We establish a first general partial regularity theorem for area minimizing currents mod(p), for every p, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing current mod(p) cannot be larger than m−1. Additionally, we show that, when p is odd, the interior singular set is (m−1)-rectifiable with locally finite (m−1)-dimensional measure.

Regularity of area minimizing currents mod p / De Lellis, Camillo; Hirsch, Jonas; Marchese, Andrea; Stuvard, Salvatore. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 2020/30:5(2020), pp. 1224-1336. [10.1007/s00039-020-00546-0]

Regularity of area minimizing currents mod p

Andrea Marchese;
2020-01-01

Abstract

We establish a first general partial regularity theorem for area minimizing currents mod(p), for every p, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing current mod(p) cannot be larger than m−1. Additionally, we show that, when p is odd, the interior singular set is (m−1)-rectifiable with locally finite (m−1)-dimensional measure.
2020
5
De Lellis, Camillo; Hirsch, Jonas; Marchese, Andrea; Stuvard, Salvatore
Regularity of area minimizing currents mod p / De Lellis, Camillo; Hirsch, Jonas; Marchese, Andrea; Stuvard, Salvatore. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 2020/30:5(2020), pp. 1224-1336. [10.1007/s00039-020-00546-0]
File in questo prodotto:
File Dimensione Formato  
DeLellis2020_Article_RegularityOfAreaMinimizingCurr.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/273373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact