We study special linear systems of surfaces of P3 interpolating nine points in general position having a quadric as fixed component. By performing degenerations in the blown-up space, we interpret the quadric obstruction in terms of linear obstructions for a quasi-homogeneous class. By degeneration, we also prove a Nagata type result for the blown-up projective plane in points that implies a base locus lemma for the quadric. As an application, we establish Laface–Ugaglia Conjecture for linear systems with multiplicities bounded by 8 and for homogeneous linear systems with multiplicity m and degree up to 2 m+ 1.

On linear systems of P3 with nine base points / Brambilla, M. C.; Dumitrescu, O.; Postinghel, E.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 2016, 195:5(2016), pp. 1551-1574. [10.1007/s10231-015-0528-5]

On linear systems of P3 with nine base points

Postinghel E.
2016-01-01

Abstract

We study special linear systems of surfaces of P3 interpolating nine points in general position having a quadric as fixed component. By performing degenerations in the blown-up space, we interpret the quadric obstruction in terms of linear obstructions for a quasi-homogeneous class. By degeneration, we also prove a Nagata type result for the blown-up projective plane in points that implies a base locus lemma for the quadric. As an application, we establish Laface–Ugaglia Conjecture for linear systems with multiplicities bounded by 8 and for homogeneous linear systems with multiplicity m and degree up to 2 m+ 1.
2016
5
Brambilla, M. C.; Dumitrescu, O.; Postinghel, E.
On linear systems of P3 with nine base points / Brambilla, M. C.; Dumitrescu, O.; Postinghel, E.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 2016, 195:5(2016), pp. 1551-1574. [10.1007/s10231-015-0528-5]
File in questo prodotto:
File Dimensione Formato  
On linesr systems of P3 with 9 base points.pdf

Open Access dal 01/11/2017

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 466.15 kB
Formato Adobe PDF
466.15 kB Adobe PDF Visualizza/Apri
Brambilla2016_Article_OnLinearSystemsOfMathbbP3P3Wit.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 655.03 kB
Formato Adobe PDF
655.03 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/274843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact