
DENSITY-DEGREE FUNCTION FOR SUBSETS OF Rn

SILVANO DELLADIO

Abstract. For all subsets E of Rn, we define a function dE measuring the density-
degree of E at the points of Rn. We provide some results which involve dE . In particular
we prove an approximation property stating that, given a bounded open sets Ω, the
following facts hold:

(1) For all C < Ln(Ω) there exists a closed subset F of Ω such that Ln(F ) > C and
dF = n almost everywhere in F ;

(2) For all C < Ln(Ω) and for every proper subinterval I of (n,+∞), there exists a
closed subset F of Ω and an open subset U of Ω such that F ⊃ Ω \ U , Ln(U) <
Ln(Ω)− C (hence Ln(F ) > C) and dF (x) ∈ I for all x ∈ Ω \ U .

1. Introduction

In the series of papers [5, 6, 7, 8, 9, 10, 11] we have investigated the following notion
of superdensity: If m ≥ n then a subset E of Rn is said to be m-dense at x0 ∈ Rn if
Ln(B(x0, r) \ E) = o(rm) as r → 0+, where Ln denotes the Lebesgue outer measure in
Rn and B(x0, r) is the open ball of radius r centered at x0. The set of all these points
x0 is denoted by E(m) and it is obvious that E(p) ⊂ E(m) for p > m. The sets E such
that E ⊂ E(m) (i.e. the so called “m-dense sets”) form a base topology on Rn. In the
special case when m = n+ 1 + 1/(n− 1) this topology includes the family of locally finite
perimeter subsets of Rn, compare [6, 11].

One can roughly say that m-dense sets are closer to open sets than to generic measurable
sets and actually “m-density” seems to provide a good category to generalize some classical
results where “openness” is required. For example in [5, 6, 8] we have proved the following
results, where Ω is an open subset of Rn, f ∈ C1(Ω), Φ ∈ C1(Ω,Rn) and F := {x ∈
Ω | ∇f(x) = Φ(x)}:

• The vector field curl Φ vanishes in Ω∩F (n+1). Such a result generalizes the classical
Schwarz theorem about the equality of mixed partial derivatives;

• The graph of f |Ω∩F (n+1) is C2-rectifiable. This Whitney-type property extends the
obvious assertion that f restricted to the interior of F is of class C2. Its proof is

2010 Mathematics Subject Classification. Primary 28A75, 54-XX; .
Key words and phrases. Superdensity, Density degree function.

1



2 SILVANO DELLADIO

based on an argument which combines superdensity and differentiability in the L1

sense (according to the definition of Calderon-Zygmund, compare [4] and [17]);

• Given x0 ∈ Ω∩F (n+1), denote by Γ the quadratic form associated to 1
2
DΦ(x0) i.e.

Γ(ξ) :=
1

2
〈DΦ(x0)ξ, ξ〉 =

1

2

n∑
i,j=1

ξiξjDiΦj(x0) (ξ ∈ Rn)

and consider the family of quadratic dilatations Tρ : Rn × R → Rn × R, with
ρ ∈ (0, 1), defined by

Tρ(x; t) :=

(
x− x0

ρ
;
t− f(x0)−∇f(x0) · (x− x0)

ρ2

)
.

If Gf and GΓ denote the graph of f and the graph of Γ, respectively, then one has

Hn Tρ(Gf )→ Hn GΓ (as ρ→ 0+)

in the weak∗ sense of measures. This result establishes the existence of an oscu-
lating paraboloid over the points x0 of Ω ∩ F (n+1). When x0 is in the interior of
F such a paraboloid coincides with the graph of the maximal form in the second
order Taylor polynomial of f at x0.

The interest for this subject stems naturally from the G. Alberti’s result [1, Theorem 1]
and the first application relating the Alberti’s theorem with sets of finite perimeter has
been provided by J. Fu in [12, Corollary 2]. The Fu’s argument is quite technical (it uses
the slicing of rectifiable currents), but an easy alternative proof based on the mentioned
superdensity property of finite perimeter sets is given in [7]. In this context it is worth
mentioning [3, Theorem 3.1], where the Euclidean size of the characteristic set associated
to a one-codimensional submanifold of the Heisenberg group Hn is estimated in some
special cases. Applications of superdensity to functions having derivatives in the L1 sense
are also given in [9].

In the present paper we continue the study of density-related properties of subsets of Rn

within the classical framework of Lebesgue measure. For all subsets E of Rn, we define a
function dE measuring the density-degree of E at the points of Rn. More precisely: dE(x)
is defined as the supremum of the set {k ≥ n |x ∈ E(k)} if x ∈ E(n), while it is set to be
zero whenever x 6∈ E(n). We provide some results concerning the level and superlevel sets
of the density-degree function. In particular we prove an approximation property stating
that, given a bounded open set Ω, the following facts hold:

(1) For all C < Ln(Ω) there exists a closed subset F of Ω such that Ln(F ) > C and
dF = n almost everywhere in F (compare Proposition 5.4);

(2) For all C < Ln(Ω) and for every proper subinterval I of (n,+∞), there exists a
closed subset F of Ω and an open subset U of Ω such that F ⊃ Ω \ U , Ln(U) <
Ln(Ω)−C (hence Ln(F ) > C) and dF (x) ∈ I for all x ∈ Ω\U (compare Theorem
5.1).
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2. General notation

With P(Rn) we indicate the collection of all subsets of Rn. The Euclidean norms (absolute
value included) are denoted by |·|. The open ball of radius r centered at x ∈ Rn is denoted
by B(x, r) and ωn indicates the measure of the unit ball B(0, 1). For simplicity, the ball
B(0, r) is indicated with Br. The constants depending only on p, q, . . . are indicated by
C(p, q, . . . ). The usual Euclidean topology in Rn is indicated with τ(Rn). If E ⊂ Rn

then E◦ and E denote, respectively, the interior of E and the closure of E (w.r.t. τ(Rn)).
Moreover ϕE is the characteristic function of E. When two subsets A and B of Rn are
equivalent in measure, namely with respect to the Lebesgue measure Ln, we write A =

◦
B.

If E is a measurable subset of Rn, recall that the essential interior of E and the essential
boundary of E are defined, respectively, as

intME :=
{
x ∈ Rn

∣∣∣Ln(B(x, r)\E) = o(rn) as r → 0+
}

and
∂ME := Rn\

(
intME ∪ intM(Rn\E)

)
.

Recall that intME =
◦
E and intM(Rn\E) =

◦
(Rn\E), by the Lebesgue’s density theorem,

hence Ln(∂ME) = 0. With P (E) we denote the perimeter of a Ln-measurable subset E
of Rn in the sense of De Giorgi, namely

P (E) := sup

{∫
E

divϕdLn
∣∣∣∣∣ϕ ∈ [C1

c (Rn)]n
}

compare [2, Section 3.3]. The Hausdorff dimension of a set E is denoted by dimH(E).

3. Superdense sets: a miscellany of some well-known facts

Let us begin this section by recalling the definition of base operator associated to the
superdensity topology (compare [11]) and that of m-density point (compare [6, 7, 8]).

Definition 3.1. For m ≥ n, the operator bm : P(Rn)→ P(Rn) is defined as follows:

bm(A) :=

{
x ∈ Rn

∣∣∣∣∣ lim sup
r→0+

Ln(A ∩B(x, r))

rm
> 0

}
, A ∈ P(Rn).

Definition 3.2. Let m ≥ n and A ∈ P(Rn). Then x ∈ Rn is said to be a “m-density
point of A” if

lim
r→0+

Ln(B(x, r)\A)

rm
= 0.

The set of m-density points of A is denoted by A(m).

Remark 3.1. One has the equality

A(m) = [bm(Ac)]c .(3.1)

This simple observation leads to the idea of defining a “superdensity topology”: just as
we say that A is open in the Euclidean topology whenever A ⊂ A◦, so we’ll say that A is
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open with respect to bm if A ⊂ [bm(Ac)]c. This idea concerns a particular case of a very
general and deep theory about fine topologies arising from a base operator. The most
complete reference for this subject is [14], from which we recall that a base operator on a
set X is a map b : P(X) → P(X) such that b(∅) = ∅ and b(A ∪ B) = b(A) ∪ b(B), for
all A,B ∈ P(X). Such an operator is monotone and it actually determines a topology τb
whose members are the subsets A of X satisfying A ⊂ [b(Ac)]c. Hence a subset F of X is
closed with respect τb (or b-closed, for shortness) if and only if b(F ) ⊂ F .

Remark 3.2. As one can easily verify, the following five equalities are equivalent (recall
the Lebesgue density theorem, e.g [13, Section 7.49]):

• Ln(A) = 0;
• bm(A) = ∅ for all m ≥ n;
• bn(A) = ∅;
• A(m) = ∅ for all m ≥ n;
• A(n) = ∅.

Also observe that

A(m) ∩B(m) = (A ∩B)(m)

by (3.1). Moreover, from the trivial inclusion A,B ⊂ A ∪ B which implies A(m), B(m) ⊂
(A ∪B)(m) (just by definition), we get

A(m) ∪B(m) ⊂ (A ∪B)(m).(3.2)

As we have already observed in [11], the proper inclusion in (3.2) can actually occur. In the
special case when m = n and A(n) = B(n) = ∅ one has Ln(A ∪B) ≤ Ln(A) + Ln(B) = 0,
hence

A(n) ∪B(n) = (A ∪B)(n) = ∅.

Remark 3.3. There exist n-dimensional subsets of Rn having measure zero. For example,
consider A := ∪jCj, where {Cj} is a countable family of Cantor sets such that dimH(Cj) ≤
dimH(Cj+1) < 1 for all j and dimH(Cj) → 1 as j → +∞ (compare [15, Sections 4.10
and 4.12] for a construction of such a family). Then one actually has L1(A) = 0 and
dimH(A) = 1.

Proposition 3.1 ([11], Proposition 3.1). The following facts hold:

(1) bm is a base operator;
(2) For all A ⊂ Rn, the set bm(A) is measurable with respect to Ln. As a consequence,

A(m) is measurable too;
(3) One has A ∈ τbm if and only if A ⊂ A(m). In particular τbm is finer than τ(Rn);
(4) If p ≥ m(≥ n), then bm(A) ⊂ bp(A), for all A ⊂ Rn. In particular τbm is finer

than τbp;
(5) For all A ⊂ Rn, one has

bm(A) ⊂ A
τbm
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where the right hand member is the closure of A with respect to τbm. In particular,
a set A is τbm-dense in Rn whenever bm(A) = Rn.

Theorem 3.1 ([11], Proposition 3.2). Assume m > n and consider ε > 0. The following
properties hold:

(1) If Ω is a bounded open set in Rn, then there exists an open subset A of Ω such that

Ln(A) < ε, Ω ⊂ bm(A) ⊂ Ω.(3.3)

In the special case when ∂Ω is Lipschitz, the set A can be chosen in such a way to
satisfy

bm(A) = Ω;(3.4)

(2) There exists an open subset U of Rn such that

Ln(U) < ε, bm(U) = Rn.

The Lebesgue’s density theorem states that if E is a measurable subset of Rn then almost
every x ∈ E is a n-density point of E. The following result establishes that Caccioppoli
sets are more dense than generic measurable sets.

Theorem 3.2 ([6], Lemma 4.1). Let E be a subset of Rn of locally finite perimeter and

m0 := n+ 1∗ = n+ 1 +
1

n− 1
.(3.5)

Then E =
◦
E(m0).

Hence every set of finite perimeter has an equivalent copy (with respect to measure) in
τbm0

.

Proposition 3.2 ([11], Proposition 4.2). Let E be a set of locally finite perimeter in Rn

and define E∗ := E ∩ E(m0). Then

Ln(E∗) = Ln(E), E∗ ∈ τbm0
.

Proposition 3.3 ([11], Proposition 4.1). For all m > m0 there exists a closed set Fm of
positive measure and finite perimeter in Rn such that F (m)

m = ∅.

4. The upper m-density of Ln E (with m > n)
is an almost everywhere {0,+∞}-valued function

We begin this section by recalling a well-known property of the functions in Lp(Rn) with
p ∈ [1,+∞), compare [17, Lemma 3.7.2].
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Theorem 4.1. Let u ∈ Lp(Rn), with p ∈ [1,+∞). Assume that there exist a measurable
subset E of Rn and two constants C, a > 0 such that

sup
x∈E

( ∫
B(x,r)

|u|p
)1/p

≤ Cra

for all r > 0. Then ( ∫
B(x,r)

|u|p
)1/p

= o(ra) as r → 0+

at a.e. x ∈ E.

Remark 4.1. In general, Theorem 4.1 does not hold for a = 0. A trivial counterexample
is provided for every p by u := ϕB(0,1) and E := Rn.

Remark 4.2. Let a > 0, p ∈ [1,+∞) and u ∈ Lploc(Rn). Observe that µ := Ln |u|p is a
Radon measure on Rn. Then, by [15, Ch. 6, Ex. 3] with s := n+ ap, the function

x 7→ lim sup
r→0+

r−a
( ∫

B(x,r)
|u|p

)1/p

is Borel.

We shall use Theorem 4.1 to prove the following result.

Theorem 4.2. Let a > 0, p ∈ [1,+∞) and u ∈ Lploc(Rn). Then, except for x in a null
set, the function

x 7→ lim sup
r→0+

r−a
( ∫

B(x,r)
|u|p

)1/p

takes values in {0,+∞}. In other words, if

Z :=

x ∈ Rn

∣∣∣∣∣ 0 < lim sup
r→0+

r−a
( ∫

B(x,r)
|u|p

)1/p

< +∞

 ,
then Ln(Z) = 0.

Proof. First of all define

X :=

x ∈ Rn

∣∣∣∣∣ lim sup
r→0+

r−a
( ∫

B(x,r)
|u|p

)1/p

< +∞

 ,
X0 :=

x ∈ Rn

∣∣∣∣∣
( ∫

B(x,r)
|u|p

)1/p

= o(ra) as r → 0+


and observe that

X = X0 ∪ Z.
The proof is divided into two steps.
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First step: Assume u ∈ Lp(Rn). For k = 1, 2, . . . , define

Ek :=

x ∈ Rn

∣∣∣∣∣
( ∫

B(x,r)
|u|p

)1/p

≤ kra for all r > 0

 .
and observe that (for every single k)( ∫

B(x,r)
|u|p

)1/p

= o(ra) as r → 0+

at a.e. x ∈ Ek, by Theorem 4.1, namely

Ln(Ek \X0) = 0.(4.1)

If x ∈ X and put

L := lim sup
r→0+

r−a
( ∫

B(x,r)
|u|p

)1/p

then there exists r0 > 0 such that

r−a
( ∫

B(x,r)
|u|p

)1/p

≤ L+ 1

for all r ≤ r0. Moreover

r−a
( ∫

B(x,r)
|u|p

)1/p

≤ ω−1/p
n r−a−n/p‖u‖p → 0 as r → +∞.

Thus x ∈ Ek for k large enough, namely X ⊂ ∪kEk. Hence the thesis follows at once by
recalling (4.1):

Ln(Z) = Ln(X \X0) ≤ Ln
(
(∪kEk) \X0

)
≤
∑
k

Ln(Ek \X0) = 0.

Second step: Assume u ∈ Lploc(Rn). For R > 0, define uR := uϕBR and

ZR :=

x ∈ Rn

∣∣∣∣∣ 0 < lim sup
r→0+

r−a
( ∫

B(x,r)
|uR|p

)1/p

< +∞

 .
Observe that ZR =

◦
Z ∩BR, hence

Ln(ZR) = Ln(Z ∩BR).

On the other hand, since uR ∈ Lp(Rn), one also has

Ln(ZR) = 0

by the first step. It follows that

Ln(Z ∩BR) = 0

for all R > 0, that is Ln(Z) = 0. �
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Corollary 4.1. Let E be a measurable subset of Rn and let m > n. Then, except for x
in a null set, the function

x 7→ lim sup
r→0+

Ln(B(x, r) ∩ E)

rm

takes values in {0,+∞}. Equivalently

Ln
({

x ∈ Rn

∣∣∣∣∣ 0 < lim sup
r→0+

Ln(B(x, r) ∩ E)

rm
< +∞

})
= 0.

In terms of E(m) and bm(E) this means that

E(m) =
◦
{
x ∈ Rn

∣∣∣∣∣ lim sup
r→0+

Ln(B(x, r) \ E)

rm
< +∞

}
and

bm(E) =
◦
{
x ∈ Rn

∣∣∣∣∣ lim sup
r→0+

Ln(B(x, r) ∩ E)

rm
= +∞

}
.

Proof. Apply Theorem 4.2 with u := ϕE, p := 1 and a := m− n. �

5. Density-degree function

Prior to providing the definition of density-degree function, observe that if E is a subset
of Rn and x ∈ Rn, then the set {k ∈ [n,+∞) |x ∈ E(k)} is a (possibly empty) interval.

Definition 5.1. Let E be a subset of Rn. Then define the “density-degree function”
dE : Rn → [0,+∞] as follows

dE(x) :=

sup
{
k ≥ n |x ∈ E(k)

}
if x ∈ E(n)

0 if x 6∈ E(n).

For m ∈ [n,+∞) we also define

int(m)E := {x ∈ Rn | dE(x) > m} , cl(m)E := {x ∈ Rn | dE(x) ≥ m}
and

∂(m)E := cl(m)E \ int(m)E = {x ∈ Rn | dE(x) = m} .
When the following identity holds

E =
◦
∂(m)E = {x ∈ Rn | dE(x) = m}

we say that E is a “uniformly m-dense set”.

Example 5.1. If E is open, then dE(x) = +∞ for all x ∈ E. Hence

E ⊂ int(m)E

for all m ≥ n. Observe that the strict inclusion can occur, e.g. for E := Br \ {0} (in such
a case one has int(m)E = Br).
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Example 5.2. Let m > 2 and

E := {x = (x1, x2) ∈ R2 |xm−1
1 ≤ |x2|}.

Since (as an elementary computation shows)

lim
r→0+

L2(B(0, r) \ E)

rm
∈ (0,+∞)

holds, one has dE(0) = m. Hence 0 ∈ ∂(m)E \ E(m).

This proposition collects some very simple (nevertheless interesting) facts.

Proposition 5.1. Let E be a subset of Rn and m ∈ [n,+∞). The following properties
hold:

(1) ∂(k)E ∩ ∂(m)E = ∅, if k 6= m (k ≥ n);

(2) int(m)E =
⋃
k>mE

(k);

(3) If m > n then cl(m)E =
⋂
l∈[n,m) E

(l), while cl(n)E = E(n);

(4) int(m)E ⊂ E(m) ⊂ cl(m)E;

(5) E is a uniformly m-dense set (with m ≥ n) if and only if both the following
identities hold

cl(m)E =
◦
E, int(m)E =

◦ ∅;(5.1)

(6) E is a uniformly n-dense set if and only if int(n)E =
◦ ∅;

(7) int(m)E, cl(m)E and ∂(m)E are measurable sets;

(8) The density-degree function dE is a measurable function.

Proof. The statements (1), (2) and (3) follow at once from Definition 5.1. The properties
(2) and (3) trivially yield (4) and (7).

Let us prove (5). First observe that the “if part” of the statement follows trivially from
the definition of ∂(m)E. Conversely, if we assume ∂(m)E =

◦
E we get

cl(m)E ⊂ E(n) =
◦
E =

◦
∂(m)E = cl(m)E \ int(m)E ⊂ cl(m)E

hence cl(m)E =
◦
E (i.e. the first identity in (5.1)) and cl(m)E =

◦
cl(m)E \ int(m)E. Since

int(m)E ⊂ cl(m)E this last identity yields int(m)E =
◦ ∅ (i.e. the second identity in (5.1)).

Now (6) follows at once from (3) and (5).
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Finally, observe that for a ∈ R one has

{x ∈ Rn | dE(x) ≥ a} =


Rn if a ≤ 0

E(n) if a ∈ (0, n)

cl(a)E if a ≥ n

by Definition 5.1. Hence (8) follows by the half-line criterion for measurability of functions,
e.g. [16, Theorem 11.15]. �

From Proposition 5.1 we obtain the following result.

Proposition 5.2. Let E be a measurable subset of Rn. Then the set{
m ∈ (n,+∞) | Ln(∂(m)E) > 0

}
is at most countable.

Proof. Observe that, for all R > 0 and ε > 0, the set{
m ∈ (n,+∞) | Ln(B(0, R) ∩ ∂(m)E) ≥ ε

}
has to be finite, by (1) and (7) in Proposition 5.1. Hence the conclusion follows at once
by this easy identity:{

m ∈ (n,+∞) | Ln(∂(m)E) > 0
}

=
+∞⋃
k=1

{
m ∈ (n,+∞) | Ln(B(0, k) ∩ ∂(m)E) ≥ 1

k

}
.

�

Now we use the machinery above to state a remark and a simple proposition about sets
of finite perimeter.

Remark 5.1. Proposition 3.3 shows that m0 is the maximum order of density which is
common to all sets of finite perimeter. Hence this (up to now unanswered) question arises
naturally: Does there exist a set E of positive measure and finite perimeter in Rn, such
that int(m0)E = ∅ (i.e. E(m) = ∅ for all m > m0)?

Proposition 5.3. If E is a set of locally finite perimeter in Rn, then one has

cl(m0)E =
◦
E

with m0 := n+ 1∗ = n+ 1 + 1/(n− 1).

Proof. One obviously has
E(m0) ⊂ cl(m0)E ⊂ E(n)

hence the conclusion follows by recalling Theorem 3.2. �

The following result states that a bounded open set in Rn with Lipschitz boundary can
be arbitrarily approximated from inside by closed uniformly n-dense sets.
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Proposition 5.4. Let Ω be a bounded open subset of Rn. Then for all C < Ln(Ω) there
exists a closed subset F of Ω such that Ln(F ) > C and int(n)F = ∅ (in particular F is
uniformly n-dense, by Proposition 5.1).

Proof. First step: If ∂Ω is Lipschitz. Let j be an arbitrary positive integer. Then, by
Theorem 3.1, there exists an open subset Aj of Ω such that

Ln(Aj) <
Ln(Ω)− C

2j
, bn+ 1

j
(Aj) = Ω.

Define

Fj := Ω ∩ Acj, F :=
∞⋂
j=1

Fj = Ω ∩

 ∞⋃
j=1

Aj

c .
Then F is closed and

Ln(F ) = Ln(Ω)− Ln (∪jAj) ≥ Ln(Ω)−
∑
j

Ln(Aj) > Ln(Ω)−
(
Ln(Ω)− C

)
= C.

Moreover, by (3.1), one has

F
(n+ 1

j
)

j =
[
bn+ 1

j
(F c

j )
]c

=
[
bn+ 1

j

(
Aj ∪ (Ω)c

)]c
=
[
bn+ 1

j
(Aj) ∪ bn+ 1

j

(
(Ω)c

)]c
=
[
Ω ∪ Ωc

]c
= ∅

for all j. Thus, for each k > n we can find j such that k > n+ 1
j
, hence

F (k) ⊂ F
(m)
j ⊂ F

(n+ 1
j

)

j = ∅

namely F (k) = ∅. It follows that

int(n)F = ∪k>nF (k) = ∅.

Second step: Without assumptions on ∂Ω. Let Ω1 be a bounded open subset of Rn with
Lipschitz boundary (e.g. a ball) such that Ω ⊂ Ω1. Then, by the first step, there exists a
closed subset F1 of Ω1 such that

Ln(F1) > Ln(Ω1)− Ln(Ω) + C(5.2)

and int(n)F1 = ∅. If we define

F := Ω ∩ F1

one has (since F ⊂ F1)

int(n)F ⊂ int(n)F1 = ∅, i.e. int(n)F = ∅.
Moreover

Ln(F ) = Ln(F1)− Ln(F1 \ Ω) > Ln(Ω1)− Ln(Ω) + C − Ln(F1 \ Ω)
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by (5.2), where
Ln(Ω1)− Ln(Ω) = Ln(Ω1 \ Ω) ≥ Ln(F1 \ Ω)

Hence Ln(F ) > C. �

Now, on the basis of Proposition 5.4, the following conjecture seems plausible: If m > n,
then a bounded open subset Ω of Rn can be arbitrarily approximated from inside by closed
uniformly m-dense sets. At the moment, the best we are able to do in this direction is to
prove the following result.

Theorem 5.1. Let Ω be a bounded open subset of Rn and let m > n. Then for all
C < Ln(Ω) and for all t ∈ (n,m) there exist a closed subset F of Ω and an open subset
U of Ω such that:

(1) The set cl(t)F is large, namely: cl(t)F ⊃ Ω \ U and Ln(U) < Ln(Ω) − C (hence
F ⊃ Ω \ U and Ln(F ) > C);

(2) One has F (m) = ∅ (hence int(m)F = ∅).

In particular, one has t ≤ dF (x) ≤ m for all x ∈ Ω \ U .

6. The proof of Theorem 5.1

6.1. Preliminaries from the proof of Theorem 3.1 (compare [11]). Let R and β
be positive numbers such that

Ω ⊂ BR, 2nRn ≥ 1, (2nRn + 1)
1

m−n ≥ 2

and

β > max

{
(2nRn + 1)

1
m−n ,

(
ε

ωn

)1/n

+
n1/2

2

}
.

Also define (for h = 1, 2, . . . )

ρh :=
(
ε

ωn

) 1
n

β−
hm
n(6.1)

and let Λh denote the lattice of step β−h (in Rn), i.e. Λh := β−hZn. Then put

Γh := {P ∈ Λh |B(P, ρh) ⊂ Ω}, Ah :=
⋃

P∈Γh

B(P, ρh), A′ :=
+∞⋃
h=1

Ah.

and observe that

#(Γh) ≤
(

2R

β−h

)n
= 2nRnβnh.(6.2)

Then one has
Ln(A′) < ε.



DENSITY-DEGREE FUNCTION 13

Let A′′ be an open set satisfying

A′′ ⊃ BR\Ω, Ln
(
A′′\[BR\Ω]

)
< ε− Ln(A′)(6.3)

and define

A := A′ ∪ (A′′ ∩ Ω) (which is a subset of Ω).(6.4)

One has

Ln(A) < ε, bm(A) = Ω.

6.2. The proof of Theorem 5.1. First step: Under the assumption that the
boundary of Ω is Lipschitz. Assume that ∂Ω is Lipschitz and consider the construction
in Section 6.1 above, with

ε := (Ln(Ω)− C)

(
1 +

4nRn

βn(m−t)/(t−n) − 1

)−1

.

Let [BR\Ω]δ denote the open δ-neighbourhood of [BR\Ω], namely

[BR\Ω]δ := {x ∈ Rn | dist(x, [BR\Ω]) < δ}.

Since ∂Ω is Lipschitz, there exists δ0 > 0 such that

Ln
(
[BR\Ω]δ0\[BR\Ω]

)
< ε− Ln(A′)

so A′′ := [BR\Ω]δ0/2 satisfies (6.3) as prescribed by the proof of Theorem 3.1. The
corresponding definition of A by (6.4) becomes

A := A′ ∪ ([BR\Ω]δ0/2 ∩ Ω).

Let

F := Ac ∩ Ω = Ac ∩ Ω.

One has bm(A) = Ω by Theorem 3.1. Hence, recalling (3.1), we get

F (m) = [bm(F c)]c = [bm(A ∪ Ωc)]c = [bm(A) ∪ bm(Ωc)]c = [Ω ∪ Ωc]c = ∅

which proves (2).

Now define

γ(τ) := m− (m− n)n

τ − n
, τ > n

and observe that limτ→m γ(τ) = γ(m) = m − n > 0, hence we can find t0 ∈ (n,m) such
that γ(τ) > 0 for all τ ∈ (t0,m). We can assume t > t0 (without loss of generality), so
that γ := γ(t) > 0.

For h = 1, 2, . . . , define

ρ̃h :=
(
1 + βhγ/n

)
ρh, Vh :=

⋃
P∈Γh

B(P, ρ̃h).(6.5)
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Also let

U :=
(
Ω ∩ [BR\Ω]δ0

)
∪
∞⋃
h=1

Vh.(6.6)

By (6.1), (6.2), (6.5), (6.6) and recalling that β > 1, we get

Ln(U) ≤ Ln
(
Ω ∩ [BR\Ω]δ0

)
+
∞∑
h=1

Ln(Vh)

< ε+ ωn
∞∑
h=1

#(Γh)
(
1 + βhγ/n

)n
ρnh

≤ ε+ 2nRnε
∞∑
h=1

βhn
(
2βhγ/n

)n
β−hm

= ε

(
1 + 4nRn

∞∑
h=1

β−h(m−n−γ)

)
.

But

m− n− γ =
n(m− t)
t− n

> 0

thus

Ln(U) <

(
1 +

4nRn

βn(m−t)/(t−n) − 1

)
ε = Ln(Ω)− C.

It remains to prove that

cl(t)F ⊃ Ω \ U.(6.7)

To this aim consider x ∈ Ω \ U , r > 0 and observe that the set

Hx(r) := {l ≥ 1 |B(x, r) ∩ Al 6= ∅}
includes every h large enough, so we can define the function

r 7→ hx(r) := minHx(r), r > 0

which is decreasing in that Hx(r1) ⊂ Hx(r2) whenever 0 < r1 ≤ r2. Now, the sequence

dk := dist

(
x,

k⋃
l=1

Al

)
= dist

(
x,

k⋃
l=1

Al

)
, k = 1, 2, . . .

is positive, decreasing and infinitesimal. Also, since B(x, dk) ∩ Al = ∅ for all l ≤ k, one
has

hx(dk) ≥ k + 1.

Hence
hx(r)→ +∞, as r → 0+.

For r > 0 one has B(x, r) ∩ Ahx(r) 6= ∅, thus there exists P ∈ Γhx(r) such that the ball
B(x, r) intersects B(P, ρhx(r)). Moreover the center x of B(x, r) is outside B(P, ρ̃hx(r)) (in
that x 6∈ U), so that

r ≥ ρ̃hx(r) − ρhx(r) = ρhx(r)β
hx(r)γ
n =

(
ε

ωn

) 1
n

β−
hx(r)
n

(m−γ)
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i.e.

β−hx(r) ≤ C1r
n

m−γ(6.8)

with C1 = C1(m,n, t) := (ωn/ε)
1/(m−γ).

Now observe that if r < δ0/2 then B(x, r) does not intersect A′′ = [BR \ Ω]δ0/2, hence

Ln(B(x, r) ∩ A) = Ln(B(x, r) ∩ A′) ≤
∑

h≥hx(r)

Ln(B(x, r) ∩ Ah).(6.9)

One obviously has

#(Γh ∩B(x, r)) ≤ #(Λh ∩B(x, r)) ≤ C2

(
r

β−h

)n
for a suitable C2 = C2(n), whereby

Ln(B(x, r) ∩ Ah) ≤ C2

(
r

β−h

)n
ωnρ

n
h = C2εβ

−h(m−n)rn.(6.10)

From (6.8), (6.9) and (6.10) it follows that, for all r < δ0/2 and x ∈ Ω \ U , one has

Ln(B(x, r) ∩ A) ≤ C2 εr
n

∑
h≥hx(r)

β−h(m−n)

=
C2 εr

nβ−hx(r)(m−n)

1− β−(m−n)

≤ C3 ε

1− β−(m−n)
rn+

n(m−n)
m−γ

=
C3 ε r

t

1− β−(m−n)

with C3 = C3(m,n, t) := Cm−n
1 C2. Combining this result with the identity

B(x, r) \ F = B(x, r) ∩ (A ∪ (Ω)c) = B(x, r) ∩ A
which holds for all x ∈ Ω and r small enough, we finally obtain

Ln(B(x, r) \ F ) = o(rs), as r → 0

for all x ∈ Ω \ U and for all s ∈ [n, t). This proves that

Ω \ U ⊂
⋂

l∈[n,t)

F (l)

namely (6.7), by (3) of Proposition 5.1.

6.3. The proof of Theorem 5.1. Second step: Without assumptions on ∂Ω.
Let Ω1 be a bounded open subset of Rn with Lipschitz boundary (e.g. a ball) such that
Ω ⊂ Ω1 and define

C1 := Ln(Ω1)− Ln(Ω) + C.(6.11)
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Then, by the first step (Section 6.2), there exist a closed subset F1 of Ω1 and an open
subset U1 of Ω1 such that

cl(t)F1 ⊃ Ω1 \ U1, Ln(Ω1 \ U1) > C1, F
(m)
1 = ∅.(6.12)

If we define

F = Ω ∩ F1, U := Ω ∩ U1

then

Ln(Ω \ U) = Ln(Ω)− Ln(U) ≥ Ln(Ω1) + C − C1 − Ln(U1) > C

by (6.11) and the inequality in (6.12). Moreover (since F ⊂ F1) one has

F (m) ⊂ F
(m)
1 = ∅, i.e. F (m) = ∅.

It remains to prove that

Ω \ U ⊂ cl(t)F

which is equivalent to

Ω \ U ⊂ F (s), for all s ∈ [n, t)(6.13)

by (3) of Proposition 5.1. Observe that

Ω \ U = Ω ∩ (Ωc ∪ U c
1) = Ω ∩ U c

1 = [Ω1 \ (Ω1 \ Ω)] ∩ U c
1 = Ω1 ∩ U c

1 ∩ (Ω1 \ Ω)c

hence

Ω \ U ⊂ F
(s)
1 ∩ (Ω1 \ Ω)c

for all s ∈ [n, t), by the inclusion in (6.12) and recalling again (3) of Proposition 5.1.
Thus, in order to prove (6.13), it is sufficient to show that

F
(s)
1 ∩ (Ω1 \ Ω)c ⊂ F (s), for all s ∈ [n, t).(6.14)

To this aim, consider s ∈ [n, t) and observe that F
(s)
1 ∩ Ωc

1 = ∅ (in that F1 ⊂ Ω1 and ∂Ω1

is Lipschitz), hence

F
(s)
1 ∩ (Ω1 \ Ω)c = F

(s)
1 ∩ (Ωc

1 ∪ Ω) = F
(s)
1 ∩ Ω.

So, for all x ∈ F (s)
1 ∩ (Ω1 \ Ω)c, one has

Ln(B(x, r) \ F1) = o(rs), as r → 0

and B(x, r) ⊂ Ω for r sufficiently small. It follows that

B(x, r) \ F = B(x, r) ∩ [(Ω)c ∪ F c
1 ] = B(x, r) ∩ F c

1

for r sufficiently small, and

Ln(B(x, r) \ F ) = o(rs), as r → 0

which proves (6.14).
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