Utbredningen av en brand inuti en byggnad kan leda till global eller lokal strukturell kollaps, särskilt i stålramkonstruktioner. Faktum är att stålkonstruktioner är särskilt utsatta för termiska angrepp på grund av ett högt värde av stålkonduktivitet och tvärsnitten med små tjockleken. Som en viktig aspekt av konstruktionen bör brandsäkerhetskrav uppnås antingen enligt föreskrivande regler eller enligt antagande av prestationsbaserad brandteknik. Trots möjligheten att använda enkla metoder som involverar membersanalys kombinerat med nominella brandkurvor, är en mer exakt analys av det termomekaniska beteendet hos en stålkonstruktion ett tilltalande alternativ eftersom det kan leda till mer ekonomiska och effektiva lösningar genom att ta hänsyn till möjliga gynnsamma mekanismer. Denna analys kräver vanligtvis utredning av delar av strukturen eller till och med av hela strukturen. För detta ändamål och för att få en djupare kunskap om strukturelementens beteende vid förhöjd temperatur bör numerisk simulering användas. I denna avhandling utvecklades och användes termomekaniska finita element som är lämpliga för analys av stålkonstruktioner utsätta för brand. Relevanta fallstudier utfördes. Utvecklingen av både ett termomekaniskt skal- och 3D balkelement baserade på en korotationsformulering presenteras. De flesta relevanta strukturfall kan undersökas på ett adekvat sätt genom att antingen använda något av dessa element eller kombinera dem. Korotationsformuleringen är väl lämpad för analyser av strukturer där stora förskjutningar, men små töjningar förekommer, som i fallet med stålkonstruktioner i brand. Elementens huvuddrag beskrivs, liksom deras karakterisering i termomekaniskt sammanhang. I detta avseende övervägdes materialnedbrytningen på grund av temperaturökningen och den termiska expansionen av stål vid härledningen av elementen. Dessutom presenteras en grenväxlingsprocedur för att utföra preliminära instabilitetsanalyser och få viktig inblick i efterknäckningsbeteendet hos stålkonstruktioner som utsätts för brand. Tillämpningen av de utvecklade numeriska verktygen ges i den del av avhandlingen som ägnas åt det publicerade forskningsarbetet. Flera aspekter av knäckningen av stålkonstruktionselement vid förhöjd temperatur diskuteras. I Artikel I tillhandahålls överväganden om påverkan av geometriska imperfektioner på beteendet hos komprimerade stålplattor och kolonner vid förhöjda temperaturer, liksom implikationer och resultat av användningen av grenväxlingsprocedur. I Artikel II valideras det föreslagna 3D-balkelementet genom meningsfulla fallstudier där torsionsdeformationer är signifikanta. De utvecklade balk- och skalelementen används i en undersökning av knäckningsmotstånd hos komprimerade vinkel-, Tee- och korsformade stålprofiler vid förhöjd temperatur som presenteras i Artikel III. En förbättrad knäckningskurva för design presenteras i detta arbete. Som ett exempel på tillämpningen av principerna för brandsäkerhetsteknik presenteras en omfattande analys i Artikel IV. Två relevanta brandscenarier identifieras för den undersökta byggnaden, som modelleras och analyseras i programmet SAFIR.

The ignition and the propagation of a fire inside a building may lead to global or local structural collapse, especially in steel framed structures. Indeed, steel structures are particularly vulnerable to thermal attack because of a high value of steel conductivity and of the small thickness that characterise the cross-sections. As a crucial aspect of design, fire safety requirements should be achieved either following prescriptive rules or adopting performance-based fire engineering. Despite the possibility to employ simple methods that involve member analysis under nominal fire curves, a more accurate analysis of the thermomechanical behaviour of a steel structural system is an appealing alternative, as it may lead to more economical and efficient solutions by taking into account possible favourable mechanisms. This analysis typically requires the investigation of parts of the structure or even of the whole structure. For this purpose, and in order to gain a deeper knowledge about the behaviour of structural members at elevated temperature, numerical simulation should be employed. In this thesis, thermomechanical finite elements, suited for the analyses of steel structures in fire, were developed and exploited in numerical simulation of relevant case studies. The development of a shell and of a 3D beam thermomechanical finite element based on a corotational formulation is presented. Most of the relevant structural cases can be adequately investigated by either using one of these elements or combining them. The corotational formulation is well suited for the analyses of structures in which large displacements, but small strains occur, as in the case of steel structures in fire. The main features of the elements are described, as well as their characterization in the thermomechanical context. In this regard, the material degradation due to the temperature increase and the thermal expansion of steel were considered in the derivation of the elements. In addition, a branch-switching procedure to perform preliminary instability analyses and get important insight into the post-buckling behaviour of steel structures subjected to fire is presented. The application of the developed numerical tools is provided in the part of the thesis devoted to the published research work. Several aspects of the buckling of steel structural elements at elevated temperature are discussed. In paper I, considerations about the influence of geometrical imperfections on the behaviour of compressed steel plates and columns at elevated temperatures are provided, as well as implications and results of the employment of the branch-switching procedure. In Paper II, the proposed 3D beam element is validated for meaningful case studies, in which torsional deformations are significant. The developed beam and shell elements are employed in an investigation of buckling resistance of compressed angular, Tee and cruciform steel profiles at elevated temperature presented in Paper III. An improved buckling curve for design is presented in this work. Furthermore, as an example of the application of Fire Safety Engineering principles, a comprehensive analysis is proposed in Paper IV. Two relevant fire scenarios are identified for the investigated building, which is modelled and analysed in the software SAFIR.

Development and application of corotational finite elements for the analysis of steel structures in fire / Possidente, Luca. - (2021 Feb 19), pp. 1-57. [10.15168/11572_289943]

Development and application of corotational finite elements for the analysis of steel structures in fire

Possidente, Luca
2021-02-19

Abstract

The ignition and the propagation of a fire inside a building may lead to global or local structural collapse, especially in steel framed structures. Indeed, steel structures are particularly vulnerable to thermal attack because of a high value of steel conductivity and of the small thickness that characterise the cross-sections. As a crucial aspect of design, fire safety requirements should be achieved either following prescriptive rules or adopting performance-based fire engineering. Despite the possibility to employ simple methods that involve member analysis under nominal fire curves, a more accurate analysis of the thermomechanical behaviour of a steel structural system is an appealing alternative, as it may lead to more economical and efficient solutions by taking into account possible favourable mechanisms. This analysis typically requires the investigation of parts of the structure or even of the whole structure. For this purpose, and in order to gain a deeper knowledge about the behaviour of structural members at elevated temperature, numerical simulation should be employed. In this thesis, thermomechanical finite elements, suited for the analyses of steel structures in fire, were developed and exploited in numerical simulation of relevant case studies. The development of a shell and of a 3D beam thermomechanical finite element based on a corotational formulation is presented. Most of the relevant structural cases can be adequately investigated by either using one of these elements or combining them. The corotational formulation is well suited for the analyses of structures in which large displacements, but small strains occur, as in the case of steel structures in fire. The main features of the elements are described, as well as their characterization in the thermomechanical context. In this regard, the material degradation due to the temperature increase and the thermal expansion of steel were considered in the derivation of the elements. In addition, a branch-switching procedure to perform preliminary instability analyses and get important insight into the post-buckling behaviour of steel structures subjected to fire is presented. The application of the developed numerical tools is provided in the part of the thesis devoted to the published research work. Several aspects of the buckling of steel structural elements at elevated temperature are discussed. In paper I, considerations about the influence of geometrical imperfections on the behaviour of compressed steel plates and columns at elevated temperatures are provided, as well as implications and results of the employment of the branch-switching procedure. In Paper II, the proposed 3D beam element is validated for meaningful case studies, in which torsional deformations are significant. The developed beam and shell elements are employed in an investigation of buckling resistance of compressed angular, Tee and cruciform steel profiles at elevated temperature presented in Paper III. An improved buckling curve for design is presented in this work. Furthermore, as an example of the application of Fire Safety Engineering principles, a comprehensive analysis is proposed in Paper IV. Two relevant fire scenarios are identified for the investigated building, which is modelled and analysed in the software SAFIR.
19-feb-2021
XXXII
2018-2019
Ingegneria civile, ambientale e mecc (29/10/12-)
Civil, Environmental and Mechanical Engineering
Tondini, Nicola
Battini, Jean-Marc
SVEZIA
Inglese
Settore ICAR/09 - Tecnica delle Costruzioni
File in questo prodotto:
File Dimensione Formato  
Phd thesis_Possidente_Luca.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/289943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact