For all subsets E of Rn, we define a function dE measuring the density-degree of E at the points of Rn. We provide some results which involve dE. In particular we prove an approximation property stating that, given a bounded open set Ω, the following facts hold: • For all C < Ln(Ω) there exists a closed subset F of Ω such that Ln(F) > C and dF = n almost everywhere in F; • For all C < Ln(Ω) and for every proper subinterval I of (n, +∞), there exists a closed subset F of Ω and an open subset U of Ω such that F ⊃ Ω\U, Ln(U) < Ln(Ω)−C (hence Ln(F) > C) and dF (x) ∈ I for all x ∈ Ω U.
Density-degree function for subsets of Rn / Delladio, S.. - In: HOUSTON JOURNAL OF MATHEMATICS. - ISSN 0362-1588. - STAMPA. - 45:3(2019), pp. 743-762.
Density-degree function for subsets of Rn
Delladio S.
2019-01-01
Abstract
For all subsets E of Rn, we define a function dE measuring the density-degree of E at the points of Rn. We provide some results which involve dE. In particular we prove an approximation property stating that, given a bounded open set Ω, the following facts hold: • For all C < Ln(Ω) there exists a closed subset F of Ω such that Ln(F) > C and dF = n almost everywhere in F; • For all C < Ln(Ω) and for every proper subinterval I of (n, +∞), there exists a closed subset F of Ω and an open subset U of Ω such that F ⊃ Ω\U, Ln(U) < Ln(Ω)−C (hence Ln(F) > C) and dF (x) ∈ I for all x ∈ Ω U.File | Dimensione | Formato | |
---|---|---|---|
DelladioToHJM.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
311.09 kB
Formato
Adobe PDF
|
311.09 kB | Adobe PDF | Visualizza/Apri |
08delladio.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
380.7 kB
Formato
Adobe PDF
|
380.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione