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Abstract. We consider the minimization of an energy functional given by the sum of a
crystalline perimeter and a nonlocal interaction of Riesz type, under volume constraint. We
show that, in the small mass regime, if the Wulff shape of the anisotropic perimeter has
certain symmetry properties, then it is the unique global minimizer of the total energy. In
dimension two this applies to convex polygons which are reflection symmetric with respect
to the bisectors of the angles. We further prove a rigidity result for the structure of (local)
minimizers in two dimensions.
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1. Introduction

We consider the nonlocal isoperimetric problem

min
{
Eγ(E) : |E| = 1

}
, (1.1)

among sets of finite perimeter E ⊂ Rd with given volume, where | · | denotes the Lebesgue
measure in Rd, and the energy functional Eγ is defined as

Eγ(E) :=

∫
∂∗E

ψ(νE) dHd−1 + γ

∫
E

∫
E

1

|x− y|α
dx dy (1.2)
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for γ > 0, α ∈ (0, d). The first term in the energy functional is the (anisotropic) perimeter
of E, whereas the second term is a Riesz-type nonlocal interaction energy. In this paper we
are interested in surface energies determined by crystalline surface tensions ψ, whose Wulff
shapes (which are the corresponding isoperimetric regions) are given by convex polyhedra. We
provide detailed definitions of the two terms in the energy, and their properties, in Section 2.

The minimization problem (1.1) was recently introduced in [4] as an extension of the
classical liquid drop model of Gamow (see [15]) to the anisotropic setting. Gamow’s model,
initially developed to predict the mass defect curve and the shape of atomic nuclei, is described
by the minimization problem (1.1) in the isotropic setting, i.e., with ψ given by the Euclidean
norm. The two terms present in the energy functional Eγ(E) are in direct competition. The
surface energy is minimized by a bounded, convex set - the Wulff shape - whereas the repulsive
term prefers to disperse the mass into vanishing components diverging infinitely apart. The
parameter of the problem, that is γ, sets a length scale between these competing forces.
As such, the liquid drop model is a paradigm for shape optimization via competing short-
and long-range interactions on unbounded spaces and it has recently generated considerable
interest in the calculus of variations community (see e.g. [1,2,5,11,12,16–18,20,23,25] as well
as [6] for a review).

In the anisotropic liquid drop model (1.1) the competition is not only between the at-
tractive and repulsive forces, but also between the anisotropy in the surface energy and the
isotropy of the Riesz-like interaction energy. As in the isotropic case, the problem admits
a minimizer when γ is sufficiently small and fails to have minimizers for large values of γ,
see [4, Theorem 3.1]. However, as [4, Theorem 1.1] shows, when ψ is smooth its Wulff shape
Wψ is not a critical point of the energy Eγ(E) for any γ > 0, whereas in the isotropic case
the ball is the unique global minimizer for γ > 0 sufficiently small. On the other hand, for
crystalline surface tensions whose Wulff shape is given by a square the authors prove that
the corresponding Wulff shape is the unique (modulo translations) minimizer for sufficiently
small γ.

This demonstrates a fundamentally interesting situation: the regularity and ellipticity of
the surface tension ψ determines whether the isoperimetric set Wψ could also be a minimizer
of the perturbed problem (1.1). The qualitative properties of minimizers when ψ is smooth
(hence, not equal to Wψ) have recently been studied in [22] in the asymptotic regime γ → 0.

In this paper we prove that, for a wide class of crystalline surface tensions, the corresponding
isoperimetric set Wψ remains as the minimizer of the nonlocal isoperimetric problem for small
values of γ > 0. Specifically, we prove the following:

• In any dimensions, if the Wulff shape of ψ enjoys particular symmetry properties
(in particular, if it is a regular polytope), then it is, up to translations, the unique
solution to (1.1) for sufficiently small γ (see Theorem 2.5 and Theorem 5.3); in two
dimensions, these polygons are exactly those which are reflection symmetric with
respect to the bisectors of all angles.

• In two dimensions and for every γ > 0, the boundary of any local minimizer of
Eγ can be decomposed into two parts, one of which is a level set of the potential
induced by the interaction energy and the other one is aligned with the sides of the
corresponding Wulff shape (see Theorem 2.7). This rigidity result is an adaptation
of [8, Theorem 14], where a similar property was firstly observed and proved for the
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crystalline perimeter perturbed by a bulk potential energy induced by an external
force field.

Our first result relies on a structure theorem obtained by Figalli and Maggi [8] in two
dimensions, recently extended by Figalli and Zhang [10] to higher dimensions, which states
that for γ sufficiently small, minimizers of Eγ are polygons with sides aligned with those
of the corresponding Wulff shape, a result which essentially reduces the problem to a finite
dimensional one. Then the main point of the proof is to show that, restricting to this class of
variations, the symmetry assumptions on the polygon yield a quadratic upper bound on the
nonlocal energy difference.

It is worth to notice that, for small γ, minimizers of (1.1) are always obtained by per-
turbations of the Wulff shape of the surface energy, whose sides are translated parallel to
themselves; in our result we exhibit an explicit class of Wulff shapes which remain global
minimizers for γ > 0. However, we cannot prove that polygons in this class are exactly those
with this global minimality property. In other words, it is an open problem to classify the
crystalline anisotropies whose Wulff shapes remain the global minimizers of (1.1) for γ > 0
sufficiently small. In turn, this would require to characterize the critical points of the nonlocal
energy with respect to the restricted class of variations (see Remark 2.6).

Our second theorem shows that this rigid structure of minimizers is not just peculiar to
the small γ regime, but it characterizes (local) minimizers also for large values of γ. The
proof follows the lines of an analogous result in [8, Theorem 14] for the minimization of the
sum of the crystalline perimeter and an external potential energy. We point out that the
rigidity of minimizers in geometric variational problems involving crystalline surface tensions
seems to be a ubiquitous property: a similar phenomenon was observed in [3] for a thin film
model, where it was shown that the flat configuration (that is, a configuration with a flat
facet parallel to a facet of the Wulff shape) was always a local minimizer.

Structure of the paper. The paper is organized as follows. In Section 2 we introduce the
necessary definitions and notations, and state the main results of the paper. In Section 3 we
prove the Main Lemma providing the quadratic upper bound. Section 4 is devoted to the
proofs of the main results. Finally, in Section 5 we outline possible extensions of our results
to higher dimensions.

2. Definitions and main results

2.1. The energy functional. As noted in the introduction the energy Eγ is the sum of
an anisotropic surface energy and a nonlocal interaction energy of Riesz type. We start by
defining these two terms separately and detail their properties.

Given a convex, positively one-homogeneous function ψ : Rd → [0,∞), strictly positive on
Sd−1, we define the anisotropic surface energy of a set of finite perimeter E ⊂ Rd as

Pψ(E) :=

∫
∂∗E

ψ(νE) dHd−1, (2.1)

∂∗E denoting the reduced boundary of E and νE the measure-theoretic exterior unit normal
to E (see for instance [21]). We recall that volume-constrained minimizers of the surface
energy Pψ are obtained by translations and dilations of the Wulff shape of ψ, that is, the
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open, bounded, convex set

Wψ :=
⋂

ν∈Sd−1

{
x ∈ Rd : x · ν < ψ(ν)

}
. (2.2)

Conversely, any open, bounded, convex set K ⊂ Rd which contains the origin is the Wulff
shape of a surface tension ψ with the properties above: one has that K = Wψ for

ψ(ν) = sup
{
x · ν : x ∈ K

}
. (2.3)

We also introduce the dual ψ∗ : Rd → [0,∞) of ψ defined by

ψ∗(ξ) := sup
{
ξ · x : ψ(x) < 1

}
(2.4)

and we remark that the Wulff shape of ψ coincides with the unit ball of ψ∗, that is,

Wψ =
{
ξ ∈ Rd : ψ∗(ξ) < 1

}
. (2.5)

We finally recall the quantitative Wulff inequality, which states that for every set of finite
perimeter E ⊂ Rd with |E| = |Wψ| one has the sharp stability estimate

Pψ(E) > Pψ(Wψ) + c̄ min
x0∈Rd

|E4(x0 +Wψ)|2, (2.6)

where E4F := (E\F ) ∪ (F\E) denotes the symmetric difference of sets, and c̄ > 0 is a
dimensional constant (depending also on the volume ofWψ since the inequality is not displayed
in a scaling invariant form). The sharp inequality (2.6) was proved by Figalli, Maggi and
Pratelli in [9] and further extended in a stronger form by Neumayer in [24] (see also [7, 13]
for the quantitative isoperimetric inequality in the isotropic case).

Here we will consider only the class of crystalline surface tensions, i.e. when there exists a
finite set {ξ1, . . . , ξN} ⊂ Rd\{0}, N ∈ N, such that

ψ(ν) = max
16i6N

ν · ξi for all ν ∈ Rd. (2.7)

Notice that the corresponding Wulff shape is a convex polyhedron.

The second term in the energy functional Eγ is the nonlocal repulsive interaction

V(E) :=

∫
E

∫
E

1

|x− y|α
dx dy , (2.8)

where the parameter α ranges in the interval (0, d). It will be convenient to define the
interaction between two measurable sets E,F ⊂ Rd as

I(E,F ) :=

∫
E

∫
F

1

|x− y|α
dx dy , (2.9)

so that V(E) = I(E,E). We also introduce, for a Borel set E ⊂ Rd, the associated Riesz
potential defined by

vE(x) :=

∫
E

1

|x− y|α
dy for x ∈ Rd. (2.10)

Notice in particular that V(E) =
∫
E vE(x) dx.

In this paper we will be mainly interested in the minimization problem (1.1) for γ � 1.
This corresponds to the small mass regime, when minimizing with respect to a mass constraint
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|E| = m ∈ (0,∞): indeed for E with |E| = m, setting Ẽ = m−1/dE, by a scaling argument
one finds

Eγ(E) = m
d−1
d

[
Pψ(Ẽ) + γm

d+1−α
d V(Ẽ)

]
.

This implies that minimizing Eγ under the volume constraint |E| = m is equivalent to solving

(1.1) with γ̃ = γm
d+1−α

d .

2.2. A class of symmetric polygons, and their variations. In the following we fix the
space dimension d = 2. Most of the arguments can be generalized to higher space dimensions,
but for clarity of the exposition we restrict to the planar case and we postpone the discussion
of the possible extension to d > 2 to Section 5.

Given an open, convex polygon P ⊂ R2 with n sides, we will denote in the following by
L1, . . . , Ln the sides of P , and by `i the length of Li. By translation invariance we will always
assume without loss of generality that P contains the origin, so that we can consider the
corresponding crystalline surface density ψ (according to (2.3)), with P = Wψ. Notice that ψ
can be represented as in (2.7) for suitable vectors ξi. We now introduce the class of polygons
for which our main result holds.

Definition 2.1. Let Pn, n > 3, be the class of open, convex polygons P ⊂ R2 with n sides
L1, . . . , Ln and unit area |P | = 1, which are reflection symmetric with respect to the bisectors
of all angles.

Remark 2.2. For every n > 3, Pn contains the regular polygon with n sides. Each polygon in
the class Pn is equilateral, that is `i = `j for every i, j ∈ {1, . . . , n}. Moreover, the internal
angles of any polygon in Pn can only take two alternating values α, β ∈ (0, π) (possibly
equal). In particular, it follows that if n is odd, then Pn contains only the regular polygon
with n sides. If n is even, then Pn contains a one-parameter family of polygons Pα, which can

be parametrized by one of the interior angles α ∈ ( (n−4)π
n , π); the other angle is determined

by the constraint n
2 (α+ β) = π(n− 2) (the requirement α > (n−4)π

n follows by the condition
β < π). The polygon Pα can be constructed as follows: one considers a triangle with two

angles equal to α
2 and β

2 respectively, and places n copies of such triangle next to each other
so that the equal angles are adjacent.

Remark 2.3. Notice that each polygon in the class Pn has the property that, for every pair
of sides Li, Lj , i, j ∈ {1, . . . , n}, there exists an isometry Sij : R2 → R2 which maps Li onto
Lj and leaves the polygon invariant, i.e. Sij(Li) = Lj and Sij(P ) = P ; such isometry can
be obtained as a composition of reflections with respect to the bisectors of the angles. The
existence of the isometries Sij characterizes the polygons in the class Pn and is the property
on which our main result (also in higher dimension) strongly relies.

A key tool for our analysis is a result by Figalli and Maggi [8, Theorem 7] (recently extended
by Figalli and Zhang [10] to any space dimension), which states that for a crystalline surface
tension ψ, every (ω,R)-minimizer of the anisotropic perimeter Pψ is a convex polygon with
sides parallel to those of the Wulff shape of ψ, provided ω is sufficiently small and R > d+ 1.
Given ω,R > 0, a (volume constrained) (ω,R)-minimizer of Pψ is a set of finite perimeter E
satisfying the inequality

Pψ(E) 6 Pψ(F ) + ω|E4F | (2.11)
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Figure 1. Examples of (non regular) polygons in the class Pn.

for all sets of finite perimeter F ⊂ R2 such that |F | = |E| and F ⊂ IR(E), where IR(E) is
the R-neighbourhood of E with respect to ψ∗, i.e.

IR(E) :=
{
x ∈ R2 : distWψ

(x,E) < R
}
, where distWψ

(x,E) = inf
y∈E

ψ∗(x− y). (2.12)

We also say that E is an ω-minimizer if it is an (ω,R)-minimizer with R =∞.
Since it turns out that minimizers of (1.1) are ω-minimizers of Pψ with a constant ω

proportional to γ (see the proof of Theorem 2.5), in view of the Figalli-Maggi result for γ � 1
we are allowed to restrict to a finite-dimensional class of competitors, i.e. the class of all open,
convex polygons which are close to Wψ and whose sides are parallel to those of Wψ. We now
introduce some notation to deal with the polygons in this class.

If ψ is crystalline (Wψ is a convex polygon), then the dual ψ∗ (see (2.4)) is of the form

ψ∗(ξ) = sup
16i6n

ξ · σi , (2.13)

for some n ∈ N and vectors σi ∈ R2. We assume here that the set {σi}ni=1 is minimal, that is,
denoting by Vi the convex cone

Vi :=
{
ξ ∈ R2 : ψ∗(ξ) = ξ · σi

}
,

one has that |Wψ ∩ Vi| > 0 for all i. The vector σi is parallel to the exterior normal νi of the
side ∂Wψ ∩ Vi of Wψ. Following [10], we can define the class of competitors by changing the
length of the vectors σi: geometrically, this reflects in a translation of the sides of Wψ which
keeps the orientation of the normals.

Definition 2.4. Given a polygon P ∈Pn, let ψ the corresponding surface tension (such that
Wψ = P ) and ψ∗ its dual, given by (2.13). For d = (d1, . . . , dn) ∈ Rn with |di| < 1

|σi| let

ψd
∗ (ξ) := sup

16i6n
ξ · σi

1 + di|σi|
, P (d) :=

{
ξ ∈ R2 : ψd

∗ (ξ) < 1
}
. (2.14)

Then for ε > 0 we define the class of competitors

C (P, ε) :=
{
P (d) : d ∈ Rn, |d|∞ < ε, |P (d)| = |P |

}
, (2.15)

where |d|∞ := sup16i6n |di|.

Notice that P (0) = P . Notice also that P (d) is obtained by translating the side Li = ∂P∩Vi
by the vector diνi. The geometric meaning of the parameters d = (d1, . . . , dn) is explained in
Figure 2.
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P P (d)

Li Li+1

di
di+1

Figure 2. A polygon P ∈Pn (left) and a variation P (d) in the class C (P, ε) (right).

2.3. Main results. In our first main result we show that each polygon in the class Pn is a
global minimizer of the energy Eγ (with respect to its own surface tension), provided that γ
is sufficiently small.

Theorem 2.5 (Minimality of polygons in Pn). Let P ∈ Pn and let ψ be a surface energy
density whose Wulff shape is P . Then there exists γ̄ > 0, depending on P and α, such that
for all γ < γ̄ the polygon P is the unique (up to translations) solution to (1.1).

The proof of Theorem 2.5, given in Section 4, follows by the combination of three main
ingredients: (a) the stability of the Wulff inequality (2.6); (b) the fact that any solution to
(1.1) is an ω-minimizer of the anisotropic perimeter and in turn, if γ is sufficiently small, it
is a polygon with sides parallel to those of P (that is, it belongs to the class C (P, ε)); (c) the
following quadratic upper bound for variations within the class C (P, ε), which is one of the
main new contributions of this paper and will be proved in Section 3.

Main Lemma (Quadratic bound). Let P ∈Pn. There exists ε0 > 0 and c0 > 0 (depending

on the polygon P and on α) such that for every P̃ ∈ C (P, ε0) one has the quadratic estimate∣∣V(P )− V(P̃ )
∣∣ 6 c0|P4P̃ |2 . (2.16)

It is clear that the polygons in Pn cease to be global minimizers of Eγ for γ large enough;
at least in the case of the square, it is known that the Wulff shape loses its stability for large
values of γ and hence it is not even a local minimizer (see [4]).

Remark 2.6 (Criticality conditions). Let P be a convex polygon (not necessarily in the class
Pn) with n sides {Li}ni=1 and corresponding side lengths {`i}ni=1. By considering the first
variation of the nonlocal energy V(·) with respect to perturbations in the class C (P, ε), we
say that P is critical for V(·) with respect to this class of variations if

1

`i

∫
Li

vP (x) dH1(x) =
1

`j

∫
Lj

vP (x) dH1(x) for every i, j = 1, . . . , n, (2.17)

where vP is the potential associated to P according to (2.10). A derivation of these equations
will be given in Section 4.

Notice that P is always critical for the anisotropic perimeter Pψ (where ψ is such that
Wψ = P ), which is differentiable with respect to this family of perturbations as they do
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not modify the orientation of the normals to the boundary. Hence the equations (2.17) are
necessary conditions for minimality of P for Eγ in the class C (P, ε) (and for global minimality
when γ is small). While it is obvious that each polygon P ∈ Pn is critical for V(·) with
respect to this class of perturbations, it is an open question whether there exist polygons
P /∈Pn for which the conditions (2.17) hold.

In the next theorem we observe that, in the planar case, the rigid structure of minimizers
of Eγ is not just peculiar to the small mass regime (γ � 1), but it characterizes (local)
minimizers also for large γ. This property was first observed in [8, Theorem 14] for a similar
minimization problem, where the crystalline perimeter was perturbed by a bulk potential
energy induced by an external force field. Their argument applies also to the energy Eγ with
minor modifications, see Section 4 for the proof.

Theorem 2.7 (Rigidity of minimizers). Let E ⊂ R2 be a local minimizer of Eγ, in the sense
that there exists δ0 > 0 such that Eγ(E) 6 Eγ(F ) for every set of finite perimeter F ⊂ R2

such that |F | = |E| and miny∈R2 |(y + E)4F | < δ0.
Then there exists a constant v0 ∈ R such that ∂E = Γ1 ∪ Γ2, where

Γ1 =
{
x ∈ R2 : vE(x) = v0

}
, νE(x) ∈ {νi}ni=1 for H1-a.e. x ∈ Γ2,

where vE is the Riesz potential associated to E (according to (2.10)), and {νi}ni=1 is the set
of exterior normals to the boundary of the Wulff-shape Wψ.

Obviously, the theorem applies to global minimizers of Eγ , whenever they exist. Notice that
the existence of solutions to the minimum problem (1.1) was established in [4, Theorem 3.1] for
small values of γ. However, it is well-known that, at least for large values of γ (corresponding
to the large mass regime, see [4, Theorem 3.1]), global minimizers do not exist due to the
possibility of splitting the mass into different connected components and moving them far
apart from each other: this reduces the cross interactions between the different components,
and a “minimizing configuration” is reached only when the components are at infinite distance
from each other. Following [18], this situation can be captured by introducing a notion of
generalized minimizer : a collection of sets of finite perimeter (E1, . . . , EN ), N ∈ N, such that

N∑
i=1

|Ei| = 1,
N∑
i=1

Eγ(Ei) = inf
{
Eγ(E) : |E| = 1

}
. (2.18)

The existence of a generalized minimizer can be proved by arguing as in [18, Theorem 4.5].
Since by (2.18) each component Ei is a solution of the minimum problem corresponding to
its mass, i.e.

Eγ(Ei) = min
{
Eγ(E) : |E| = |Ei|

}
,

the result in Theorem 2.7 also applies to each component of a generalized minimizer.

3. Proof of the quadratic bound

We first gather some well-known properties of the nonlocal energy (2.8). As a consequence
of the classical Riesz rearrangement inequality (see for instance [19]), one can show that for
every Borel set E ⊂ Rd with finite Lebesgue measure and every point x ∈ Rd it holds

vE(x) 6
∫
Br

1

|y|α
dy , where r =

(
|E|
|B1|

) 1
d

, (3.1)
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see [14, Lemma 2.3] for a proof. The following lemma is an immediate consequence of the
bound (3.1).

Lemma 3.1. There exists a constant cα,d, depending only on α and on the space dimension,

such that for any two Borel sets E,F ⊂ Rd with finite Lebesgue measure one has

‖vE‖∞ 6 cα,d|E|1−
α
d , (3.2)

I(E,F ) 6 cα,d|E|1−
α
d |F | , (3.3)∣∣V(E)− V(F )

∣∣ 6 cα,d(|E|1−αd + |F |1−
α
d

)
|E4F | . (3.4)

Proof. By setting r = (|E|/|B1|)1/d we have thanks to (3.1)

vE(x) 6
∫
Br

1

|y|α
dy = d |B1|

∫ r

0
ρd−1−α dρ =

d |B1|
d− α

rd−α =
d |B1|

α
d

d− α
|E|1−

α
d

for all x ∈ Rd, which proves (3.2). Recalling that I(E,F ) =
∫
F vE(x) dx, we obtain (3.3) by

integration over F . Finally, we use once more (3.2) to obtain∣∣V(E)− V(F )
∣∣ =

∣∣∣∣ ∫
Rd

∫
Rd

(
χE(x)

(
χE(y)− χF (y)

)
|x− y|α

+
χF (y)

(
χE(x)− χF (x)

)
|x− y|α

)
dx dy

∣∣∣∣
=

∣∣∣∣ ∫
E\F

(
vE(x) + vF (x)

)
dx−

∫
F\E

(
vE(x) + vF (x)

)
dx

∣∣∣∣
6 cα,d

(
|E|1−

α
d + |F |1−

α
d

)
|E4F | ,

which is (3.4). �

Let P ∈ Pn be a fixed polygon and let ψ∗ the dual of the corresponding anisotropy ψ,
given by the formula (2.13). As already remarked, each vector σi is parallel to the normal νi
of the side Li = ∂P ∩ Vi of P , for i = 1, . . . , n. We number the sides of P in clockwise order.

With the notation introduced in Section 2, we consider any possible variation P (d) in the
class C (P, ε), where d = (d1, . . . , dn). Notice that the area constraint |P (d)| = |P | reduces
by one the number of free variables: we consider the last variable dn as a function of the first
(n− 1) variables,

dn = f(d1, . . . , dn−1), (3.5)

chosen in order to restore the area constraint, which is possible if ε is small enough. It is
convenient to introduce an auxiliary function V : {(d1, . . . , dn−1) ∈ Rn−1 : |di| < ε} → R,

V (d1, . . . , dn−1) := V
(
P (d1, . . . , dn−1, f(d1, . . . , dn−1))

)
. (3.6)

The proof of the Main Lemma will be achieved by an iteration argument, which allows us
to prove the estimate (2.16) by moving just one side at a time, keeping the others fixed.

Lemma 3.2. There exist ε1 > 0 and c1 > 0 such that for every |d1| < ε1 one has∣∣V (d1, 0, . . . , 0)− V (0, . . . , 0)
∣∣ 6 c1|d1|2. (3.7)

Proof. Along this proof we will denote by O(dβ1 ), for β > 0, any quantity with the property

O(dβ1 ) 6 C|d1|β for all |d1| < ε1

(for ε1 ∈ (0, 1) to be chosen small enough), for a constant C > 0 depending only on P .
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L1

Ln

pn

p1
p2

B

d1

−dn

Dn

D1

Figure 3. The variation considered in Lemma 3.2 (case d1 > 0).

Fix |d1| < ε1 and let dn = f(d1, 0, . . . , 0) be chosen such that |P̃ | = |P |, where we set

P̃ = P (d1, 0, . . . , 0, dn). Geometrically, we are translating the two adjacent sides L1 and Ln
parallel to themselves by d1 and dn respectively (towards the exterior of the polygon if di
is positive and towards the interior otherwise). We consider the case d1 > 0 (and therefore
dn < 0) in detail, see Figure 3; the case d1 < 0 will follow by a symmetric argument.

We denote by B := P ∩ P̃ the bulk of the polygon P , which remains untouched by the
variation, and by

D1 := P̃\B, Dn := P\B.
In view of the volume constraint we have |D1| = |Dn|. In turn, as each side of P has the
same length `, this implies that

dn = −d1 +O(d2
1), |Dn| = |D1| = `d1 +O(d2

1). (3.8)

Furthermore, up to higher order perturbations, the sets D1 and Dn can be approximated by
the rectangle R = [0, `]× [0, d1], in the sense that we can find two rigid motions T1, Tn : R2 →
R2 such that

|D̃i4R| = O(d2
1), with D̃i = Ti(Di). (3.9)

We can compute the variation of the nonlocal energy as follows:∣∣V(P̃ )− V(P )
∣∣ =

∣∣V(B ∪D1)− V(B ∪Dn)
∣∣

=
∣∣V(D1) + 2I(B,D1)− V(Dn)− 2I(B,Dn)

∣∣
6
∣∣V(D1)− V(Dn)

∣∣+ 2
∣∣I(B,D1)− I(B,Dn)

∣∣ = (I) + (II).

(3.10)

We now estimate separately the two terms (I) and (II) on the right-hand side of (3.10).

Estimate on (I). Since the nonlocal energy V(Di) is invariant with respect to rigid motions,

we can replace the sets Di by D̃i in (I). Hence, thanks to the estimate (3.4) in Lemma 3.1,
(3.8), and (3.9), we have

(I) =
∣∣V(D̃1)− V(D̃n)

∣∣ 6 2cα|D1|1−
α
2 |D̃14D̃n|

6 2cα
(
`d1 +O(d2

1)
)1−α

2

(
|D̃14R|+ |D̃n4R|

)
= O(d

3−α
2

1 ).
(3.11)
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P

Ln L1

B

Dn

D1

BR

DR
1

B

Dn

H

Figure 4. Left: the starting polygon P . Center: the variation P̃ considered in

the proof of Lemma 3.2: the bulk B is left untouched, P = B∪Dn, P̃ = B∪D1.
Right: the dashed line represent the polygon P = B ∪Dn; the shaded region

is the image of the polygon P̃ by the isometry T ◦ S, i.e. the union of the two
regions DR

1 and BR.

Estimate on (II). We have to compare the interaction energy of the two small sets D1, Dn

with the bulk B. The idea here is to transport D1 by a rigid motion to a set DR
1 which

maximizes its intersection with Dn, and then to exploit the symmetry properties of the
polygon P to argue that the interaction of D1 with B is - up to perturbations of order O(d2

1)
- the same as that of DR

1 with B, see (3.13).
In order to formalize this strategy, we denote by H the line containing Ln − |dn|νn and by

H+, H− the two corresponding half-planes (with H+ containing Dn). We first consider an
isometry S : R2 → R2 such that S(L1) = Ln and S(P ) = P , see Remark 2.3 (actually, in
this particular case the isometry is just the reflection with respect to the bisector of the angle
between L1 and Ln). With this transformation, the two sets Dn and S(D1) lie on the two
opposite sides of Ln. Next, we compose the isometry S with a further translation T by −|dn|
in the direction νn (the exterior normal to Ln): we set

DR
1 := T ◦ S(D1), BR := T ◦ S(B).

In this way, one can see that the set DR
1 is isometric to D1 and it overlaps with Dn for most

of its volume, in the sense that

|DR
1 4Dn| = O(d2

1). (3.12)

We claim that ∣∣I(B,D1)− I(B,DR
1 )
∣∣ = O(d2

1). (3.13)

Assuming that the claim (3.13) is true, we obtain the desired estimate as follows:

(II) = 2
∣∣I(B,D1)− I(B,Dn)

∣∣ (3.13)
= 2

∣∣I(B,DR
1 )− I(B,Dn)

∣∣+O(d2
1)

6 2I(B,DR
1 \Dn) + 2I(B,Dn\DR

1 ) +O(d2
1)

(3.3)

6 2cα|B|1−
α
2 |DR

1 4Dn|+O(d2
1)

(3.12)
= O(d2

1).

(3.14)
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x1

y1

θ

R1 R2x

yx′

y′

Figure 5. Rectangles R1 and R2 of size [0, `]× [0, d1] approximating the sets
DR

1 and Ū in the proof of Lemma 3.2.

It only remains to prove the claim (3.13). Due to the invariance of the interaction energy
we have that ∣∣I(B,D1)− I(B,DR

1 )
∣∣ =

∣∣I(BR, DR
1 )− I(B,DR

1 )
∣∣

=
∣∣I(DR

1 , B
R\B)− I(DR

1 , B\BR)
∣∣

6 I(DR
1 , B

R4B).

The estimate of the interaction energy between DR
1 and BR4B will follow from the geometric

structure of these sets, see Figure 4. Observe first that the two sets DR
1 and BR4B lie on

the two opposite sides of the line H (DR
1 ⊂ H+, BR4B ⊂ H−). Furthermore, the symmetric

difference of BR and B is contained in a neighbourhood of size 2|dn| of the boundary of the
original polygon P : more precisely,

BR4B ⊂ U :=
{
x ∈ R2 : distP (x, ∂P ) < 2|dn|

}
∩H−

(see (2.12)). In turn, the set U can be decomposed as disjoint union of (n − 1) polygons

U =
⋃n−1
i=1 Ui, each one corresponding approximately to a rectangle of base ` and height 2|dn|

around the side Li. Hence

I(DR
1 , B

R4B) 6 I(DR
1 , U) =

n−1∑
i=1

I(DR
1 , Ui) 6 (n− 1)I(DR

1 , Ū),

where Ū is one of the two polygons Ui adjacent to the side Ln, for which the interaction with
DR

1 is the largest.
As before, up to higher order perturbations, we can approximate the set DR

1 by a rectangle
R1 isometric [0, `] × [0, d1], and Ū by a rectangle R2 isometric to [0, `] × [0, 2d1]. The two
rectangles are touching each other at one vertex with an angle θ ∈ (0, π) which corresponds
to the internal angle between two adjacent sides of the polygon P (see Figure 5). Such
approximation is justified since |DR

1 4R1| = O(d2
1), |Ū4R2| = O(d2

1) and hence in view of
Lemma 3.1

I(DR
1 , Ū) = I(R1, R2) +O(d2

1).

It then remains to estimate I(R1, R2). With slight abuse of notation, we identify points
x ∈ R1 and y ∈ R2 using local coordinates in each rectangle: x = (x1, x2) ∈ [0, `] × [0, d1],
y = (y1, y2) ∈ [0, `]× [0, 2d1]. By elementary arguments one can see that the distance between
x and y is always larger than or equal to the distance between the corresponding projections
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x′ = (x1, 0), y′ = (y1, 0) on the bases of the two rectangles, which in turn obeys the inequality

|x− y| > |x′ − y′| >
√

1− cos θ

2
(`− x1 + y1).

Therefore, for α 6= 1,

I(R1, R2) =

∫
R1

∫
R2

1

|x− y|α
dx dy 6 Cθ

∫
R1

(
d1

∫ `

0

1

(`− x1 + y1)α
dy1

)
dx

= Cθ
d2

1 `
2−α(22−α − 2)

(1− α)(2− α)
= O(d2

1).

Likewise, for α = 1, we get that

I(R1, R2) =

∫
R1

∫
R2

1

|x− y|α
dx dy 6 Cθd

2
1 2` log 2 = O(d2

1).

This proves the estimate (3.13).

Conclusion. By inserting (3.11) and (3.14) into (3.10) we obtain∣∣V(P̃ )− V(P )
∣∣ = O(d

3−α
2

1 ) +O(d2
1).

As α < 2, the previous estimate implies the conclusion of the lemma (in the case d1 > 0).
The case d1 < 0 follows after relabeling the sets D1 and Dn in the estimates above. �

Lemma 3.3. For every k = 2, . . . , n− 1 there exist εk > 0, ck > 0 such that for every choice
of d1, . . . , dk such that sup16i6k |di| < εk one has∣∣V (d1, . . . , dk, 0, . . . , 0)− V (d1, . . . , dk−1, 0, . . . , 0)

∣∣ 6 ck sup
16i6k

|di|2. (3.15)

Proof. The proof of this lemma follows using estimates almost identical to those in the proof
of Lemma 3.2. We start by introducing some notation. Let

dk−1 := (d1, . . . , dk−1, 0, . . . , 0) ∈ Rn−1, Pk−1 := P (dk−1, f(dk − 1)),

dk := (d1, . . . , dk−1, dk, 0, . . . , 0) ∈ Rn−1, Pk := P (dk, f(dk)),

where f is the function defined in (3.5): the polygon Pk−1 is obtained from P by translating
the first k − 1 sides by d1, . . . , dk−1, with the side Ln shifted by f(dk−1) in order to restore
the volume constraint; the polygon Pk is obtained from Pk−1 by translating the side Lk by
dk, and the side Ln is shifted by

dn := f(dk)− f(dk−1).

Define also B := Pk−1 ∩ Pk, Dk := Pk\B, and Dn := Pk−1\B. Then, as in (3.10), we get∣∣V(Pk)− V(Pk−1)
∣∣ 6 ∣∣V(Dk)− V(Dn)

∣∣+ 2
∣∣I(B,Dk)− I(B,Dn)

∣∣ = (I) + (II). (3.16)

To estimate (I), let δk := sup16i6k |di| and note that both Dk and Dn have a side length of

`+ O(δk−1), dn = −dk + O(d2
k), and |Dk| = |Dn| = `|dk|+ O(δ2

k). Moreover, as in the proof
of the previous lemma, they can be approximated by a rectangle R of side lengths ` and |dk|
in such a way that

|D̃i4R| = O(δ2
k), with D̃i = Ti(Di) for i = k, n
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for some rigid motions Tk, Tn : R2 → R2. This, in turn, implies that |D̃k4D̃n| = O(δ2
k), hence,

as in (3.11), we obtain that

(I) =
∣∣V(Dk)− V(Dk−1)

∣∣ = O(δ2
k).

Now let S be the isometry such that Ln = S(Lk) (see Remark 2.3). Note that B is a
polygon with n sides parallel to those of P and each side is of length ` + O(δk). As in the
estimate of the second term in the proof of Lemma 3.2, let T be the translation by f(dk) in
the direction νn and set DR

k := T ◦ S(Dk) and BR := T ◦ S(B). Hence, |DR
k4Dn| = O(δ2

k).
An important difference here is that the polygon Pk−1 is not necessarily in the class Pn (and
invariant under S); however, it is a small perturbation of the polygon P ∈ Pn. Therefore
|B4P | = |S(B)4P | = O(δk). Since |T ◦ S(B)4S(B)| 6 diam(S(B))|f(dk)| = O(δk), we get
that |BR4B| = O(δk). This yields a control on the interaction with the bulk as in (3.13).
Then by repeating the estimate (3.14) we obtain

(II) = 2
∣∣I(B,Dk)− I(B,Dn)

∣∣ = O(δ2
k),

and conclude that (3.15) holds. �

By combining Lemma 3.2 and Lemma 3.3 we can now give the proof of the Main Lemma
in Section 2 by an iteration argument.

Proof of Main Lemma. We set

ε0 := min
16i6n−1

εi , c0 :=
n−1∑
i=1

ci

(where εi and ci are given by Lemma 3.2 and Lemma 3.3). For every P (d) ∈ C (P, ε0), with
d = (d1, . . . , dn), we then find∣∣V(P (d))− V(P )

∣∣ =
∣∣V (d1, . . . , dn−1)− V (0)

∣∣
6
∣∣V (d1, . . . , dn−1)− V (d1, . . . , dn−2, 0)

∣∣+
∣∣V (d1, . . . , dn−2, 0)− V (0)

∣∣
(3.15)

6 cn−1

(
sup

16i6n−1
|di|2

)
+
∣∣V (d1, . . . , dn−2, 0)− V (0)

∣∣ ,
and therefore by iteration

∣∣V(P (d))− V(P )
∣∣ 6 n−1∑

i=2

ci

(
sup

16i6n−1
|di|2

)
+
∣∣V (d1, 0, . . . , 0)− V (0)

∣∣
(3.7)

6 c0

(
sup

16i6n−1
|di|2

)
6 c0|d|2∞.

Finally, by observing that (by reducing ε0 if necessary)

|d|∞ 6 C|P4P (d)|

for a constant C > 0 depending only on the initial polygon P , we conclude that the estimate
(2.16) holds with a possibly larger constant c0. �
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4. Proofs of the results in Section 2

In this section we collect the arguments for the proof of the main results of the paper,
stated in Section 2.

Proof of Theorem 2.5. It is proved in [4, Theorem 3.1] that there exists γ1 > 0 such that
for every γ < γ1 the minimum problem (1.1) has a solution Eγ . Up to translations, we can
assume that miny∈R2 |Eγ4(y + P )| = Eγ4P . By combining the minimality of Eγ with the
quantitative Wulff inequality (2.6) we obtain

c̄ |Eγ4P |2 6 Pψ(Eγ)− Pψ(P ) 6 γ
(
V(P )− V(Eγ)

)
6 2γcα,2|Eγ4P |, (4.1)

where in the last inequality we used the Lipschitz continuity of the nonlocal energy with
respect to the L1-norm, see (3.4). The estimate (4.1) implies in particular that Eγ → P in
L1 as γ → 0.

Next, we observe that, by a similar estimate using the minimality of Eγ and (3.4), for every
set of finite perimeter F ⊂ R2 with |F | = 1 we have

Pψ(Eγ) 6 Pψ(F ) + 2γcα,2|Eγ4F |, (4.2)

that is, Eγ is a (2γcα,2)-minimizer of the anisotropic perimeter Pψ. Hence, thanks to [8,
Theorem 7], if γ is sufficiently small the minimizer Eγ is a convex polygon whose sides are
parallel to those of P , and is uniformly close to P by (4.1): more precisely, there exists
γ2 ∈ (0, γ1) such that for all γ < γ2 we have Eγ ∈ C (P, ε0), where ε0 > 0 is the constant
provided by the Main Lemma.

We can now conclude the proof thanks to the quadratic bound (2.16): indeed, combining
this estimate with the minimality of Eγ and the quantitative Wulff inequality (2.6) we obtain

c̄ |Eγ4P |2 6 Pψ(Eγ)− Pψ(P ) 6 γ
(
V(P )− V(Eγ)

)
6 γc0|Eγ4P |2, (4.3)

which implies that |Eγ4P | = 0 provided that γ < c̄
c0

. �

We now prove that a critical point of the nonlocal energy V(·), with respect to perturbations
in the class C , satisfies the first order conditions (2.17).

Derivation of conditions (2.17). We consider a convex polygon P with n sides {Li}ni=1 and
corresponding side lengths {`i}ni=1, and its perturbations in the class C (P, ε). With the
notation of Section 3, we impose the conditions

∂V

∂di
(0, . . . , 0) = 0 for all i = 1, . . . , n− 1, (4.4)

where V is the function introduced in (3.6). Let us compute the derivative ∂V
∂d1

, corresponding

to a shifting of the side L1 by a small quantity d1 (at the same time the side Ln is shifted
by dn to adjust the volume constraint): we refer once again to Figure 3 and to the notation
introduced in Lemma 3.2.

Since we are not assuming that the sides of the polygon have equal length, the condition
(3.8) has to be replaced by

dn = − `1
`n
d1 +O(d2

1). (4.5)

We have for d1 > 0 sufficiently small

1

d1

(
V (d1, 0, . . . , 0)− V (0, . . . , 0)

)
=

1

d1

(
V(D1) + 2I(D1, B)− V(Dn)− 2I(Dn, B)

)
. (4.6)



16 MARCO BONACINI, RICCARDO CRISTOFERI, AND IHSAN TOPALOGLU

Since |D1| = |Dn| = `1d1 + O(d2
1), it follows from Lemma 3.1 that V(D1),V(Dn) = o(d1) as

d1 → 0, so that these two terms are asymptotically negligible in (4.6). Furthermore, denoting
by R1 the rectangle with base L1 and height d1 (on the exterior of the polygon P ), we have
the estimates

|B4P | = |Dn| = `1d1 +O(d2
1), |D14R1| = O(d2

1),

from which it follows, again by Lemma 3.1, that I(D1, B) = I(R1, P ) + o(d1). Therefore

lim
d1→0+

I(D1, B)

d1
= lim

d1→0+

I(R1, P )

d1

= lim
d1→0+

1

d1

∫ d1

0
dt

∫
L1

dH1(x)

∫
P

dy

|y − (x+ tν1)|α

=

∫
L1

∫
P

1

|x− y|α
dy dH1(x).

Arguing similarly for Dn, we let Rn be the rectangle of base Ln and height |dn| (inside the
polygon P ), and taking into account (4.5) we find

lim
d1→0+

I(Dn, B)

d1
= lim

d1→0+

I(Rn, P )

d1

= lim
d1→0+

1

d1

∫ `1
`n
d1+o(d1)

0
dt

∫
Ln

dH1(x)

∫
P

dy

|y − (x− tνn)|α

=
`1
`n

∫
Ln

∫
P

1

|x− y|α
dy dH1(x).

Therefore inserting all the previous estimates into (4.6) we conclude that

lim
d1→0+

1

d1

(
V (d1, 0, . . . , 0)− V (0, . . . , 0)

)
= 2

(∫
L1

∫
P

1

|x− y|α
dy dH1(x)− `1

`n

∫
Ln

∫
P

1

|x− y|α
dy dH1(x)

)
.

The computation for d1 negative is similar and yields that the right-hand side in the previous
identity is exactly the partial derivative ∂V

∂d1
(0, . . . , 0). By imposing (4.4) we then obtain (2.17)

for i = 1 and j = n; the other conditions follow by considering the analogous variations for
the other sides. �

We next give the proof of Theorem 2.7, following the argument in [8, Theorem 14].

Proof of Theorem 2.7. We first observe that there exists ω > 0, depending on α, γ, δ0, and
E, such that E is an ω-minimizer of the anisotropic perimeter Pψ. Indeed, for every F ⊂ R2

with finite perimeter such that |F | = |E| and |E4F | < δ0 we have by local minimality of E

Pψ(E) 6 Pψ(F ) + γ
∣∣V(F )− V(E)

∣∣ 6 Pψ(F ) + 2cα,2γ|E|1−
α
2 |E4F |,

where the last inequality follows from Lemma 3.1. Moreover for competitors F such that
|F | = |E| and |E4F | > δ0 we have trivially

Pψ(E) 6 Pψ(F ) +
Pψ(E)

δ0
|E4F |.
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The ω-minimality of E then follows by taking ω := max{2cα,2γ|E|1−
α
2 ,Pψ(E)/δ0}. We can

therefore apply [8, Theorem 3] to deduce that H1(∂E\∂∗E) = 0 and ∂E is differentiable at
every point of ∂∗E.

These regularity properties are sufficient to repeat the construction of the perturbation
considered in [8, Theorem 14]. It is shown that, given x̄ ∈ ∂∗E such that νE(x) /∈ {νi}ni=1,
there exists σ0(x̄) > 0 with the following property: for every σ ∈ (0, σ0(x̄)) one can construct
two sets

Rσ+(x̄) ⊂ R2\E, Rσ−(x̄) ⊂ E, with |Rσ+(x̄)| = |Rσ−(x̄)| = σ,

such that

Pψ(E ∪Rσ+(x̄)) 6 Pψ(E), Pψ(E\Rσ−(x̄)) 6 Pψ(E). (4.7)

Moreover, the two sets are localized around x̄ in the sense that there exists ρ(σ) > 0, with
ρ(σ)→ 0 as σ → 0, such that Rσ±(x̄) are contained in the ball Bρ(σ)(x̄).

Let now x1, x2 ∈ ∂∗E be such that νE(xi) /∈ {νi}ni=1. The proof will be achieved if we
show that vE(x1) = vE(x2). For 0 < σ < σ0 := min{σ0(x1), σ0(x2)} we consider the two
sets Rσ+ := Rσ+(x1), Rσ− := Rσ−(x2). By reducing σ0 if necessary we can guarantee that
Rσ+ ∩Rσ− = ∅. We then consider the competitor

F σ := (E ∪Rσ+)\Rσ−, |F σ| = |E|.

If σ0 is sufficiently small we have |F σ4E| < δ0 and therefore by local minimality of E

Pψ(E) + γV(E) 6 Pψ(F σ) + γV(F σ) 6 Pψ(E) + γV(F σ).

The last inequality follows from (4.7) taking into account that the perturbations Rσ± are
localized in two disjoint balls Bρ(σ)(x1), Bρ(σ)(x2). Hence

V(E) 6 V(F σ) = V(E) + 2I(E,Rσ+)− 2I(E,Rσ−) + V(Rσ+) + V(Rσ−)− 2I(Rσ+, R
σ
−). (4.8)

In view of Lemma 3.1 we have∣∣V(Rσ+) + V(Rσ−)− 2I(Rσ+, R
σ
−)
∣∣ 6 4cα,2 σ

2−α
2 .

Therefore dividing (4.8) by σ and letting σ → 0+ we obtain

lim
σ→0+

I(E,Rσ−)

σ
6 lim

σ→0+

I(E,Rσ+)

σ
,

or equivalently

lim
σ→0+

1

|Rσ−|

∫
Rσ−

vE(x) dx 6 lim
σ→0+

1

|Rσ+|

∫
Rσ+

vE(x) dx.

By continuity of the potential we conclude that vE(x2) 6 vE(x1). The opposite inequality
follows by inverting the roles of x1 and x2. �

5. Higher-dimensional case

This section is devoted to proving the analogous of Theorem 2.5 in higher dimension. In
the following we will fix the dimension d > 2. We first introduce the class of polytopes that
we consider.

Definition 5.1. For n > d + 1, we let Pn(d) to be the class of convex polytopes P ⊂ Rd
with n faces F1, . . . , Fn and unit volume |P | = 1 such that for every i, j ∈ {1, . . . , n} there
exists an isometry Sij : Rd → Rd such that Sij(Fi) = Fj and Sij(P ) = P .
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Remark 5.2. This is the straightforward generalization of the class of polygons considered in
the two dimensional case (see Definition 2.1 and Remark 2.3). Notice that regular polytopes
belong to Pn(d).

We are now in position to state the main result of this section.

Theorem 5.3 (Minimality of polytopes in Pn(d)). Let P ∈ Pn(d) and let ψ be a surface
energy density whose Wulff shape is P . Then there exists γ̄ > 0 such that for all γ < γ̄ the
polytope P is the unique (up to translations) solution to (1.1).

Since minimizers of (1.1) are also ω-minimizers of the anisotropic perimeter for some ω
proportional to γ, [10, Theorem 1.1] allows to consider only competitors in the class C (P, ε)
(see Definition 2.4, whose generalization to dimension d > 2 is straightforward). Therefore
Theorem 5.3 follows by using the same strategy that we used to prove Theorem 2.5, once we
get the following estimate.

Lemma 5.4. Let P ∈ Pn(d). Then there exist ε0 > 0 and c0 > 0 such that for every

P̃ ∈ C (P, ε0) one has the quadratic estimate∣∣V(P̃ )− V(P )
∣∣ 6 c0|P4P̃ |2 . (5.1)

Proof. Since the argument is similar to the one used to prove the estimate in the two dimen-
sional case, here we limit ourselves to sketch the main changes in the proof.

Step 1. We claim that there exist ε1 > 0 and c1 > 0 such that for every |d1| < ε1 it holds∣∣V (d1, 0, . . . , 0)− V (0, . . . , 0)
∣∣ 6 c1|d1|2. (5.2)

Indeed, let us consider d1 > 0 sufficiently small and set

P̃ := P (d1, 0, . . . , 0), B := P ∩ P̃ , D1 := P̃\B, Dn := P\P̃ .

The volume constraint |P | = |P̃ | together with the fact that Hd−1(F1) = Hd−1(Fn) yield

dn = −d1 +O(d2
1). (5.3)

We have that ∣∣V(P̃ )− V(P )
∣∣ 6 ∣∣V(D1)− V(Dn)

∣∣+ 2
∣∣I(B,D1)− I(B,Dn)

∣∣. (5.4)

We start by considering the first term on the right-hand side. Let νi ∈ Sd−1 be the normal
to the face Fi pointing outside P , and set

R1 :=
{
x ∈ Rd : x = y + tν1, y ∈ F1, t ∈ [0, d1]

}
,

Rn :=
{
x ∈ Rd : x = y + tνn, y ∈ Fn, t ∈ [−d1, 0]

}
.

Notice that, for i = 1, n it holds
|Ri4Di| = O(d2

1). (5.5)

Using Lemma 3.1 together with (5.3) and (5.5), and arguing as in (3.11) we get∣∣V(D1)− V(Dn)
∣∣ = O(d

3−α
2

1 ). (5.6)

We next estimate the second term on the right-hand side of (5.4). We notice that∣∣I(B,D1)− I(B,Dn)
∣∣ 6 ∣∣I(B,D1)− I(B,R1)

∣∣+
∣∣I(B,Dn)− I(B,Rn)

∣∣
+
∣∣I(B,R1)− I(B,Rn)

∣∣
=
∣∣I(B,R1)− I(B,Rn)

∣∣+O(d2
1).

(5.7)
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We now focus on the first term on the right-hand side of (5.7). Let S be the isometry such
that S(Fn) = F1 and S(P ) = P , given by Definition 5.1. Consider the composition of S with
a translation T by d1ν1: the resulting transformation maps Rn onto R1, i.e. T ◦S(Rn) = R1.

We also set B̃ := T ◦S(B). In view of the invariance of P with respect to S, it is then possible
to estimate ∣∣I(B,R1)− I(B,Rn)

∣∣ =
∣∣I(B,R1)− I(B̃, R1)

∣∣
6 I(R1, B̃4B)

6 (n− 1)I(R1, Ui) +O(d2
1)

(5.8)

where
Ui :=

{
x ∈ Rd : x = y + tνi, y ∈ Fi, t ∈ [−2d1, 2d1]

}
\R1,

and i ∈ 1, . . . , n− 1 is such that the interaction of R1 with Ui is maximal. By elementary
geometry one can see that there exists C > 0 depending only on the angle between ν1 and νi
such that for every x ∈ R1 and y ∈ Ui

|x− y| > C|π1(x)− πi(y)|,
where π1 and πi are the projections on F1 and Fi respectively. Therefore using Fubini’s
Theorem

I(R1, Ui) =

∫
R1

∫
Ui

1

|x− y|α
dy dx

6 C
∫
R1

∫
Ui

1

|π1(x)− πi(y)|α
dy dx

= Cd2
1

∫
F1

∫
Fi

1

|x′ − y′|α
dHd−1(y′) dHd−1(x′).

As α < d, the last integral is a finite constant depending only on the polygon, hence

I(R1, Ui) = O(d2
1). (5.9)

Combining (5.4), (5.5), (5.6), (5.7), (5.8), and (5.9) we get (5.2).

Step 2. We conclude the proof of the lemma by using the iteration argument of Lemma 3.3.
Minor changes in the proof in order to adapt it to the general dimensional case are left to the
reader. �
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