Using the theory of Γ-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.
Shape Programming for Narrow Ribbons of Nematic Elastomers / Agostiniani, Virginia; Desimone, Antonio; Koumatos, Konstantinos. - In: JOURNAL OF ELASTICITY. - ISSN 0374-3535. - 127:1(2017), pp. 1-24. [10.1007/s10659-016-9594-1]
Shape Programming for Narrow Ribbons of Nematic Elastomers
Agostiniani, Virginia;
2017-01-01
Abstract
Using the theory of Γ-convergence, we derive from three-dimensional elasticity new one-dimensional models for non-Euclidean elastic ribbons, i.e., ribbons exhibiting spontaneous curvature and twist. We apply the models to shape-selection problems for thin films of nematic elastomers with twist and splay-bend texture of the nematic director. For the former, we discuss the possibility of helicoid-like shapes as an alternative to spiral ribbons.File | Dimensione | Formato | |
---|---|---|---|
Agostiniani_DeSimone_Koumatos_2017.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.23 MB
Formato
Adobe PDF
|
2.23 MB | Adobe PDF | Visualizza/Apri |
1603.02088.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.37 MB
Formato
Adobe PDF
|
4.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione