

Remark 3.1. From (1) and (2) of Proposition 3.1, it follows at once the following identity
which will be useful below:

Γ(M −M t) = 2Γ(M) = −2Γ(M t)

for all M ∈Mn(R).

Remark 3.2. Let h ≥ 2 and n ≥ 2h. Then the identity Γ(M)h = 0 holds whenever M
is symmetric (by (2) of Proposition 3.1) but it can occur even when M is nonsymmetric.
For example, for

Mij =

1 if i = 1 and j = 2

0 otherwise

one has Γ(M) = e1 ∧ e2, hence Γ(M)h = 0.

4. The structure theorem. Statement and proof.

Definition 4.1. Given f ∈ C2(Ω) and F ∈ C1(Ω,R2m), where Ω is an open subset of
R2m, define the sets

Af,F := {x ∈ Ω |Df(x) = F (x)}
and

A∗f,F := {x ∈ Af,F |Γ(DF (x))m 6= 0}.
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Remark 4.1. As we have already pointed out in the Introduction, under the assumptions
of Definition 4.1, a point x0 ∈ Ω cannot be a (2m + 1)-density point of the set Af,F
if Γ(DF (x0)) 6= 0 (by [3, Theorem 2.1]). In particular one has the following property:
There is no point x0 ∈ A∗f,F which is a (2m+ 1)-density point of the setA∗f,F . In our main
result, namely Theorem 4.1 below, we will prove that something very much stronger than
this property actually holds for A∗f,F . In particular, the set A∗f,F must be so thin that its
Hausdorff dimension cannot exceed m.

We need the following lemma which will be proved by a simple argument combining
Proposition 3.1 and the implicit function theorem.

Lemma 4.1. Let Φ ∈ C1(Ω,R2m), where Ω be an open subset of R2m. Then

{x ∈ Ω |Φ(x) = 0, Γ(DΦ(x))m 6= 0}(4.1)

is a relatively closed subset of Ω which is covered by a finite family {Σα |α ∈ I(2m,m)}
of m-dimensional regularly imbedded C1 submanifolds of R2m.

Proof. For α ∈ I(2m,m), define

Φα := (Φα1 , . . . ,Φαm), Σα := {x ∈ Ω |Φα(x) = 0, rankDΦα(x) = m} .
Observe that each Σα has to be a m-dimensional regularly imbedded C1 submanifold
of R2m by a standard application of the implicit function theorem, e.g. compare [6,
Theorem 4.3.1] or [5, Ch. 1, Theorem 3.2]. The conclusion follows from the last identity
in Proposition 3.1, with M = DΦ(x). �

Now we are ready to prove our main result.

Theorem 4.1 (Structure theorem). Let f ∈ C2(Ω) and F ∈ C1(Ω,R2m), where Ω is
an open subset of R2m. Then A∗f,F is a relatively closed subset of Ω which is covered by

a finite family {Σα |α ∈ I(2m,m)} of m-dimensional regularly imbedded C1 submanifolds
of R2m. In particular, the Hausdorff dimension of A∗f,F has to be less or equal to m.

Proof. Consider
Φ := Df − F ∈ C1(Ω,R2m).

Since
DΦ = D2f −DF

one has
Γ(DΦ(x)− (DΦ(x))t) = Γ((DF (x))t −DF (x))

for all x ∈ Ω. By recalling Remark 3.1, we get

Γ(DΦ(x)) = −Γ(DF (x))

for all x ∈ Ω, hence

A∗f,F = {x ∈ Ω |Φ(x) = 0, Γ(DΦ(x))m 6= 0}.
The conclusion follows from Lemma 4.1. �
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From Theorem 4.1 we obtain the following corollary.

Corollary 4.1. Consider F0 : R2m → R2m defined as

F0(x1, . . . , x2m) := (2xm+1, . . . , 2x2m,−2x1, . . . ,−2xm)

and let Ω be an open subset of R2m. Then, for all f ∈ C2(Ω), the set Af,F0 is a relatively
closed subset of Ω which is covered by a finite family {Σα |α ∈ I(2m,m)} of m-dimensional
regularly imbedded C1 submanifolds of R2m. In particular, the Hausdorff dimension of
Af,F0 has to be less or equal to m.

Proof. Observe that

DF0 =

(
0 2Im
−2Im 0

)
where Im denotes the identity m×m matrix. Thus, for all x ∈ R2m, we obtain

Γ(DF0(x)) =
2m∑
i=1

DF0(x)ei ∧ ei =
m∑
i=1

(−2em+i) ∧ ei +
2m∑

i=m+1

2ei−m ∧ ei

= 4
m∑
i=1

ei ∧ em+i

hence

Γ(DF0(x))m = 4m
m∑

i1,... ,im=1

(ei1 ∧ em+i1) ∧ · · · ∧ (eim ∧ em+im)

= 4m
∑
λ∈Sm

(eλ(1) ∧ em+λ(1)) ∧ · · · ∧ (eλ(m) ∧ em+λ(m))

= 4m
∑
λ∈Sm

(e1 ∧ em+1) ∧ · · · ∧ (em ∧ e2m)

= 4mm!(−1)
m(m−1)

2 e1 ∧ · · · ∧ e2m.

In particular one has Γ(DF0(x))m 6= 0 for all x ∈ R2m, so that Af,F0 = A∗f,F0
. The

conclusion follows from Theorem 4.1. �

Remark 4.2. Corollary 4.1 improves slightly the second statement in [1, Theorem 3.1],
which yields immediately the following interesting fact: the characteristic set of a codi-
mension 1 submanifold of class C2 in the Heisenberg group Hm has Hausdorff dimension
less or equal to m, compare [1, Theorem 1.2].
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