In this paper, we study the set of decompositions of symmetric tensors of low rank of any dimension and of arbitrary order and the Waring loci of points which appear in a decomposition of the tensor. We describe a new and complete stratification of the set of symmetric tensors of rank less than 5 by studying Hilbert function and regularity of ideals of points contained in the apolar ideal. For each stratum, we describe a procedure to compute a minimal apolar set of points, exploiting the algebraic properties of the Waring loci.

On minimal decompositions of low rank symmetric tensors / Mourrain, B.; Oneto, A.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 607:(2020), pp. 347-377. [10.1016/j.laa.2020.06.029]

On minimal decompositions of low rank symmetric tensors

Oneto A.
2020-01-01

Abstract

In this paper, we study the set of decompositions of symmetric tensors of low rank of any dimension and of arbitrary order and the Waring loci of points which appear in a decomposition of the tensor. We describe a new and complete stratification of the set of symmetric tensors of rank less than 5 by studying Hilbert function and regularity of ideals of points contained in the apolar ideal. For each stratum, we describe a procedure to compute a minimal apolar set of points, exploiting the algebraic properties of the Waring loci.
2020
Mourrain, B.; Oneto, A.
On minimal decompositions of low rank symmetric tensors / Mourrain, B.; Oneto, A.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 607:(2020), pp. 347-377. [10.1016/j.laa.2020.06.029]
File in questo prodotto:
File Dimensione Formato  
LowRankPolynomials.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 620.17 kB
Formato Adobe PDF
620.17 kB Adobe PDF Visualizza/Apri
1-s2.0-S0024379520303207-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 728.66 kB
Formato Adobe PDF
728.66 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/282899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact