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ABSTRACT. In this paper, we study the set of decompositions of symmetric tensors of low rank of any dimension
and of arbitrary order and the Waring loci of points which appear in a decomposition of the tensor. We describe
a new and complete stratification of the set of symmetric tensors of rank less than 5 by studying Hilbert function
and regularity of ideals of points contained in the apolar ideal. For each stratum, we describe a procedure to
compute a minimal apolar set of points, exploiting the algebraic properties of the Waring loci.

1. INTRODUCTION

Tensors are multi-dimensional arrays that can be used to encode large data sets. For applications, it is
useful to find convenient ways to represent them and, in the last decades, a lot of research has been focused
on additive decompositions. For a more extensive survey on the relations between theoretical and applied
aspects of tensor decompositions, we refer to the book of J. M. Landsberg [Lan12].

In a space of tensors V1⌦. . .⌦Vd (where the Vi ’s are vector spaces with same ground field), decomposable

or rank-one tensors are the elements of the type v1 ⌦ . . . ⌦ vd , where vi 2 Vi . Given a tensor T , a tensor

decomposition is an expression of T as a linear combination of decomposable tensors. The smallest length
of such a decomposition is called tensor rank of T . Note that this definition generalizes the classic notion
of rank of a matrix. An important family of tensors is the one of symmetric tensors, i.e., tensors invariant
under the action of the permutation group Sd on the space of tensors V

⌦d by permutation of the factors. In
this case, we consider additive decompositions as sums of rank-one symmetric tensors. Symmetric tensors
can be naturally identified with homogeneous polynomials of degree d in n + 1 variables and rank-one
symmetric tensors are the ones of the type v

⌦d = v ⌦ . . .⌦ v, i.e., they correspond to dth powers of linear
forms. Hence, in this case, we rephrase the problem on additive decomposition as follows.

Let S = |[x0, . . . , xn] =
L

d�0 Sd be the standard graded ring of polynomials in n+1 variables and with
coefficients in a field |. Here, Sd denotes the vector space of degree d homogeneous polynomials, or forms.

Definition 1.1. Let f 2 Sd be a form of degree d. A Waring decomposition of f is an expression as

f = �1`
d

1 + . . .+�s`
d

s
, where the `i ’s are linear forms and �i 2 |.

The minimal length of such a decomposition is called the Waring rank, or rank, of f . We denote it rk( f ).
We call minimal Waring decomposition a Waring decomposition of length equal to the Waring rank.

Question. Given f 2 Sd, what is the rank of f ? How does a minimal Waring decomposition look like?
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This question has a long history and a very extended literature, especially over complex and real num-
bers. We refer to [Lan12, CGO14, BCC+18] and their references for a complete exposition of the problem.

Here, we consider the question over the complex numbers. For general forms of fixed degree and fixed
number of variables, the value of the rank is known due to the result of J. Alexander and A. Hirschowitz
[AH95]. In the case of specific polynomials, the question is much more difficult. The case of binary forms
(two variables) is very classical and essentially due to J. J. Sylvester [Syl51]. In the case of monomials,
E. Carlini, M. V. Catalisano and A. V. Geramita gave an explicit formula just in terms of the exponents of the
monomial [CCG12]. In general, several algorithms have been described, but they efficiently work under
certain constrains on the given polynomial [BCMT10, BGI11, OO13].

It is well-known that, via apolarity theory, minimal Waring decompositions of a given polynomial corre-
spond to sets of reduced points in projective space apolar to the polynomial, i.e., sets of points whose ideal
is contained in the so-called apolar ideal of the polynomial. This theory is explained in details in the book
of A. Iarrobino and V. Kanev [IK06]; see also Section 2.1. Under such a correspondence, the coordinates
of the points are (up to a scalar factor) the coefficients of the linear forms that can be used to provide
a Waring decomposition of the polynomial. In particular, the minimal cardinality of such a set of points
coincides with the Waring rank of the polynomial. Hence, useful information about minimal Waring de-
compositions of a given form can be deduced by studying algebraic invariants of sets of points apolar to a
given polynomial such as their Hilbert function and their regularity.

Here, we focus on the new concept of Waring locus of a form which is defined as the locus of linear forms
that may appear in a minimal Waring decomposition (see Section 2.3); this notion has been introduced in
[CCO17]. In other words, linear forms in the Waring locus are the ones that can be used to decrease the
rank of a given homogeneous polynomial f . For example, if the Waring locus of f is as big as possible,
i.e., it is dense in the space of linear forms, then we can pick at random a linear form to reduce the rank of
f . This is what happen for forms with rank higher than the generic rank, i.e., the rank of the general form
(see Theorem 2.25). On the other hand, if the Waring locus is (contained in) a proper subvariety of the
space of linear forms, we would get conditions on the coefficients of the linear forms we might use.

In Theorem 4.2, we describe a stratification of the set of low rank symmetric tensors with respect to
possible configurations of minimal apolar sets of points. In each stratum, our study of Waring loci, allows
us to describe a procedure to construct a minimal Waring decomposition: the idea is to iteratively use
linear forms picked from the Waring locus to decrease the rank of the given form until we completely find
a minimal decomposition. These ideas can be applied to forms of higher rank: however, since the number
of configurations to be studied grows very quickly with respect to the rank, we apply them only up to rank 5.
In Appendix A, we explain how we implemented this procedure in the algebra software Macaulay2 [GS02].

The problem of finding a minimal Waring decomposition for forms of low rank can be approached with
different algorithms (e.g. [BCMT10, OO13]). However, the problem of classification and the analysis of the
Waring loci have received much less attention. The related Varieties of Sums of Powers which parametrize
all minimal apolar sets of points of a homogeneous polynomials has been investigated in [RS00].

Such a classification provides efficient ways to decide which is the rank of a tensor and what are the
algebraic properties that are shared by all minimal sets of points apolar to the given tensor. This also
implies more efficient and optimized techniques to compute decompositions of tensors. We describe a new
and complete stratification of the set of tensors of rank less than 5, using algebraic properties of the ideals
of points contained in the apolar ideal such as Hilbert function and regularity.

Our investigations lead us to ask the following question.
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Question (Question 2.11). Given a form f , is it true that all minimal apolar sets of points have the same

regularity and Hilbert function?

In all cases we have considered, the question has a positive answer. It would be interesting to know to
what extent this is true in general. As far as we know, the only results in this direction regard binary forms
(whose minimal apolar sets of points have the same Hilbert function since they are given by principal ideals)
and monomials (whose minimal apolar sets of points are complete intersections of the same type [BBT13]).

We want to mention that it is interesting to study also the complement of the Waring locus, called
forbidden locus in [CCO17]. Linear forms in the forbidden locus might be used to increase the rank of a
homogeneous polynomial, giving a possible approach to the theoretical question on the existence of forms
with rank higher than the generic one. We do not consider this direction here.

Structure of the paper. In Section 2, we introduce the necessary background and the tools we use in our
computations. These include apolarity theory (Section 2.1), regularity of ideals of reduced points (e.g., see
Theorem 2.14), essential number of variables (Section 2.2) and Waring loci (Section 2.3). In Section 3, we
use these tools to study minimal sets of points apolar to polynomial of low rank (e.g., see Proposition 3.5 and
Proposition 3.13). In Section 4, we give our main Theorem 4.2 where we describe a iterative procedure to
find a minimal set of points apolar to any polynomial of rank at most 5 by using Waring loci. In Appendix A,
we describe how we implemented our computations within the algebra software Macaulay2 [GS02]. The
code of the package ApolarLowRank can be found as ancillary material accompanying the arXiv and the
HAL versions of the paper or on the personal webpage of the second author.

2. BASIC DEFINITIONS AND BACKGROUND

We start by recalling some basic definitions and construction.

2.1. Apolarity theory. One of the most important algebraic tools for studying Waring decompositions of
homogeneous polynomials is apolarity theory, which relates Waring decompositions of a polynomial f to
ideals of reduced points contained in the so-called apolar ideal of f . For more details, we refer to [IK06].

Let T = C[y0, . . . , yn] =
L

d�0 Td be a standard graded polynomial ring. We define the apolar action
of T over S by identifying the polynomials in T with partial differentials over S; namely,

� : T ⇥ S �! S, (G, f ) 7! G � f := G(@0, . . . ,@n) · f .

Definition 2.1. Let f 2 Sd . We define the apolar ideal of f as f
? := {G 2 T | G � f = 0}. We denote by Af

the quotient ring T/ f
?.

The following lemma is the key of our algebraic approach to Waring decompositions.

Lemma 2.2 (Apolarity lemma, [IK06, Lemma 1.15]). Let f 2 Sd. Then, the following are equivalent:

(1) f = c1`
d

1 + . . .+ cs`
d

s
, for some ci 2 C \ {0}, `i 2 S1 \ {0};

(2) IX ⇢ f
?

, where IX is the defining ideal of s reduced points in Pn
.

In particular, if X = {⇠1, . . . ,⇠s} ⇢ Pn
, with ⇠i = (⇠i,0 : . . . : ⇠i,n), then `i = `⇠i

:= ⇠i,0 x0 + . . .+ ⇠i,n xn 2 S1.

Definition 2.3. Given f 2 Sd , a set of points X such that IX ⇢ f
? is said to be apolar to f . We will call

minimal a set of points apolar to f of cardinality equal to the Waring rank of f .

Definition 2.4. Given a homogeneous ideal I ⇢ S, the Hilbert function in degree i of the quotient ring S/I

is the dimension of Si/Ii as C-vector space, i.e.,

hS/I (i) := dimC(S/I)i = dimC Si � dimC Ii , for i 2 N.
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We will write the Hilbert function as the sequence of integers (hS/I (0), hS/I (1), hS/I (2), · · · ).

Remark 2.5. An important and useful property of apolar ideals is that, for any f 2 Sd , the algebra Af

is artinian Gorenstein with socle degree d. In particular, the Hilbert function of Af has finite support,
hAf
(i) = 0 for i > d, and the vector (hAf

(0), . . . , hAf
(d)) is symmetric. Actually, also the viceversa is true,

i.e., any artinian Gorenstein algebra is isomorphic to Af , for some f . This characterization is referred as
Macaulay’s duality [Mac94].

Example 2.6 (Binary forms: Sylvester algorithm). We describe here how to compute the Waring rank of a
binary form. The idea goes back to J. J. Sylvester [Syl51]. For a modern exposition, we refer to [CS11].
Let f 2 C[x0, x1]. By Macaulay’s duality, we know that f

? is artinian Gorenstein and, since we are in
codimension 2, it is also a complete intersection, say f

? = (G1, G2), with deg(Gi) = di , i = 1,2, and
d1 + d2 = d + 2. Since ideals of reduced points in P1 are principal, we look for square-free polynomials in
f
?. In particular, we get the following (we assume d1  d2):

(1) if G1 is square-free, then rk( f ) = d1;
(2) otherwise, the general element H ·G1+↵G2, with H 2 Td2�d1

, ↵ 2 C, is square-free and rk( f ) = d2.

Remark 2.7. Given a set of reduced pointsX, we denote the Hilbert function of the quotient ring S/IX simply
by hX. A well-known fact is that this Hilbert function is strictly increasing until it reaches the cardinality of
the set of points and then it gets constant [IK06, Theorem 1.69].

Given a polynomial f 2 Sd , the computation of the apolar ideal is a linear algebra exercise. For any
i = 0, . . . , d, we construct the i-th catalecticant matrix of f as

Cati( f ) : Ti �! Sd�i , G 7! G � f .

Then, we have that, f
?
i
= ker Cati( f ).

Remark 2.8. For any degree d, we consider the standard monomial basis

Bd =

®
x↵ := x

↵0
0 · · · x↵n

n
| ↵ 2 Nn+1, |↵|=

X

i

↵i = d

´

of Sd , and the dual basis

B_
d
=

®
y(↵) :=

1
↵!

y↵ =
1
↵!

y
↵0
0 · · · y↵n

n
| ↵ 2 Nn+1, |↵|=

X

i

↵i = d

´
.

Note that y(↵) � x� = x��↵. Therefore, with respect to these basis, we have that,

Cati( f ) = (c↵+� ) |↵|=i

|� |=d�i

, where f =
X

↵2Nn+1, |↵|=d

c↵x
↵ 2 Sd .

By apolarity lemma, for any set of points X apolar to f , hX(i)� hAf
(i) = codim kerCati( f ) = rkCati( f ).

Moreover, for any i 2 N, |X| � hX(i). Therefore, if we denote by `( f ) :=maxi{hAf
(i)} =maxi{rk Cati( f )}

the differential length of f , we have that rk( f )� `( f ).
This leads to the following possible algorithm to find the Waring rank of a given polynomial f 2 Sd :

(1) consider the largest catalecticant Catm( f ), for m=
⌅

d

2

⇧
and the ideal I generated by its kernel;

(2) if I does not define a set of reduced points, then we fail;
(3) otherwise, if the zero set of I is a set of reduced points Z(I) = {⇠1, . . . ,⇠r}, then we solve the linear

system f =
P

r

i=1 ci`
d

⇠i

to find suitable ci ’s. In this case, this is minimal and unique.
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Numerical conditions to ensure that this catalecticant method works have been presented in [IK06, OO13].

In [IK06], A. Iarrobino and V. Kanev analysed the Hilbert function of ideals of sets of reduced points
apolar to a given polynomial in order to use apolarity lemma and deduce its rank. We want to continue
in this direction and, in the next section, we will classify polynomials with low rank with respect to the
algebraic properties of their minimal sets of polynomials.

Definition 2.9 (Regularity). For a family X = {⇠1, . . . ,⇠r} of points in Pn, we define the regularity of X as

⇢(X) =min{k 2 N | 9U1, . . . , Ur 2 Sk s.t. Ui(⇠ j) = �i, j}, where �i, j is the usual Kronecker delta.

Remark 2.10. This regularity is also called the interpolation degree of the points X. Let vank(X) denotes the
Vandermonde matrix of degree k associated to X, i.e., if X = {⇠1, . . . ,⇠r}, with ⇠i = (⇠i,0 : . . . : ⇠i,n) 2 Pn,

vank(X) =
Ä
⇠↵

j

ä
j=1,...,r
|↵|=k

,

where ⇠↵
j

:= ⇠↵0
j,0 · · ·⇠

↵n

j,n. The regularity ⇢(X) is also the minimal k for which, van(X)k is of rank |X|.
This regularity coincides with the so-called regularity index, i.e., the smallest integer in which the Hilbert

function of the ideal of points gets constant. Also, ⇢(X) is the Castelnuovo-Mumford regularity of S/IX which
is defined as mini{di, j� i} where di, j ’s are the degrees of generators of the i-th syzygy module in a minimal
free resolution of S/IX; see [Eis05, Chapter 4]: ⇢(X) = reg(S/IX) = reg(IX)� 1.

Question 2.11. LetX,X0 be minimal set of points apolar to a polynomial f 2 Sd. Is it true that⇢(X) = ⇢(X0)?
More generally, is it true that hX = hX0?

The latter question has a positive answer for:

(1) binary forms, as described by Sylvester’s algorithm;
(2) monomials, since any minimal apolar set of points to a monomial x

d0
0 · · · x

dn

n , where the exponents
are ordered increasingly, is a complete intersection with n generators of degrees d1+1, . . . , dn+1,
respectively; see [BBT13],

We now prove that it has an affirmative answer also if the regularity of a minimal set of points is large
enough with respect to the degree of the polynomial. In particular, in this case, we have that the catalecti-
cant method works and gives us a minimal apolar set of points.

Lemma 2.12. Let f 2 Sd and let X be a minimal set of points apolar to f . Assume that d � ⇢(X). Then,

(IX)k = f
?
k

for 0 k  d �⇢(X).

Proof. Let X = {⇠1, . . . ,⇠r}, where ⇠i = (⇠i,0 : . . . : ⇠i,n) 2 Pn. We denote by `⇠i
= ⇠0 x0 + . . .+ ⇠n xn 2 S1.

By apolarity lemma, we know that f =
P

r

i=1 ai`
d

⇠i

, for some coefficients ai 2 C. Now, for any y(↵) 2 Tk, we
have that

y(↵) � f =
rX

i=1

aiy
(↵) � `d

⇠i

=
rX

i=1

Å
ai

d!
(d � k)!

ã
⇠↵

i
`d�k

⇠i

=

=
X

�2Nn+1

|� |=d�k

rX

i=1

Å
ai

d!
�0! · · ·�n!

ã
⇠
↵+�
i

x� =
X

�2Nn+1

|� |=d�k

rX

i=1

ai⇠
↵+�
i

x� .

Therefore,

Cati( f ) =

Ç
rX

i=1

ai⇠
↵+�
i

å

|↵|=k

|� |=d�k

= vand�k(X)T · D · vank(X),
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where D is the diagonal matrix D = diag(a1, . . . , as).
Since d � k � ⇢, vand�k(X)T is injective. Therefore, we have that the kernel of Catk( f ), which is f

?
k

, is
equal to the kernel of vank(X), which is (IX)k. ⇤

Remark 2.13. In [IK06, Theorem 5.3(E-ii)], the authors proved a similar statement under a stronger as-
sumption, namely, by assuming that the polynomial admits a tight apolar set of points, i.e., a set of points
X apolar to f such that hAf

(i) = |X|, in some degree i.

Theorem 2.14. Let f 2 Sd and let X be a minimal set of points apolar to f . If d � 2⇢(X) + 1, then

IX = ( f ?⇢(X)+1). Moreover, X is the unique minimal set of points apolar to f .

Proof. By Lemma 2.12, for 0 k  ⇢(X)+1, we have (IX)k = f
?
k

. Since ⇢(X)+1= reg(IX) is greater than
the degree of a minimal set of generators of IX, ( f ?⇢(X)+1) = IX. ⇤

2.2. Essential number of variables. In [Car06], E. Carlini introduced the concept of essential number of

variables of a polynomial as the smallest number of variables needed to write it.

Definition 2.15. Given a homogeneous polynomial f 2 S, the essential number of variables of f is the
smallest number N such that there exists linear forms `1, . . . ,`N 2 S, such that f 2 C[`1, . . . ,`N ]. In this
case, we call the `i ’s the essential variables of f . In the literature, a form f 2 C[x0, . . . , xn] with n+ 1
essential variables is also called concise.

Lemma 2.16. Let f 2 Sd. Then:

(1) [Car06, Proposition 1] the number of essential variables is the rank of Cat1( f ), that is hAf
(1);

(2) [Lan12, Exercise 3.2.2.2] any minimal Waring decomposition of f involves only linear forms in the

essential variables.

For this reason, the first thing we do when we look for a Waring decomposition is to compute the first
catalecticant matrix and then we work modulo its kernel.

2.3. Waring loci and forms of high rank. In [CCO17], the second author together with E. Carlini and
M.V. Catalisano defined the Waring locus of a homogeneous polynomial.

Notation 2.17. Given a subset W of elements in a vector space, we denote by hW i their linear span. Simi-
larly, if we consider a subset of points in a projective space, it will denote their projective linear span.

Definition 2.18. Let f 2 Sd . Then, the Waring locus of f is the locus of linear forms that can appear in a
minimal Waring decomposition of f , i.e.,

W f :=
�
[`] 2 P(S1) | 9`2, . . . ,`r , r = rk( f ), s.t. f 2

⌦
`d ,`d

2, . . . ,`d

r

↵ 
;

analogously, by apolarity lemma,

W f :=
�

P 2 Pn | 9P2, . . . , Pr , r = rk( f ), s.t. IX ⇢ f
?, X = {P, P2, . . . , Pr}

 
.

The complement is called forbidden locus of f and denote F f := Pn \W f .

Remark 2.19. The Waring locus (hence, the forbidden locus) is not necessary open or closed, e.g., in the
case of planar cubic cusps it is given by the union of a point and a Zariski open subset of a line; see [CCO17,
Theorem 5.1]. We only know that it is constructible since it can be described as a linear projection of (the
open part of) the classical Variety of Sums of Powers (VSP) defined by K. Ranestad and F.-O. Schreyer [RS00],
i.e., VSP( f , rk( f )) :=

�
([`1], . . . , [`r]) 2 Hilbs(P(S1)) | f 2

⌦
`d

1, . . . ,`d

r

↵ 
.
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One of the motivation to study Waring loci is to look for a recursive way to construct Waring decomposi-
tions, namely by adding, step-by-step, one power at the time. In [CCO17], Waring loci of quadrics, binary
forms, monomials, ternary cubics have been computed.

Example 2.20 (Recursive decomposition of binary forms). In [CCO17, Theorem 3.5], the Waring locus of
binary forms has been computed. By Sylvester’s algorithm (see Example 2.6), if the rank r = rk( f ) is less
than the generic, i.e., r <

⌃
d+1

2

⌥
, or r =

⌃
d+1

2

⌥
and d is odd, then, we have a unique decomposition and,

in particular, the Waring locus is closed and consists of r distinct points. If r >
⌃

d+1
2

⌥
or r =

⌃
d+1

2

⌥
and

d is even, then, the Waring locus is dense. This means that, in the latter cases, for a general form ` 2 S1,
there exists a minimal Waring decomposition of f involving `d , up to some scalar. Actually, by [CCO17,
Proposition 3.8], we know that for a general choice of `1, . . . ,`s 2 S1, where s = r �

⌃
d+1

2

⌥
, there exist

scalars c1, . . . , cs such that f �
P

s

i=1 ci`
d

i
has rank r � s. At this point, if d is odd, then the decomposition

is uniquely determined, and if d is even, then we can chose another linear form at random.

Our first result is a generalization of the fact explained in the latter example in a more general setting.

Definition 2.21. For any projective variety X ⇢ PN , we say that X spans PN if every point of PN is in the
linear span of points in X . Given a point P 2 PN , the X -rank of P is the smallest number of points on X

whose linear span contains P. We denote it rkX (P). By convention, if P is not in any linear span of points
of X , rkX (P) = +1.

Remark 2.22. From this definition, the Waring rank is simply the X -rank inside the space of homogeneous
polynomials of P(Sd) with respect to the Veronese variety of d-th powers. Other relevant varieties that have
been considered in relation to tensor decompositions are Segre, Segre-Veronese varieties and Grassmannians;
see [Lan12, CGO14, BCC+18].

Definition 2.23. Given a point P 2 PN , we define the X -decomposition locus of P as

WX ,P = {Q 2 X | 9Q2 2 X , . . . ,Qr 2 X , r = rkX (P), P 2 hQ,Q1, . . . ,Qri} .
The X -forbidden locus is FX ,P = X \WX ,P .

Remark 2.24. If X is the Veronese variety of d-th powers of linear forms, the X -decomposition locus of
a poin [ f ] 2 P(Sd) corresponds to the image of the Waring locus of f via the d-th Veronese embedding.
Analogously for the forbidden locus.

In the following, we prove that the X -decomposition locus of a point with rank higher than the generic
is dense in X . The proof follows an idea used in [BHMT18] to study the loci of points with high rank.

Theorem 2.25. Let X ⇢ PN
be an irreducible projective variety which spans PN

and let g be the generic

X -rank. Let P 2 PN
with r = rkX (P). If r > g, then WX ,P is dense in X .

Proof. We proceed by induction on r. Assume that P has X -rank r > g + 1. Then it lies on a line hP1, P2i,
where P1 has X -rank g + 1 and P2 has X -rank r � g � 1. Now, if we assume that the claim holds for P1, we
have that, for a general point Q 2 X , we have a point Q

0 2 hP1,Qi of X -rank g. Now, let P
0 be the point of

intersection hP,Qi\hQ0, P2i. Since P
0 2 hQ0, P2i, then rkX (P 0) r�1, and, since P

0 2 hP,Qi and rkX (P) = r,
then rkX (P 0)� r � 1. Hence, P 2 hP 0,Qi with P

0 of X -rank r � 1 and Q 2 X , so that Q 2 WX ,P .
Hence, we just need to prove the claim in the case rkX (P) = g +1. Let ��

g
be the set of points of X -rank

equal to g. By definition of the generic rank, we know that ��
g

is a dense subset of PN . For any P 2 PN of
rank g + 1, let CP = hP, X i be the union of all lines passing through P and a point on X . As P is of X -rank
g + 1, it is on a line hP 0,Qi with P

0 2 ��
g

of X -rank g and Q 2 X . Thus CP \��g is non-empty. As X and
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CP are irreducible and ��
g

is dense in PN , the Zariski closure of CP \��g is CP and CP \��g is dense in CP .
Therefore, for a generic point Q 2 X , there is a point P

0 2 ��
g

with X -rank equal to g on the line hP,Qi. By
definition of WX ,P , it implies that Q 2 WX ,P . This concludes the proof. ⇤

Corollary 2.26. Let g be the generic rank of forms of degree d in n+ 1 variables. Let f 2 Sd with r = rk( f ).
If r > g, then for any general choice of `1, . . . ,`s 2 S1, with s = r � g, there exists a minimal Waring

decomposition involving the `i ’s.

Proof. It directly follows by applying r � g times Theorem 2.25 on Veronese varieties. ⇤

Remark 2.27. As appeared already in other examples, there is a big challenge when we want to use Waring
loci to construct minimal Waring decompositions: fixed a linear form ` in the Waring locus of f , then, by
definition, there exists a suitable coefficient c such that rk( f + c`d) = rk( f )� 1, but computing such scalar
c is not trivial. In the case of forms of rank one more than the generic, ` can be chosen generically, as
well as the scalar c. For higher ranks, Theorem 2.25 tells us that ` can be chosen generically, but it is not
necessarily true that to impose rk( f + c`d) = rk( f )�1 is an open condition on the line h f ,`di. An example
is given by the binary form f = x y

5 which has Waring rank equal to 6. In this case the general rank is equal
to 4. It is known that binary forms of rank equal to 5 are points of the 3rd secant variety of the rational
normal curve of P6, which is defined by the vanishing of the determinant of the 4 ⇥ 4 3-rd catalecticant
matrix; see [CS11]. In particular, this defines a closed condition on the line h f ,`6i, where ` is a general
linear form. In general, a better knowledge on high rank loci, see [BHMT18], is needed in order to solve
this challenge.

Remark 2.28. In the proof of Theorem 2.25, the fact that the point has rank strictly larger than the generic
rank is crucial. Indeed, if we consider forms of smaller rank, anything can happen. For example:

(1) The Waring locus can be open. Let f be a general ternary cubic of rank 4, then the apolar ideal is
generated by three conics which define a base-point-free linear system L of conics. Sets of four
points apolar to f are complete intersections of two conics in the apolar ideal, i.e., they correspond
to lines in P(L ). Conversely a line in P(L ) defines a set of 4 apolar points if the line is a pencil
of conics intersecting properly in 4 simple points. Let � be the discriminant locus of pencils of
conics, which have at least one singular intersection point. It is defined by a single equation called
the discriminant of two conics. Imposing the passage through a point P defines a pencil of conics
in P(L ). Thus P is in the Waring locus if and only if the corresponding pencil is not a point of the
discriminant locus. This is the complement of a closed condition (see for more details [CCO17,
Section 3]).

(2) The Waring locus can be closed and 0-dimensional. If g is the general rank for forms of degree d in
n+1 variables and g ·(n+1) =

�
n+d

n

�
, then the general form have finitely many minimal decompo-

sitions and the Waring locus is given by the set of points corresponding to these decompositions.
(3) The Waring locus can be neither closed nor open. Consider a ternary cuspidal cubic which has rank

4 and, up to a change of variables, it can be written in the form x
3
0 + x

2
1 x2. The Waring locus

is given by the union of the point (1 : 0 : 0) and the pinched line P1
x1,x2
\ (0 : 1) (see [CCO17,

Section 3]).

In the following lemma, we generalize the latter case to a more general setting.

Lemma 2.29. Let f = x
d

0 + g(x1, . . . , xn) 2 Sd of rank n+ 2, with n � 2, and degree d � 4. Assume that

g
?
2 = [(y0, G1, . . . , GN )]2, where the Gi’s are quadrics and N =

�
n

2

�
� 1. Then, W f = (1 : 0 : . . . : 0)[Wg . In

other words, any minimal Waring decomposition of f is given by x
d

0 plus a minimal decomposition of g.
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Proof. By [BBKT15, Lemma 1.12], we know that f
?
i
= ((yd

0 )
?)i \ g

?
i

, for i  d � 1. In particular, since
d � 4, we get f

?
2 = (y0 y1, . . . , y0 yn, G1, . . . , GN ). Hence, we have that

hAf
(2) =

Å
n+ 2

2

ã
� n�

ÅÅ
n

2

ã
� 1

ã
= n+ 2.

Therefore, since any minimal set X of points apolar to f has rank n + 2, we obtain (IX)2 = f
?

2 . Hence,
X is contained in the variety defined by ( f ?2 ) which is (1 : 0 : . . . : 0) [ Pn�1

x1,...,xn

. Hence, any minimal
decomposition is of the type x

d

0 +
P

r

i=1 `
d

i
(x1, . . . , xn), where r = rk(g). By restricting on {x0 = 0}, we get

a minimal decomposition of g and the claim follows. ⇤

3. DECOMPOSITIONS OF LOW RANK POLYNOMIALS

In the previous section, we noticed that if the degree of the polynomial is sufficiently large with respect
to the regularity of the points of a minimal decomposition, then there is a unique Waring decomposition
which can be found directly from the generators of the apolar ideal (Theorem 2.14). Also, we noticed that
if the rank is sufficiently large, then we can choose some elements of a minimal Waring decomposition
generically and reduce the rank to be equal to the general rank (Theorem 2.25).

In this section, we see how to use these tools to stratify the set of forms of given rank with respect to the
possible configurations of minimal apolar sets of points and, for each stratum, how to construct minimal
Waring decompositions of polynomials of small rank, for any number of variables and any degree.

Remark 3.1. Any quadric q(x) can be represented by a symmetric matrix Q, i.e., q(x) = xQxT . Then, it is
well known that the Waring rank of q coincides with the rank of Q and a minimal Waring decomposition
is obtained by finding a diagonal form of Q. Therefore, we will always assume d � 3.

We first recall an easy lemma.

Lemma 3.2. Let f 2 C[x0, . . . , xn] be a concise form of degree d. Then, rk( f ) = n+1 if and only if `( f ) = n+1
and f

?
2 defines a set of reduced points. In this case, there is a unique minimal apolar set of points.

Proof. If f has n+ 1 essential variables and the rank is equal to n+ 1, then, up to a change of coordinate,
we can write it as f = x

d

0 + . . .+ x
d

n
. In this case, we know that hAf

: (1, n+ 1, n+ 1, · · · , n+ 1, 1). Hence,
any minimal set of points is such that (IX)2 = ( f ?2 ) =

⌦
yi y j | i, j = 0, . . . , n

↵
. These quadrics define the set

of n+ 1 reduced coordinate points; therefore, also uniqueness follows.
Viceversa, if IX = ( f ?2 ) is a set of reduced points and `( f ) = n + 1, since f is concise, we have that

hS/IX : (1, n+1, n+1, n+1, · · · ). Therefore, as recalled in Remark 2.7, such an Hilbert function tells us that
|X|= n+ 1 and, by apolarity lemma, we have rk( f ) = n+ 1. ⇤

Now, we can start our analysis of minimal decompositions of low rank polynomials. Since the sets of
configurations of one and two points are trivial, we start from the rank 3 case.

3.1. Polynomials of rank 3. We only have two possible configurations of points:

(3a) three collinear points;
(3b) a non-collinear triple of points.

Proposition 3.3. Let f 2 Sd be a form of rank 3 and X be a minimal apolar set of points. Then:

(3a) f has two essential variables and a minimal decomposition is computed by Sylvester’s algorithm; in

particular, f
? = (L1, . . . , Ln�1, G1, G2), where di := deg(Gi) and d1  d2, and

(i) for d = 3,4, IX = (L1, . . . , Ln�1, HG1 +↵G2), for a general choice of H 2 Td2�d1
and ↵ 2 C;
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(ii) if d � 5, there is a unique minimal apolar set of points given by IX = (L1, . . . , Ln�1, G1).
(3b) f has three essential variables and there is a unique minimal apolar set of points given by IX = ( f ?2 ).

Proof. Case (3a) follows from Sylvester algorithm (Example 2.6) and case (3b) from Lemma 3.2. ⇤

Remark 3.4. We observe that for given a polynomial of rank 3, any minimal apolar set of points have
the same configuration. In this case, our stratification of the set of rank 3 polynomials is determined by
the first catalecticant matrix. It is immediate to see that Question 2.11 has a positive answer for rank 3
polynomials. In particular, if f is of type (3a), then any minimal apolar set of points have Hilbert func-
tion (1,2, 3,3, 3, · · · ); if f is of type (3b), then any minimal apolar set of points have Hilbert function
(1,3, 3,3, 3, · · · ).

3.2. Polynomials of rank 4. The possible configurations of 4 points in projective spaces are in Figure 1.

(4a) Collinear (4b) Coplanar, with 3 collinear. (4c) General coplanar. (4d) General points.

FIGURE 1. Configurations of 4 points in projective space.

Theorem 3.5. Let f 2 Sd be a form of rank 4 and X be a minimal apolar set of points. Then:

(4a) f has two essential variables and d � 4. A minimal decomposition is computed by Sylvester’s algo-

rithm; in particular, f
? = (L1, . . . , Ln�1, G1, G2), where di := deg(Gi) and d1  d2, and

(i) for d = 4, 5,6, then d2 = 4, and IX = (L1, . . . , Ln�1, HG1 +↵G2), for general H 2 T6�d ,↵ 2 C;

(ii) for d � 7, then d1 = 4 and the unique minimal apolar set of points is given by IX = (L1, . . . , Ln�1, G1).
(4b) f has three essential variables and X is of type (4b), then:

(i) for d = 3, ( f ?2 ) defines a 0-dimensional scheme P + D, where P is a reduced point and D is con-

nected 0-dimensional scheme of length 2 whose linear span is a line LD; moreover, any minimal

apolar set is of the type P [X0, with X0 ⇢ LD;

(ii) for d = 4, then hf (2) = 4 and ( f ?2 ) defines a disjoint union P [ L, where P is a reduced point

and L is a line not passing through P; moreover, any minimal apolar set is of the type P [ X0,
where X0 ⇢ L.

(iii) for d � 5, then hf (2) = 4 and ( f ?2 ) defines a disjoint union P[ L, where P is a reduced point and

L is a line not passing through P; moreover, the unique minimal apolar set is defined by ( f ?3 ).
(4c) f has three essential variables and X is of type (4c), then:

(i) for d = 3, Z( f ?2 ) = ; and W f is dense in the plane of essential variables;

(ii) if d � 4, there is a unique minimal apolar set of points given by IX = ( f ?2 ).
(4d) f has four essential variables and there is a unique minimal apolar set of points given by IX = ( f ?2 ).

Proof. Case (4a). It follows from Sylvester algorithm, Example 2.6.
Case (4b). We may assume that f = x

d

0 + g(x1, x2), where g is a binary form of rank 3. Then, since
d � 3, by [BBKT15, Lemma 1.12], we have that f

?
2 = (y1, y2)2 \ g

?
2 . If d = 3, the claim follows from

[CCO17, Section 3]. If d = 4, since g is a binary quartic of rank 3, we have g
? = (y0, G1, G2), where the
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Gi ’s are cubics, and, therefore, f
?

2 = (y0 y1, y0 y2) and hf (2) = 4. Observe that, any set X of 4 points,
non-collinear in P2, has ⇢(X) = 2. Hence, by Lemma 2.12, we have that (IX)2 = f

?
2 and the claim follows.

In the case d � 5, the claim follows from Theorem 2.14.
Case (4c). If d = 3, it follows from [CCO17, Section 3]. If d = 4, by Lemma 2.12, for any minimal set

of points X apolar to f , we have that f
?

2 = (IX)2. Since by assumption there exists a minimal set of points
X which is a complete intersection of two conics, ( f ?)2 defines the unique minimal apolar set of points of
f . If d � 5, then the claim follows from Theorem 2.14.

Case (4d). It follows from Lemma 3.2. ⇤

Remark 3.6. Also in this case, given a homogeneous polynomials of rank 4, any minimal apolar set of points
falls in the same configuration. Hence, it is immediate to see that Question 2.11 has a positive answer for
polynomials of rank 4. In particular, any minimal apolar set of points of a given rank 4 polynomial have
one of the following Hilbert functions:

(4a) : (1,2, 3,4, 4,4, · · · ); (4b), (4c) : (1,3, 4,4, 4,4, · · · ); (4d) : (1,4, 4,4, 4,4, · · · ).
Note that, as explained in [Eis05, Section 3B.2], in order to distinguish the configurations (4b) and (4c),
we should look at finer numerical invariants related to their resolution such as their graded Betti numbers.
In particular, we have that the Betti tables in these cases have the following forms:

(4b) :
1 · ·
· 2 1
· 1 1

(4c) :
1 · ·
· 2 ·
· · 1

However, in this case, the stratification is not determined only by the first catalecticant matrix. Indeed, in
order to distinguish the cases (4b) and (4c), we need to look at the scheme defined by f

?
2 .

Remark 3.7. As we mentioned, for each stratum of our classification from Theorem 3.5, we want to describe
a procedure to determine a minimal Waring decomposition step-by-step. The only cases not explained in
Theorem 3.5 are (4b-i), (4b-ii) and (4c-i).

In the cases (4b-i) and (4b-ii), i.e., for d = 3,4, we have seen that the scheme defined by f
?

2 is the union
of a reduced point P and a non-reduced part (for d = 3) or a line (for d = 4). In both cases, we consider
the linear form `P whose coefficients are the coordinates of P and we find the suitable coefficient c such
that fc = f � c`d

P
has two essential variables, i.e., such that the first catalecticant matrix of fc has rank 2.

Then, we find a minimal decomposition of fc by using Sylvester’s algorithm.
In the case (4c-i), for d = 3, we can chose a random point P in P2. Then, we consider the linear form

`P and we find a suitable coefficient c such that f � c`3
P

has rank 3. In order to do so, we need to use the
equations for the (the closure of) the space of rank 3 polynomials. Assuming that we reduced the problem
to the three essential variables, that is a hypersurface given by the so-called Aronhold invariant [DK93,
p. 250], which has a nice construction as a Pfaffian; see [Ott09]. We refer to [LO13] for an exposition of
known equations of secant varieties of Veronese varieties.

3.3. Polynomials of rank 5. Possible configurations of 5 points in projective space are in Figure 2.
Since we have several cases to consider, we start with some preliminary lemma. In the first one, we

study the case (5b) in more generality, by considering a set of r points P2 with r � 1 collinear points.

Remark 3.8. We want to recall that if f = x
d

0 + g(x1, . . . , xn), the fact that W f = (1 : 0 : . . . : 0) [ Wg ,
where Wg is a subspace of in the linear space {y0 = 0}, is equivalent to say that any minimal Waring
decomposition of f is given by x

d

0 plus a minimal Waring decomposition of g. One implication is trivial,
the other is proved in [CCO17, Lemma 4.3].
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(5a) Collinear (5b) Coplanar, with 4 collinear. (5c) Coplanar, on a unique conic (5d) 4 coplanar.

(5e) 5 general in P3. (5f) 5 general in P4.

FIGURE 2. Configurations of 5 points in projective space.

Lemma 3.9. Let f = x
d

0 + g(x1, x2) 2 Sd of rank � 4. Then, rk( f ) = rk(g) + 1 and W f = (1 : 0 : 0) [ Wg .

In other words, any minimal Waring decomposition of f is given by the sum of x
d

0 and a minimal Waring

decomposition of g, i.e., it is x
d

0 +
P

r

i=1 `
d

i
(x1, x2), where r = rk(g).

Proof. The fact that rk( f ) = rk(g) + 1 is [CCC15, Proposition 3.1].
Since binary forms of degree d have rank at most d, we have that r = rk(g)  d. Now, by [BBKT15,

Lemma 1.12], we have f
?
i
= (y1, y2)i \ g

?
i

, for i  d � 1. If d = r, we have that g is a binary form of
maximal rank r which, up to a change of variables, can be written in the form x1 x

r�1
2 . Hence, the claim

follows from [CCO17, Theorem 5.1]. If d � r + 1, then g
? = (y0, G1, G2) where G1 has degree r and G2

has degree d +2� r. Since r � 3 and d � r +1, we have that the Gi ’s have degree at least 3. In particular,
f
?

2 = (y0 y1, y0 y2). Now, observe that any set of r +1 points in P2 with a subset of r collinear points, have
⇢(X) r �1. Hence, by Lemma 2.12, for any minimal set of points X apolar to f , we have (IX)i = f

?
i

, for
i  d �⇢(X). In particular, since d �⇢(X)� d � r + 1� 2, we have (IX)2 = f

?
2 = (y0 y1, y0 y2). ⇤

In the next lemma, we consider the case (5c) in the case of ternary quartics.

Lemma 3.10. Assume that f is a quartic with three essential variables with rk( f ) = 5 and such that the

apolar ideal of f has a unique generator g of degree 2 (up to a scalar), i.e., f
?

2 = hgi. Let C = Z(g) be the

planar conic defined by the vanishing of g. Then:

(1) if C is irreducible, then W f is dense in the conic C;

(2) if C is reducible, say C = L1 [ L2 with Q = L1 \ L2 = Z(`1)\ Z(`2), then:

(a) if Q is not a forbidden point for f , then W f is dense in C;

(b) if Q is forbidden point for f , then, for either i = 1 or i = 2, W f \ Z(`i) is dense in Z(`i).

Proof. For any minimal set of points X apolar to f , since by assumption we have that hAf
(2) = 5, we have

that (IX)2 = f
?

2 = hgi. Hence, we have that W f ⇢ C .
IfX = {⇠1, . . . ,⇠5}, let ui be a polynomial vanishing at all the points ofX except for ⇠i . Then, {u1, . . . , u5, g}

is a basis for T2 as a vector space, and, with respect to the such basis, we have that

Cat2( f ) =


I5 0
⇤ 0

�
.
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For any point P 2 C , the catalecticant matrix Cat2(`d

P
), with respect to the same basis as above, has the last

column equal to 0. We write

Cat2(`4P) =


Mf 0
⇤ 0

�
.

Now, since Mf is a rank 1 symmetric matrix, there exists a (unique) non-zero eigenvalue �. In particular,
for such a �, we have that Cat2( f + �`d

P
) has rank 4. Hence, we have a second conic C

0 = Z(g 0) such
that ( f + �`d

P
)?2 = hg, g

0i. Moreover, since the coefficients of g
0 are rational polynomial functions in the

coordinates of P, there exists a Zariski open subsetU in C , for which the conics C and C
0meet transversally.

We need to show when (and where) this open set is non-empty.

(1) If C is irreducible, then U is non-empty. We know that there exists at least one minimal apolar set of
points X for f . This is a set of 5 points lying on the irreducible conic C . In particular, if we assume P to be
one of these points, we have that X \ {P} is a complete intersection of two conics. In particular, P 2 U .

(2-a) Let C = L1 [ L2, Q = L1 \ L2 = Z(`1)\ Z(`2) and Q is not a forbidden point for f . By assumption,
there exists a minimal apolar set of points X for f which includes the point Q. By using this set of points,
we can write f = f1 + f2 + `4Q, where f

0
1 = f1 + `4Q is a rank 3 quartic in the two essential variables of the

line Z(`1). By [CCO17, Theorem 3.5], we know that W f
0

1
is dense in Z(`1). Since W f

0
1
⇢W f , we conclude

that W f is dense in Z(`1). By proceeding in the same way with f
0

2 = f2 + `4Q, we conclude.

(2-b) Let C = L1[ L2, Q = L1\ L2 = Z(`1)\ Z(`2) and Q is a forbidden point for f . By assumption, there
exists a minimal apolar set of points X which, since C is reducible, splits as the union of three point on a
line, say Z(`1), and two points on the other. Following a similar idea as above, we can write f = f1 + f2

where f1 is a quartic in the two essential variables of the line Z(`1) of rank 3. By [CCO17, Theorem 3.5],
we know that W f1

is dense in Z(`1) and this concludes the proof. ⇤

Now, we consider the case of cubics and quartics with four essential variables.

Lemma 3.11. Let f be a cubic of rank 5 with four essential variables {x0, . . . , x3} and let X be a minimal set

of points apolar to f . Then:

(1) if all but one point of X are coplanar and no three of them collinear, then there exists a unique ternary

cubic g and c 6= 0 such that f = c x
3
0 + g(x1, x2, x3), rk(g) = rk( f )� 1, and any minimal Waring

decomposition of f is obtained from a minimal decomposition of g, i.e., W f = (1 : 0 : 0 : 0)[Wg ;

(2) if all but two points of X are collinear then f = x
3
0 + x

3
1 + g(x2, x3), where g is a binary cubic of

rank 3, and any minimal Waring decomposition of f is obtained from a minimal decomposition of g,

i.e., W f = (1 : 0 : 0 : 0)[ (0 : 1 : 0 : 0)[Wg ;

(3) otherwise, f has a unique decomposition.

Proof. If X has not a subset of four coplanar points, point (3) follows from the classical Sylvester’s Penta-
hedral Theorem. We refer to [Dol12, Theorem 9.4.1] for a modern reference.

If all but one point of X are coplanar points, then we can write f = x
3
0+g(x1, x2, x3)where g is a ternary

cubic with 4 rk(g) 5, being 5 the maximal rank. Then, f
?

2 = (y0 y1, y0 y2, y0 y3)2+(g?2 \C[y1, y2, y3])2.
As rk(g) � 4, we have Z(g?2 ) = ; and Z( f ?2 ) = {P}[ H where: P = (1 : 0 : 0 : 0) 2 X is one of the apolar
point and H is the plane defined by the equation x0 = 0 containing the other apolar points. By Sylvester’s
Pentahedral Theorem ([Dol12, Theorem 9.4.1]) any minimal apolar set of points contains four coplanar
points. Then the non-coplanar point and the plane containing the other points are uniquely determined by
f
?

2 . Let ` be the linear form corresponding to the non-coplanar point P (or the isolated point of the zero
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locus of f
?

2 ). In a suitable basis of T1, we can write

Cat1( f � c`3) = Cat1( f )� cCat1(`3) =


c � c 0
0 Cat1( f 0)

�
.

Therefore, there exists a unique value c = c for which Cat1( f � c`3) has rank 3 and a unique ternary cubic
g such that f = c x

3
0 + g(x1, x2, x3). Consequently, W f = (1 : 0 : 0 : 0)[W f 0 . This proves (1).

If X has three collinear points, then we can write f = x
3
0 + x

3
1 + g(x2, x3) where g is a binary cubic of

rank 3. In this case, we have that the zero locus of f
?

2 consists of two points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0).
Similarly as above, we conclude that the points and the line where the three collinear points lie is uniquely
determined by f

?
2 . This proves (2). ⇤

Lemma 3.12. Let f be a quartic form with four essential variables {x0, . . . , x3} and of rank 5. Let X be a

minimal set of points apolar to f .

(1) If X contains four coplanar points, then we may assume that f = x
4
0 + g(x1, x2, x3), where g is a

ternary quartic of rank 4 and we have that W f = (1 : 0 : 0 : 0)[Wg ;

(2) otherwise, f has a unique decomposition given by IX = ( f ?2 ).

Proof. If X does not contain 4 coplanar points, then X has regularity ⇢(X) = 2 and is defined by 5 quadrics.
Then by Lemma 2.12, (IX)2 = f

?
2 and f has a unique decomposition. This proves (2).

If X contains four coplanar points, we may assume f = x
4
0 + g(x1, x2, x3), where g is a ternary quartic

of rank 4. Therefore, we know f
?

2 = (y1, y2, y3)2 \ g
?
2 = (y0 y1, y0 y2, y0 y3)2 + (g?2 \ C[y1, y2, y3]). By

Theorem 3.5(4b-ii & 4c-ii), hg(2) = 4, (g?2 \C[y1, y2, y3]) is generated by two elements G1, G2 defining
either the 4 points apolar to g or the union of a point P apolar to g and a line L containing the 3 other
points apolar to g. This shows that (1 : 0 : 0 : 0) is a point of any minimal set of points apolar to f and
that W f = (1 : 0 : 0 : 0)[Wg , which proves (1). ⇤

Now, we can give the complete description of rank 5 polynomials.

Theorem 3.13. Let f 2 Sd be a form of rank 5. Then:

(5a) f has two essential variables and then d � 5. A minimal decomposition is computed by Sylvester’s

algorithm; in particular, f
? = (L1, . . . , Ln�1, G1, G2), where di := deg(Gi) and d1  d2, and

(i) for d = 5, . . . , 8, then d2 = 5, and IX = (L1, . . . , Ln�1, HG1+↵G2), for a general H 2 T8�d ,↵ 2 C;

(ii) for d � 9, then d1 = 5 and the is a unique minimal apolar set of points given by IX =
(L1, . . . , Ln�1, G1).

(5b) f has three essential variables and X is of type (5b), then, d � 4 and:

(i) for d = 4,5, 6, any minimal apolar set is of the type P [X0, where X0 is a set of four collinear

points;

(ii) for d � 7, the unique minimal apolar set of four points is defined by ( f ?4 ).
(5c) f has three essential variables and X is of type (5c), then:

(i) for d = 3, then the Waring locus is dense in PS1;

(ii) for d = 4, if f
?

2 = hCi, then we have:

(a) if C is irreducible, then W f is dense in the conic Z(C);
(b) if C is reducible, say C = `1`2, let Q = Z(`1)\ Z(`2); then:

(b1) if Q is not a forbidden point for f , then W f is dense in Z(C);
(b2) otherwise, for either i = 1 or i = 2, W f \ Z(`i) is dense in Z(`i).

(iii) for d � 5, then we have a unique minimal apolar set of points given by ( f ?3 ).
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(5d) f has four essential variables and X is of type (5d), then it can be written as f = x
d

0 + g(x1, x2, x3),
where g is a ternary form of rank four; then:

(i) for d = 3, then W f = (1 : 0 : 0 : 0)[Wg ;

(ii) for d � 4, there is unique minimal apolar set given by IX = ( f ?2 ).
(5e) f has four essential variables and X is of type (5e), then:

(i) if d = 3, it is Sylvester Pentahedral Theorem and we have a unique decomposition;

(ii) if d � 4, then there is a unique decomposition given by IX = ( f ?2 ).
(5f) f has five essential variables, there is a unique minimal apolar set given by IX = ( f ?2 ).

Proof. Case (5a). It follows from Sylvester algorithm, Example 2.6.
Case (5b). Up to a change of coordinates, we may assume f = x

d

0 + g(x1, x2), where g is a binary form
of rank 4 then, since binary forms have maximal rank equal to the degree, it has to be d � 4. The claim
follows from Lemma 3.9, in the special case r = 4, and by Theorem 3.5(4a).

Case (5c). If d = 3, it follows from [CCO17, Section 3.4]. If d = 4, it follows from Lemma 3.10. Since 5
general points in P2 have regularity 2, it follows from Theorem 2.14 in the cases with d � 5.

Case (5d). It follows from Lemma 3.11 and Lemma 3.12.
Case (5e). If d = 3, this is the classical Sylvester Penthaedral Theorem [OO13, Theorem 3.9]. Since the

regularity of 5 points in P3 is equal to 2, by Lemma 2.12, if d � 4, we have that (IX)2 = f
?

2 . Since five
general points in P3 are generated by quadrics, the claim follows.

Case (5f). It follows from Lemma 3.2. ⇤
Remark 3.14. Similarly as in the previous cases, this result gives us a stratification of polynomials of rank 5.
From Figure 2, the families (5c) and (5d) are subdivided in two cases. In (5c), these two subfamilies are
not distinguished from the Betti number since they have a set of 5 general points or a set of 5 points with 3,
and only 3, of them collinear, have the same resolution. Also, a ternary cubic of rank 5, i.e., x

2
0 x1 + x

2
1 x2,

up to change of coordinates, has apolar sets of 5 points of both types.
Instead, in (5d), the two subfamilies should be distinguished by looking at Betti numbers. In this case,

the rank 5 form can be written as f = x
d

0 + g(x1, x2, x3) and every minimal Waring decomposition of f

corresponds to a minimal Waring decomposition of g. From Theorem 3.5, we know that we have two
distinguished cases depending whether g is a cuspidal form (and all minimal sets of four points apolar to
g have three of them collinear) or is a general form (and all minimal sets of four points apolar to g are a
complete intersection). In any case, we get a positive answer to Question 2.11 also for rank 5 polynomials.

4. LOW RANK SYMMETRIC TENSOR DECOMPOSITION ALGORITHM

In this section, we summarize our results. We describe our stratification of low rank homogeneous
polynomials and we give a procedure, which determines the rank of the tensor when it is 5 and computes
its decomposition. As we have already seen, the stratification depends on the Hilbert function of Af = T/ f

?

given by the (symmetric) sequence (hAf
(0), hAf

(1), . . . , hAf
(d)) and the scheme defined by f

?
i

, for some i.

Notation 4.1. We write ⇤ instead of a finite sequence of values of length at least 1 and by k instead of a
finite sequence of constant terms equal to k of length at least 1.

We consider here symmetric tensors of degree d � 3, since the decomposition of quadrics can be done
by rank decomposition of symmetric matrices. We implement the procedure described in the following
theorem in the algebra software Macaulay2 [GS02]; see Appendix A.

Theorem 4.2 (and low rank decomposition algorithm). Let f be a symmetric tensor of degree d � 3.

Then, either one the following points is satisfied or rk( f )> 5:
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HILBERT

SEQUENCE

EXTRA

CONDITION
ALGORITHM TO FIND A MINIMAL APOLAR SET

1. (1) rk( f ) = 1 and ( f ?1 ) defines the point apolar to f

2. [1, 2,⇤, 2, 1] f has two essential variables and Sylvester algorithm is applied:

(i) if f
?
l( f ) defines a set of l( f ) reduced points, then rk( f ) = l( f );

(ii) otherwise, rk( f ) = d + 2� l( f ) and a minimal apolar set

is given by the principal ideal generated by

a generic form g 2 f
?
d+2�l( f )

3. [1, 3, 3,1] Z( f ?2 ) = ; a generic pair of conics q1, q2 of f
?

2 defines 4 points and rk( f ) = 4

4. [1, 3, 3,1] Z( f ?2 ) = P [ D,

P is simple point

D connected, 0-dim

deg(D) = 2

rk( f ) = 4 and P is a point of any minimal apolar set; then, we find

the scalar c such that f
0 = f � c`3

P
has two essential variables

and we apply Sylvester algorithm to f
0

as in (2)

5. [1, 3, 3,1] Z( f ?2 ) = D rk( f ) = 5 and, for a generic P and a generic c 6= 0 such that

D connected, 0-dim f
0 = f + c`3

P
is a ternary cubic of rank 4 and we apply (4) to f

0

deg(D) = 3

6. [1, 3,3, 3,1] Z( f ?2 ) = {P1, P2, P3}
Pi ’s are simple points

rk( f ) = 3 and the unique minimal apolar set is Z( f ?2 )

7. [1, 3,⇤, 3, 1] Z( f ?2 ) = P [ L

P is simple point

L is line, P 62 L

P is a point of any minimal apolar set; then, we find

the scalar c such that f
0 = f � c`d

P
has two essential variables

and we apply Sylvester algorithm to f
0

as in (2)

8. [1, 3, 4,3, 1] Z( f ?2 ) = {P1, . . . , P4} rk( f ) = 4 and the unique minimal apolar set is Z( f ?2 )
Pi ’s are simple points

9. [1, 3, 5,3, 1] Z( f ?2 ) = C let P be a generic point on C and c be a scalar such that

C is irreducible quadric f
0 = f � c`4

P
has hf 0(2) = 4.

(i) if Z(( f 0)?2 ) = {P1, . . . , P4} is a set of 4 reduced points, then,

rk( f ) = 5, and a minimal set apolar to f is {P, P1, . . . , P4};
(ii) otherwise, rk( f )> 5

10. [1, 3,5, 3,1] Z( f ?2 ) = L1 [ L2 let Pi be a generic point on Li, for i = 1, 2, respectively, and

Li ’are distinct lines ci be a scalar such that fi = f � ci`
4
Pi

has hfi
(2) = 4, for i = 1, 2.

(i) if Z(( f ?
i
)2) = {P1, . . . , P4}, for either i = 1 or i = 2, then,

rk( f ) = 5, and a minimal apolar set of f is {P, P1, . . . , P4};
(ii) otherwise, rk( f )> 5

11. [1,3, 5,5,3, 1] Z( f ?3 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ?3 )
Pi ’s are reduced points

12. [1, 4,4, 1] Z( f ?2 ) = P [ H P is a point of any minimal apolar set; then, we find

P is a reduced point the scalar c such that f
0 = f � c`3

P
has three essential variables

H is a plane, P 62 H and we apply (3) or (4) to f
0

13. [1, 4,5, 4,1] Z( f ?2 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ?2 )



ON MINIMAL DECOMPOSITIONS OF LOW RANK SYMMETRIC TENSORS 17

14. [1, 5,5, 5,1] Z( f ?2 ) = {P1, . . . , P5} rk( f ) = 5 and the unique minimal apolar set is Z( f ?2 )

Proof. By the analysis of the previous sections, a symmetric tensor of rank  5 satisfies one of the listed
cases. Let us prove conversely that if one of these cases is satisfied then the rank is determined.

Case 1. f has one essential variable and thus rk( f ) = 1.

Case 2. f has two essential variables and can be decomposed by Sylvester algorithm; see Example 2.6.

Case 3. 4. and 5. We have rk( f ) � hf (1) = 3. If rk( f ) = 3, then by Proposition 3.3, f
?

2 should define
3 reduced points, which is not the case. Hence, since the maximal rank of ternary cubics is 5, we have
4 rk( f ) 5. Considering the classification of ternary cubics with respect to their rank (see e.g. [LT10]),
it is possible to check that we have three possibilities for Z( f ?2 ).

If Z( f ?2 ) = ;, we know that the Waring locus is dense in the projective plane. If rk( f ) = 4, for a generic
point P, there exists P1, P2, P3 such that X = {P, P1, P2, P3} is a minimal set of points apolar to f . Moreover,
they are of type (4c). Then, (IX)2 ⇢ f

?
2 is spanned by two quadrics q1, q2 2 f

?
2 . Thus (IX)2 is the linear

space of quadrics in f
?

2 containing P. Conversely, a generic subset of f
?

2 of dimension 2 is the space of
quadrics in f

?
2 containing a generic point P. It coincides with (IX)2 for a minimal set of points X apolar to

f . This proves the point (3).
If Z( f ?2 ) = P [ D, where P is a simple point and D is a degree 2 connected 0-dimensional scheme. As f

has three essential variables, we can assume that f is a ternary form in the variables x0, x1, x2. By a change
of coordinates, P = (1 : 0 : 0) and D lies on the line y0 = 0, e.g., D is defined by the ideal (y0, y

2
1 ). Then,

f = x
3
0 + f

0(x1, x2). Since binary cubics have rank at most 3, we have rk( f ) = 4. By Theorem 3.5(4b-i), P

is in any minimal set apolar to f . The other three (collinear) points to get a minimal set of points apolar
to f are found by applying (2) to the form f

0 = f � c`3
P
, where c is a suitable scalar such that f

0 has two
essential variables, i.e., such that rk(Cat1( f )� cCat1(`3P)) = 2. This proves the point (4).

If Z( f ?2 ) = D, where D is a degree 3 connected 0-dimensional scheme lying on a plane conic. Since the
rank 4 cases have Z( f ?2 ) which is either empty or the union of a simple point and a degree 2 scheme, we
have that rk( f ) = 5. Then, by Theorem 2.25, for any generic point P and any non-zero c 2 C, f

0 = f + c`3
P

is of rank 4 and the previous decomposition applies. This proves the point (5).

Cases 6., 8., 11., 13. and 14. They are the cases where the catalecticant method works (see Section 2.1).

Case 7. As f has 3 essential variables, we can assume that it is a ternary form in the variables x0, x1, x2.
By a change of coordinates, we can also assume that f

?
2 defines P = (1 : 0 : 0) and the line L of equation

y0 = 0. Then, f can be written (up to scalar) as f = x
d

0 + f
0(x1, x2) and f

?
2 � hy0 y1, y0 y2i.

If rk( f ) = 3, then f
?

2 should define the apolar points, which is not the case. Hence, rk( f ) � 4 and we
deduce the result from Lemma 3.9. In particular, P is in any minimal set of points apolar to f . The other
(collinear) points to get a minimal set of points apolar to f are found by applying (2) to the form f

0 = f �
c`3

P
, where c is a scalar such that f

0 has two essential variables, i.e., such that rk(Cat1( f )� cCat1(`3P)) = 2.

Cases 9. and 10. We have rk( f )� hf (2) = 5. If rk( f ) = 5, we deduce the decomposition of f by applying
Lemma 3.10. In particular, choosing one of the intersections between a generic line and the irreducible
conic Q, in the case (9) or the reducible conic L1 L2, in the case (10), we can find a scalar c such that
f
0 = f � c`4

P
has rank 4, i.e., such that rk(Cat2( f )� cCat2(`4P)) = 4. Then, we apply (7) to f

0.

Case 12. As f has 4 essential variables, we can assume it is a quaternary cubic in the variables x0, x1, x2, x3.
By a change of coordinates, we can assume that the zero locus of f

?
2 is P = (1 : 0 : 0 : 0) and the

plane H defined by y0 = 0. Then, f can be written (up to a scalar) as f = x
d

0 + f
0(x1, x2, x3) and
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f
?

2 � hy0 y1, y0 y2, y0 y3i. Since ternary cubics have rank at most 5, we have 4 = hf (1)  rk( f )  6. If
rk( f ) = 4, by Theorem 3.5(5d), f

?
2 should define 4 reduced points, which is not the case. Thus rk( f )� 5.

If rk( f ) = 5, by Lemma 3.11, P is a point of any minimal apolar set of points of X , rk( f ) = rk( f 0) + 1
and the other points form a minimal set of points apolar to f

0.
If rk( f ) = 6, then rk( f 0) = 5, P is one of the apolar points to f and the other are the apolar points to f

0.
These points can be computed by finding the scalar c such that f

0 = f � c`d

P
has 3 essential variables,

i.e., by imposing rank (Cat1( f )� c Cat1(`d

P
)) = 3, and by applying (3) and (4) to the cubic f

0. ⇤

REFERENCES

[AH95] James Alexander and André Hirschowitz. Polynomial interpolation in several variables. Journal of Algebraic Geometry,
4(2):201–222, 1995.
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APPENDIX A. A Macaulay2 PACKAGE

The procedure explained in the previous section can be implemented by using computational algebra
or computer algebra softwares. We chose to use the algebra software Macaulay2 [GS02]. The package
ApolarLowRank.m2 here described and a file with the test cases are available on the personal webpage of
the second author or in the ancillary files of the arXiv and HAL versions of the article. After downloading
it, it can be loaded as

i1 : loadPackage "ApolarLowRank"

o1 = ApolarLowRank

o1 : Package

For more details, we refer to the documentation

i2 : viewHelp ApolarLowRank

In the following, we explain some of the main functions and we show how it works in a few examples.

1.1. Essential variables. As we have explained in Section 2.2, given a homogeneous polynomial f 2 S, the
essential number of variables of f is the smallest number N such that there exists linear forms `1, . . . ,`N 2 S

such that f 2 C[`1, . . . ,`N ]. In our packege, we have implemented the functions:

• essVar, which returns the number of variables of f and a list of linear forms generating f
?

1 ;

i3 : S = QQ[x,y,z,t];

i4 : F = (x+y)^5 + (z-t)^5;

i5 : essVar(F)

o5 = (2, {- x + y, z + t})

o5 : Sequence

• simplifyPoly, which returns a simplified version of the polynomial in a set of essential variables
and a ring map describing the linear change of coordinates needed.

i6 : simplifyPoly(symbol Y, F)

5 5

o6 = (Y - Y , map(S,QQ[Y , Y ],{x + y, - z + t}))

0 1 0 1

o6 : Sequence

Note that as input in the function simplifyPoly it is required also a Symbol so that the user can chose
a name for the indexed variables for the output.

The output of our main functions will be a set of points apolar to a given homogeneous polynomial f :
the ideal will be presented in the essential set of variables. For this reason, as input, the main functions
require also a Symbol so that the user can chose a name for the indexed variables used in the output. The
output is a ApolarScheme which is new type of HashTable that we have introduced within the package.
In particular, an ApolarScheme has four attributes:

(1) hPoly, which is a homogeneous polynomial;



20 B. MOURRAIN AND A. ONETO

(2) idX, which is the ideal defining a 0-dimensional scheme apolar to the polynomial given by hPoly;
(3) Xdeg, which is an integer giving the degree of the 0-dimensional scheme;
(4) Xred, which is a boolean saying if the 0-dimensional scheme is whether reduced or not.

In the output of our main functions, we also provide the ring map corresponding to the change of coordi-
nates needed to pass from the essential variables to the original set of variables.

1.2. Two essential variables: Sylvester’s algorithm. In the case of two essential variables, Sylvester’s
algorithm tells us how to find a minimal set of points apolar to a given form; see Example 2.6.

In our package, we implemented the function sylvesterApolar that returns a minimal set of points
apolar to a given form with two essential variables.

Hence, the function sylvesterApolar works as follows.

i7 : sylvesterApolar(symbol Y, F)

5 5

o7 = (ApolarScheme{hPoly => Y - Y }, map(S,QQ[Y , Y ],{x + y, - z + t}))

0 1 0 1

idX => ideal(Y Y )

0 1

Xdeg => 2

Xred => true

o7 : Sequence

1.3. Ternary cubics. The cases of homogeneous polynomials with three essential variables are dealt with
the function planar5Apolar. Here, we want to explain how we implemented the cases of ternary cubics,
i.e., the cases (3), (4) and (5). As we have seen, the distinction between these cases is given by the
vanishing locus of f

?
2 .

i8 : S = QQ[x,y,z];

i9 : F = random(3,S); -- case (3)

i10 : G = random(QQ)*x^3 + y*z^2; -- case (4)

i11 : H = x*y^2 + y*z^2; -- case (5)

-- Consider the degree 2 part of the apolar ideal

i12 : Fperp2 = ideal(select(first entries gens perpId(F), i->degree(i)=={2}));

o12 : Ideal of S

i13 : Gperp2 = ideal(select(first entries gens perpId(G), i->degree(i)=={2}));

o13 : Ideal of S

i14 : Hperp2 = ideal(select(first entries gens perpId(H), i->degree(i)=={2}));

o14 : Ideal of S

-- Check the properties of the corresponding vanishing locus

i15 : dim Fperp2

o15 = 0

i16 : primaryDecomposition Gperp2

2

o16 = {ideal (x, y ), ideal (y, z)}

o16 : List

i17 : primaryDecomposition Hperp2, radical Hperp2

2 2

o17 = ({ideal (x*z, x*y - z , x )}, ideal (z, x))

o17 : Sequence
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First, we consider the case (3). The general ternary cubic has rank 4 and, as explained in [CCO17,
Section 3.4], we know that the Waring locus is dense in the whole plane of ternary linear forms. In other
words, given a random ternary cubic F and a random ternary linear form L, there exists a coefficient c such
that the cubic F0 defined as F� c ⇤ L3 has rank 3. Then, F0 has a unique decomposition which is easy to
compute. In order to compute the suitable value of c, we need to intersect the line spanned by F and the
third power of L with the (Zariski closure) of the space of ternary cubics of rank 3 (see Remark 3.7). We
use the following function to compute the Aronhold invariant of a given cubic with three essential variables
as a Pfaffian as explained in [Ott09].

aronhold = method();

aronhold (RingElement) := F -> (

R := ring F; V := (entries vars R)_0;

K := matrix{{0,-V_2,V_1},{V_2,0,-V_0},{-V_1,V_0,0}};

C := diff(basis(1,R), transpose diff(basis(1,R),F));

KF := diff(K,C);

Pf := pfaffians(8,KF);

if Pf != sub(ideal (),R) then return Pf_0 else return 0_R

)

Now, we can find the suitable coefficient to reduce the rank of the general cubic F in S = QQ[x,y,z].

i19 : L = random(1,S)

2 7 7

o19 = -x + --y + -z

7 10 9

o19 : S

i20 : R = QQ[c][x,y,z];

i21 : F’ = sub(F,R) - c*(sub(L,R))^3;

i22 : Ic = ideal aronhold F’

1217672402543 305183

o22 = ideal(- -------------c + ------)

2083725000 125

o22 : Ideal of R

i23 : F’ = sub(sub(F’,R/Ic),S);

Hence, F0 has rank 3 and a unique decomposition, which is given by Z(( f 0)?2 ). By adding the point
corresponding to the form L, we conclude and find the ideal IX of a minimal set of points apolar to F.

i24 : IP = ideal(basis(1,S) * gens kernel transpose (coefficients(L))_1)

o24 = ideal (- 49x + 20y, - 49x + 18z)

o24 : Ideal of S

i25 : IX’ = ideal(select(first entries gens perpId(F’), i->degree(i)=={2}));

o25 : Ideal of S

i26 : IX = intersect(IX’,IP);

o26 : Ideal of S

-- Check if IX given a minimal set of points apolar to F

i27 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(F))

o27 = (1, 4, true, true)

o27 : Sequence

Now, we consider the case (4).

i28 : G = random(QQ)*x^3+y*z^2

5 3 2
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o28 = -x + y*z

8

o28 : S

i29 : R = QQ[c][x,y,z];

i30 : G’ = sub(G,R) - c*x^3;

i31 : Ic = trim minors(3,cat(1,G’))

o31 = ideal(8c - 5)

o31 : Ideal of R

i32 : G’ = sub(sub(G’,R/Ic),S);

i33 : perpId G’

2 3

o33 = ideal (x, y , z )

o33 : Ideal of S

-- Use Sylvester’s Algorithm to find a minimal set apolar to G’

i34 : IX’ = ideal(x,z^3 - (random(QQ)*y+random(QQ)*z)*y^2);

o34 : Ideal of S

-- Adding the point (1:0:0) corresponding to the linear form ‘x’, we conclude

i35 : IX = intersect(IX’,ideal(y,z));

o35 : Ideal of S

-- Check if IX given a minimal set of points apolar to G

i36 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(G))

o36 = (1, 4, true, true)

o36 : Sequence

As regards the case (5), if we consider a ternary cubic H of maximal rank 5, as explained in [CCO17,
Section 3.4], we can use a random linear form L to reduce the rank. Then, we apply the previous cases. We
can check that the rank of H-Lˆ3 drops by looking at the degree 2 part of the apolar ideal, as explained.

i37 : H = x*y^2 - y*z^2

2 2

o37 = x*y - y*z

i38 : H’ = H - L^3;

i39 : Hperp2’ = ideal(

select(first entries gens perpId(H’), i->degree(i)=={2})

)

2 2 2 2

o39 = ideal (24y + 5x*z - 12y*z - 6z , x*y - x*z + z , x - 2x*z)

o39 : Ideal of S

i40 : dim Hperp2’

o40 = 0

1.4. Rank 5 ternary quartics. Here, we want to comment the cases (9) and (10) of ternary quartics f such
that hAf

(2) = 5, i.e., there is a unique conic in the apolar ideal. If the unique apolar conic C is irreducible
(case (9)), then we can reduce the rank of f by taking a generic point on the conic; see Lemma 3.10(a). In
our implementation, this is done by considering the intersections of a generic line and the conic C . Since
this involves solving a quadratic equation which might not have solution of QQ, in this case, the output of
our main function minimalApolar5 depends on a parameter satisfying that quadratic equation and, for
this reason, the ideal idX has degree 10 instead of 5.

i41 : S = QQ[x,y,z];

i42 : F = sum for i to 4 list (random(1,S))^4;

i43 : first minimalApolar5(symbol Y, F)
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4 3 2 2

o43 = ApolarScheme{hPoly =>14000508577Y +118257495840Y Y +394649884800Y Y ...

0 0 1 0 1

idX => ideal (42277476088772685406212514432670091701648...

Xdeg => 10

Xred => true

o43 : ApolarScheme

i44 : ring X#idX

QQ[a][Y , Y , Y ]

0 1 2

o44 = ----------------------------

2

a - 31293683294493204311665}

o44 : QuotientRing

When the unique apolar conic is reducible C = L1 L2 (case (10)), we proceed in a similar way as in
the previous case. However, it is not enough to consider a generic point on C because, as we said in
Lemma 3.10(2), if the intersection point Q = L1 \ L2 is forbidden for the form f , then the Waring locus is
dense only in one of the two lines. We see that in an example which also shows how we implemented the
procedures explained in Theorem 4.2(9-10) to find a minimal set of points apolar to f .

We consider an example where f
?

2 = (xz).

i56 : G = x^2*y^2;

i57 : L1 = random(QQ)*y + random(QQ)*z;

i58 : L2 = random(QQ)*y + random(QQ)*z;

i59 : F = L1^4 + L2^4 + G;

i60 : perpId F

2 2 3 3 2

o60 = ideal (x*z, 648y z - 1467y*z + 560z , 46656y - 198801y*z + ...

o60 : Ideal of S

Now, we consider a random point on the line {x = 0}.
i61 : L = random(QQ)*y + random(QQ)*z

3

o61 = -y + 10z

8

o61 : S

i62 : R = QQ[c][x,y,z];

i63 : F1 = sub(F,R) - c*sub(L^4,R);

i64 : Ic = radical minors(5,cat(2,F1))

o64 = ideal(- 10368345145825c + 717382656)

o64 : Ideal of R

i65 : F1 = sub(sub(F1,R/Ic),S);

i66 : F1perp2 = ideal select(first entries gens perpId F1,i->degree(i)=={2})

2 2

o66 = ideal (x*z, 84009951144x - 26206863345y*z + 26903620240z )

o66 : Ideal of S

i67 : dim F1perp2, degree F1perp2

o67 = (1, 4)

o67 : Sequence
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i68 : netList primaryDecomposition F1perp2

+---------------------------------------------+

o68 = |ideal (5241372669y - 5380724048z, x) |

+---------------------------------------------+

| 2 2 |

|ideal (z , x*z, 9334439016x - 2911873705y*z)|

+---------------------------------------------+

Since F1 has the vanishing locus of the homogeneous part of degree 2 which is not among the cases
listed in Theorem 4.2, we conclude that it has rank 6. Hence, the random point on the line {x = 0} is not
in the Waring locus of F. Now, we proceed by considering a random point on the line {z = 0}.

i69 : L = random(QQ)*x + random(QQ)*y

9 1

o69 = -x + -y

2 3

o69 : S

i70 : R = QQ[c][x,y,z];

i71 : F2 = sub(F,R) - c*sub(L^4,R);

i72 : Ic = radical minors(5,cat(2,F2))

o72 = ideal(- 81c + 2)

o72 : Ideal of R

i73 : F2 = sub(sub(F2,R/Ic),S);

i74 : F2perp2 = ideal select(first entries gens perpId F2,i->degree(i)=={2})

2 2 2

o74 = ideal (x*z, 32x + 432x*y + 5832y - 13203y*z + 5040z )

o74 : Ideal of S

i74 : dim F2perp2, degree F2perp2, F2perp2 == radical F2perp2

o74 = (1, 4, true)

Hence, F2 is a quartic of rank 4 whose apolar ideal in degree 2 defines a minimal apolar set of points.
Hence, we we can find a minimal set of 5 points apolar to F.

i75 : IP = ideal(basis(1,S) * gens kernel (diff(vars S,L)))

o75 = ideal (- 2x + 27y, z)

o75 : Ideal of S

i76 : IX = intersect(IP,F2perp2)

2 2 3 3 3

o76 = ideal (x*z, 648y z - 1467y*z + 560z , 512x - 1259712y + ...

o76 : Ideal of S

i77 : dim IX, degree IX, IX == radical IX, isSubset(IX,perpId(F))

o77 = (1, 5, true, true)

o77 : Sequence

1.5. Main function. All procedures listed in Theorem 4.2 have been collected in the function minimalApolar5

that produces a minimal set of points apolar to a given polynomial of rank at most 5 in any number of variables and
any degree by using the suitable algorithm, as explained in Theorem 4.2.
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