We consider the minimization of an energy functional given by the sum of a crystalline perimeter and a nonlocal interaction of Riesz type, under volume constraint. We show that, in the small mass regime, if the Wulff shape of the anisotropic perimeter has certain symmetry properties, then it is the unique global minimizer of the total energy. In dimension two this applies to convex polygons which are reflection symmetric with respect to the bisectors of the angles. We further prove a rigidity result for the structure of (local) minimizers in two dimensions.
Minimality of polytopes in a nonlocal anisotropic isoperimetric problem / Bonacini, Marco; Cristoferi, Riccardo; Topaloglu, Ihsan. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 205:(2021), pp. 112223.1-112223.19. [10.1016/j.na.2020.112223]
Minimality of polytopes in a nonlocal anisotropic isoperimetric problem
Bonacini, Marco;Cristoferi, Riccardo;
2021-01-01
Abstract
We consider the minimization of an energy functional given by the sum of a crystalline perimeter and a nonlocal interaction of Riesz type, under volume constraint. We show that, in the small mass regime, if the Wulff shape of the anisotropic perimeter has certain symmetry properties, then it is the unique global minimizer of the total energy. In dimension two this applies to convex polygons which are reflection symmetric with respect to the bisectors of the angles. We further prove a rigidity result for the structure of (local) minimizers in two dimensions.File | Dimensione | Formato | |
---|---|---|---|
Bonacini - Cristoferi - Topaloglu, Minimality of polytopes in a nonlocal anisotropic isoperimetric problem.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
957.85 kB
Formato
Adobe PDF
|
957.85 kB | Adobe PDF | Visualizza/Apri |
Bonacini - Cristoferi - Topaloglu, Minimality of polytopes in a nonlocal anisotropic isoperimetric problem.pdf
Open Access dal 01/05/2023
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
364.41 kB
Formato
Adobe PDF
|
364.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione