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REGULARITY OF AREA MINIMIZING CURRENTS MOD p

Camillo De Lellis, Jonas Hirsch, Andrea Marchese

and Salvatore Stuvard

Abstract. We establish a first general partial regularity theorem for area minimiz-
ing currents mod(p), for every p, in any dimension and codimension. More pre-
cisely, we prove that the Hausdorff dimension of the interior singular set of an
m-dimensional area minimizing current mod(p) cannot be larger than m− 1. Addi-
tionally, we show that, when p is odd, the interior singular set is (m− 1)-rectifiable
with locally finite (m− 1)-dimensional measure.

1 Introduction

1.1 Overview and main results. In this paper we consider currents mod(p)
(where p ≥ 2 is a fixed positive integer), for which we follow the definitions and the
terminology of [Fed69]. In particular, given an open subset Ω ⊂ R

m+n, we will let
Rm(Ω) and Fm(Ω) denote the spaces of m-dimensional integer rectifiable currents
and m-dimensional integral flat chains in Ω, respectively. If C ⊂ R

m+n is a closed
set (or a relatively closed set in Ω), then Rm(C) (resp. Fm(C)) denotes the space
of currents T ∈ Rm(Rm+n) (resp. T ∈ Fm(Rm+n)) with compact support spt(T )
contained in C. Currents modulo p in C are defined introducing an appropriate
family of pseudo-distances on Fm(C): if S, T ∈ Fm(C) and K ⊂ C is compact,
then

F p
K(T − S) := inf

{
M(R) + M(Z) : R ∈ Rm(K) , Z ∈ Rm+1(K)

such that T − S = R + ∂Z + pP for some P ∈ Fm(K)
}

.

Two flat currents in C are then congruent modulo p if there is a compact set K ⊂ C
such that F p

K(T − S) = 0. The corresponding congruence class of a fixed flat chain
T will be denoted by [T ], whereas if T and S are congruent we will write

T = S mod(p) .
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The symbols Rp
m(C) and F p

m(C) will denote the quotient groups obtained from
Rm(C) and Fm(C) via the above equivalence relation. The boundary operator ∂
has the obvious property that, if T = S mod(p), then ∂T = ∂S mod(p). This allows to
define an appropriate notion of boundary mod(p) as ∂p[T ] := [∂T ]. Correspondingly,
we can define cycles and boundaries mod(p) in C:

• a current T ∈ Fm(C) is a cycle mod(p) if ∂T = 0 mod(p), namely if ∂p[T ] = 0;
• a current T ∈ Fm(C) is a boundary mod(p) if ∃S ∈ Fm+1(C) such that

T = ∂S mod(p), namely [T ] = ∂p[S].

Note that every boundary mod(p) is a cycle mod(p). In what follows, the closed set
C will always be sufficiently smooth, more precisely a complete submanifold Σ of
R

m+n without boundary and of class C1.

Remark 1.1. Note that the congruence classes [T ] depend on the set C, and thus
our notation is not precise in this regard. In particular, when two currents are
congruent modulo p in Σ ⊂ R

m+n, then they are obviously congruent in R
m+n, but

the opposite implication is generally false, see also the discussion in [MS18, Remark
3.1]. However, the two properties are equivalent in the particular case of Σ’s which
are Lipschitz deformation retracts of R

m+n, and we will see below that, without loss
of generality, we can restrict to the latter case in most of our paper. For this reason
we do not keep track of the ambient manifold in the notation regarding the mod(p)
congruence.

Definition 1.2. Let Ω ⊂ R
m+n be open, and let Σ ⊂ R

m+n be a complete sub-
manifold without boundary of dimension m + n̄ and class C1. We say that an m-
dimensional integer rectifiable current T ∈ Rm(Σ) is area minimizing mod(p) in
Σ ∩ Ω if

M(T ) ≤M(T +S) for everyS ∈ Rm(Ω∩Σ) which is a boundary mod(p). (1.1)

Recalling [Fed69], it is possible to introduce a suitable notion of mass mod(p) for
classes [T ] mod(p), denoted by Mp: Mp([T ]) is the infimum of those t ∈ R ∪ {+∞}
such that for every ε > 0 there are a compact set K ⊂ Σ and an S ∈ Rm(Σ) with

F p
K(T − S) < ε and M(S) ≤ t + ε .

Analogously, [Fed69] defines the support mod(p) of the current T ∈ Rm(Σ), by
setting

sptp(T ) :=
⋂

R=T mod(p)

spt(R) .

Clearly, the support depends only upon [T ], and we can thus also use the notation
sptp([T ]).

With the above terminology we can talk about mass minimizing classes [T ],
because (1.1) can be rewritten as

Mp([T ]) ≤Mp([T ] + ∂p[S]) for all[S] with sptp([S]) ⊂ Ω ∩ Σ.
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Our paper is devoted to the interior regularity theory for such objects.

Definition 1.3. Let T be an area-minimizing current mod(p) in Ω ∩ Σ. A point
q ∈ Ω ∩ sptp(T ) is called an interior regular point if there is a neighborhood U of
q, a positive integer Q and an oriented C1 embedded submanifold Γ of Σ ∩ U such
that

(i) T U = Q �Γ� mod(p);
(ii) Γ has no boundary in Σ ∩ U .

We will denote the set of interior regular points of T by Reg(T ).

Observe that by definition an interior regular point is necessarily contained in
sptp(T ) and it is necessarily outside sptp(∂T ). For this reason, it is natural to define
the set of interior singular points of T as

Sing(T ) := (Ω ∩ sptp(T )) \ (Reg(T ) ∪ sptp(∂T )) .

It is very easy to see that Sing(T ) cannot be expected to be empty. Probably the fol-
lowing is the best known example: consider the three points Pj := (cos 2πj

3 , sin 2πj
3 ) ∈

R
2 for j = 1, 2, 3 and the three oriented segments σj in R

2 joining the origin with
each of them. Then T :=

∑
j �σj� is area-minimizing mod (3) in R

2 and the origin
belongs to Sing(T ).

As a first step to a better understanding of the singularities it is therefore de-
sirable to give a bound on the Hausdorff dimension of the singular set. The present
work achieves the best possible bound in the most general case, and in particular it
answers a question of White, see [GMT86, Problem 4.20].

Theorem 1.4. Assume that p ∈ N\{0, 1}, that Σ ⊂ R
m+n is a C3,a0 submanifold of

dimension m+ n̄ for some positive a0, that Ω ⊂ R
m+n is open, and that T ∈ Rm(Σ)

is area minimizing mod(p) in Ω ∩ Σ. Then, Hm−1+α(Sing(T )) = 0 for every α > 0.

Prior to the present paper, the state of the art in the literature on the size of the
singular set for area minimizing currents mod(p) was as follows. We start with the
results valid in any codimension.

(a) For m = 1 it is very elementary to see that Sing(T ) is discrete (and empty
when p = 2).

(b) Under the general assumptions of Theorem 1.4, Sing(T ) is a closed meager set
in (sptp(T )∩Ω) \ sptp(∂T ) by Allard’s interior regularity theory for stationary
varifolds, cf. [All72] (in fact, in order to apply Allard’s theorem it is sufficient
to assume that Σ is of class C2).

(c) For p = 2, Hm−2+α(Sing(T )) = 0 for every α > 0 by Federer’s classical work
[Fed70]; moreover the same reference shows that Sing(T ) consists of isolated
points when m = 2; for m > 2, Simon [Sim93, Sim95] proved that Sing(T ) is
(m− 2)-rectifiable and it has locally finite Hm−2 measure.

We next look at the hypersurface case, namely n̄ = 1.
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(d) When p = 2, Hm−2(Sing(T )) = 0 even in the case of minimizers of general
uniformly elliptic integrands, see [SSA77]; for the area functional, using [NV],
one can conclude additionally that Sing(T ) is (m−7)-rectifiable and has locally
finite Hm−7 measure.

(e) When p = 3 and m = 2, [Tay73] gives a complete description of Sing(T ), which
consists of C1,α arcs where three regular sheets meet at equal angles.

(f) When p is odd, [Whi86] shows that Hm(Sing(T )) = 0 for minimizers of a
uniformly elliptic integrand, and that Hm−1+α(Sing(T )) = 0 for every α > 0
for minimizers of the area functional.

(g) When p = 4, [Whi79] shows that minimizers of uniformly elliptic integrands
are represented by immersed manifolds outside of a closed set of zero Hm−2

measure.

In view of the examples known so far it is tempting to advance the following

Conjecture 1.5. Let T be as in Theorem 1.4. Denote by Singf (T ) the subset of
interior flat singular points, that is those points q ∈ Sing(T ) where there is at least
one flat tangent cone; see Sections 7 and 8. Then Hm−2+α(Singf (T )) = 0 for every
α > 0.

Conjecture 1.5 is known to be correct for:

(a) m = 1;
(b) p = 2 and any m and n̄;
(c) p is odd and the codimension n̄ = 1.

In all three cases, however, the conjecture follows from the much stronger fact that
Singf (T ) is empty:

• the case (a) is an instructive exercise in geometric measure theory;
• the case (b) follows from Allard’s regularity theorem for stationary varifold;
• the case (c) is a corollary of the main result in [Whi86].

Note that in all the other cases we cannot expect Singf (T ) to be empty, with the
easiest case being p = 4, m = 2 and n̄ = 1, to be discussed in the following

Example 1.6. Consider a ball B ⊂ R
2 as well as two distinct smooth functions u1

and u2 solving the minimal surfaces equation in B, and let S1 and S2 denote the
integral currents in the cylinder B × R ⊂ R

3 defined by their graphs endowed with
the natural orientation. As it is well known, S1 and S2 are then area minimizing,
both as integral currents and as currents mod(2). Assume, in addition, that the set
{u1 = u2} contains a curve γ which divides B into two regions B> and B<. Explicit
u1 and u2 as above are easy to find. The reader could take B to be a suitably
small ball centered at the origin, u1 ≡ 0, and let u2 be the function which describes
Enneper’s minimal surface in a neighborhood of the origin. The set {u1 = u2} is then
given by {(x, y) : x = ±y} ∩ B and γ can be taken to be the segment {x = y} ∩ B
while B> and B< would then be B ∩ {x > y} and B ∩ {x < y}, respectively.
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We then define the following rectifiable current T . Its support is the union of the
graphs of u1 and u2, and thus of the supports of S1 and S2. However, while the
portions of such graphs lying over B> will be taken with the standard orientation
induced by B, the portions lying over B< will be taken with the opposite orientation.
In B × R, the boundary of T is 4 �γ�, and T is singular along γ. Since T can be
written as T = S̃1 + S̃2, where S̃k are mod(2) equivalent to Sk (k = 1, 2), and since
S̃k are area minimizing mod(2), the structure theorem in [Whi79] guarantees that
T is area minimizing mod (4). Whenever u1 and u2 are chosen so that 0 ∈ γ,
u1(0) = u2(0) = 0, and ∇u1(0) = ∇u2(0) = 0 (as it is the case in the example
above) then 0 is a singular point of T , and the (unique) tangent cone to T at 0 is
the two dimensional horizontal plane π0 = {x3 = 0} with multiplicity 2. In such
examples we thus have 0 ∈ Singf (T ).

In this paper we strengthen the result for p odd by showing that Conjecture 1.5 in
fact holds in any codimension. Indeed we prove the following more general theorem.

Theorem 1.7. Let T be as in Theorem 1.4 and Q < p
2 a positive integer. Consider

the subset SingQ(T ) of sptp(T ) \ sptp(∂T ) which consists of interior singular points
of T where the density is Q (see Definition 8.1). Then Hm−2+α(SingQ(T )) = 0 for
every α > 0.

The analysis of tangent cones (cf. Corollary 7.3) implies that if p is odd then

Singf (T ) ⊂
� p

2
�⋃

Q=1

SingQ(T ) .

We thus get immediately

Corollary 1.8. Conjecture 1.5 holds for every p odd in any dimension m and
codimension n̄.

The fact above, combined with the techniques recently introduced in the remark-
able work [NV], allows us to conclude the following theorem.

Theorem 1.9. Let T be as in Theorem 1.4 and assume p is odd. Then Sing(T )
is (m − 1)-rectifiable, and for every compact K with K ∩ sptp(∂T ) = ∅ we have
Hm−1(Sing(T ) ∩K) <∞.

In turn the above theorem implies the following structural result.

Corollary 1.10. Let T be as in Theorem 1.4 and assume in addition that p is
odd. Denote by {Λi}i the connected components of sptp(T ) \ (sptp(∂T ) ∪ Sing(T )).
Then each Λi is an orientable smooth minimal submanifold of Σ and there is a choice
of (smooth) orientations and multiplicities Qi ∈ [1, p

2 ] ∩ N such that the following
properties hold for every open U � R

m+n \ sptp(∂T ).
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(a) Each Ti = Qi �Λi� is an integral current in U and thus, having chosen an
orientation �S for the rectifiable set Sing(T ), we have

(∂Ti) U = Θi
�SHm−1 (Sing(T ) ∩ U)

for some integer valued Borel function Θi.
(b)
∑

i M(Ti U) <∞ and T U =
∑

i Ti U .
(c)
∑

i M((∂Ti) U) <∞, (∂T ) U =
∑

i(∂Ti) U and

(∂T ) U =
∑

i

Θi
�SHm−1 (Sing(T ) ∩ U) ;

in particular
∑

i Θi(q) is an integer multiple of p for Hm−1-a.e. q ∈ Sing(T )∩U .

It is tempting to advance the following conjecture.

Conjecture 1.11. The conclusions of Theorem 1.9 hold for p even as well.

From the latter conjecture one can easily conclude an analogous structure the-
orem as in Corollary 1.10. Note that the conjecture is known to hold for p = 2 in
every codimension (in which case, in fact, we know that Sing(T ) has dimension at
most m− 2) and for p = 4 in codimension 1.

1.2 Plan of the paper. The paper is divided into five parts: the first four
parts contain the arguments leading to the proof of Theorems 1.4 and 1.7 , while
the last part is concerned with the proof of the rectifiability Theorem 1.9 and of
Corollary 1.10. Each part is further divided into sections. The proof of Theorems 1.4
and 1.7 is obtained by contradiction, and is inspired by F. Almgren’s work on the
partial regularity for area minimizing currents in any codimension as revisited by
the first-named author and E. Spadaro in [DLS14, DLS16a, DLS16b]. In particular,
Part 1 contains the preliminary observations and reductions aimed at stating the
contradiction assumption for Theorems 1.4 and 1.7 , whereas Part 2, Part 3, and
Part 4 are the counterpart of the papers [DLS14, DLS16a, DLS16b], respectively. An
interesting feature of the regularity theory presented in this work is that Almgren’s
multiple valued functions minimizing the Dirichlet energy are not the right class of
functions to consider when one wants to approximate a minimizing current mod(p)
in a neighborhood of a flat interior singular point whenever the density of the point
is precisely p

2 . Solving this issue requires (even in the codimension n̄ = 1 case) the
introduction of a class of special multiple valued functions minimizing a suitably
defined Dirichlet integral. The regularity theory for such maps (which we call linear
theory) is the content of our paper [DLHMS]. Applications of multivalued functions
to flat chains mod(p) were already envisioned by Almgren in [Alm91], even though
he considered somewhat different objects than those defined in [DLHMS]. Because
of this profound interconnection between the two theories, the reading of [DLHMS]
is meant to precede that of the present paper.
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2 Almgren’s regularity theory in the mod(p) setting

Before entering the main body of the paper, we would like to briefly present an
overview of Almgren’s regularity theory adapted to the setting of area minimizing
currents mod(p), focusing onto the points where major changes were required in
order to overcome the intrinsic difficulties of the problem under consideration. To
do so, we restrict our attention to the proof of Theorem 1.4. For the sake of simplicity,
we will assume throughout this discussion that Σ = R

m+n̄.
Towards a proof by contradiction of Theorem 1.4, we exploit the classical Alm-

gren’s stratification principle for stationary varifolds in order to reduce the contra-
diction assumption to the following (see Proposition 8.7): there exist integers p ≥ 2
and Q ≤ p/2, reals α, η > 0, an open ball Ω 
 0, and an m-dimensional rectifiable
current T in R

m+n̄ such that:

(i) T is area minimizing mod(p) in Ω with (∂T ) Ω = 0 mod(p) in Ω and 0 ∈
SingQ(T );

(ii) there exist a sequence of radii rk ↓ 0 and an m-dimensional plane π0 such that
the integral varifolds v(T0,rk

) associated with the rescaled currents centered at
0 converge to a varifold V = QHm π0 ⊗ δπ0 ;

(iii) it holds

lim sup
k→∞

Hm−1+α
∞ (SingQ(T0,rk

) ∩B1) ≥ η ,

where B1 is the unit open ball in R
m+n̄.

The next step in Almgren’s strategy would then be to approximate the currents
Tk = T0,rk

with graphs of functions uk defined on π0, taking values in the metric space
AQ(π⊥

0 ) of Q-points in π⊥
0 (that is, the space of discrete measures T =

∑Q
i=1 �vi� on

π⊥
0 , with positive integer coefficients and total mass Q), and minimizing a suitable

linearization of the mass functional (Dir-minimizing Q-valued functions). In our
setting, the main difficulties related to this step occur when p is even and Q =
p/2. In this case, indeed, Almgren’s Dir-minimizing Q-valued functions are not the
correct objects to perform such approximation; see [DLHMS, Example 1.2]. Notice
that the phenomenon responsible of the inadequacy of classical Dir-minimizers in
the approximation of area minimizing currents mod(p) is precisely the existence
of flat singular points of density Q = p/2 discussed in Example 1.6. In order to
introduce a class of multiple valued functions adapted to our needs, in [DLHMS]
we defined the metric space AQ(Rn) of special Q-points in Euclidean space R

n,
and we studied the regularity properties of AQ(Rn)-valued functions minimizing
a functional representing the natural linearization of the mass mod(p) (henceforth
called Dir-minimizing special Q-valued functions). For the reader’s convenience, we
briefly recall here some basic notation introduced in [DLHMS]. The space AQ(Rn)
is defined by

AQ(Rn) := AQ(Rn) � AQ(Rn)/ ∼ ,
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where ∼ is the equivalence relation defined by

(S, 1) ∼ (T, 1) ⇐⇒ S = T ,

(S,−1) ∼ (T,−1) ⇐⇒ S = T ,

(S, 1) ∼ (T,−1) ⇐⇒ ∃ z ∈ R
n : S = Q �z� = T .

Given a Borel measurable map u : Ω ⊂ R
m → AQ(Rn), there is a canonical

decomposition of the domain Ω into three disjoint sets Ω+, Ω−, and Ω0. More
precisely, Ω0 is the set of points x ∈ Ω for which there exists z ∈ R

n such that
u(x) = (Q �z� , 1) = (Q �z� ,−1); Ω+ and Ω− are, instead, the sets of points x ∈ Ω\Ω0

such that u(x) = (S, 1) or u(x) = (S,−1) with S ∈ AQ(Rn), respectively. Further-
more, we define the functions u± : Ω→ AQ(Rn) by

u±(x) =

{
S if x ∈ Ω± and u(x) = (S,±1) ,

Q �η(S)� if x ∈ Ω \ Ω± and u(x) = (S,∓1) ,

where η(S) denotes the average of the Q-point S, see Section 3. With these notations
at hand, we can define the Dirichlet energy Dir(u) of a W 1,2 map u : Ω → AQ(Rn)
by setting

Dir(u) := Dir(u+ � η ◦ u) + Dir(u− � η ◦ u) + QDir(η ◦ u) ,

where η ◦ u is the (Rn-valued) average of u and T � z :=
∑Q

i=1 �vi − z� if T =∑Q
i=1 �vi� ∈ AQ(Rn) and z ∈ R

n. Moreover, we can define the integer rectifiable
m-current Gu in R

m+n = R
m × R

n associated with a Lipschitz function u : Ω ⊂
R

m → AQ(Rn) by:

Gu := Gu+ (Ω+ × R
n)−Gu− (Ω− × R

n) + QGη◦u (Ω0 × R
n) ,

where Gu± denotes the current associated with the graph of a classical Q-valued
function as in [DLS15, Definition 1.10] and Gη◦u is the current associated with the
graph of the average η ◦ u. For instance, the current T described in Example 1.6
coincides with the graph Gu of the A2(R)-valued function defined by

u(x) =

{
(�u1(x)� + �u2(x)� , 1) if x ∈ B> ∪ γ ,

(�u1(x)� + �u2(x)� ,−1) if x ∈ B< ∪ γ .

Notice that, as Lipschitz Q-valued graphs over a domain Ω are integer rectifiable
currents without boundary in the cylinder Ω×R

n, Lipschitz special Q-valued graphs
over Ω are integer rectifiable currents without boundary mod(p) in Ω× R

n.
Now that we have the correct class of approximating functions, we can get back

to Almgren’s program. The first step is an approximation of each current Tk with
the graph of a Lipschitz special Q-valued function; see Proposition 9.6. The proof
is based on a BV estimate for the slices of Tk with respect to the plane π0, see
Lemma 10.3: while this is classically achieved in [DLS14] testing the current with



GAFA REGULARITY OF AREA MINIMIZING CURRENTS MOD p

suitably defined differential forms, our setting requires an ad hoc proof due to the
fact that Tk may possibly have non-trivial classical boundary. The errors in such an
approximation (which, we note in passing, does not use that Tk is area minimizing
mod(p)) are controlled linearly by the excess mod(p) of Tk with respect to the plane
π0: this is defined as the difference between the mass of Tk and the mass modulo p of
its projection onto π0; see Definition 9.2. Exploiting the minimality of Tk, we can then
substantially improve the results of this first Lipschitz approximation in two ways:
first, upgrading the control of the errors in terms of a superlinear power of the excess
mod(p) (Theorem 15.1); second, showing that the approximating special Q-valued
function is close to a Dir-minimizer (Theorem 15.4). Finally, we introduce a second
notion of excess, called the nonoriented excess and smaller than the excess mod(p)
(formula (13.2)), and we show that all the error estimates in the aforementioned
approximation can be upgraded replacing the excess mod(p) with the nonoriented
excess; see Theorem 16.1. The nonoriented excess is a more accurate measure of the
local tilting of a current with respect to a plane regardless of orientations (much
like the varifold excess), a feature that is very important in our setting, since area
minimizing currents mod(p) may exhibit changes of orientation even when their
boundary mod(p) vanishes. Furthermore, the flexibility of the nonoriented excess
with respect to localization will be of vital importance in the next step of Almgren’s
program, namely the construction of the center manifold.

The latter is arguably the most delicate part in Almgren’s proof, and it is mo-
tivated by the following issue. Given the sequence of currents Tk converging to
Q �π0� in the sense of currents mod(p), and given the sequence uk of AQ(π⊥

0 )-valued
approximating functions, it would be tempting to perform an appropriate (non-
homogeneous) rescaling of the functions leading to a new sequence which converges,
in the limit as k →∞, to a non-trivial Dir-minimizing special Q-valued function u∞.
In view of (iii), if we could prove that the function u∞ “inherits” the singularities of
the currents, then we would obtain the desired contradiction by invoking the main
result of [DLHMS], namely the following

Theorem. (see [DLHMS, Theorem 10.2]) The singular set of a Dir-minimizing
special Q-valued function defined on a domain in R

m has Hausdorff dimension at
most m− 1.

The issue in this plan is that the limit function u∞ may not exhibit any singular-
ities at all: this happens when, at the natural rescaling rate of the functions uk, the
currents Tk are centered around a smooth sheet. Conceived precisely to mod-out such
a smooth sheet, the center manifold is an m-dimensional surface equipped with a
special Q-valued section Nk of its normal bundle which approximately parametrizes
Tk. The blow-up argument described above then leads to the desired contradic-
tion when performed on the approximations Nk. This portion of Almgren’s proof
is sufficiently robust to go through in our setting without the need of substantial
modifications, with all the main necessary estimates being already available from
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the new Lipschitz approximation and the detailed analysis of Dir-minimizing special
Q-valued functions contained in [DLHMS].

3 Notation

We add below a list of standard notation in Geometric Measure Theory, which will
be used throughout the paper. More notation will be introduced in the main text
when the need arises.

Br(x) open ball in R
m+n centered at x ∈ R

m+n with radius r > 0;
ωm Lebesgue measure of the unit disc in R

m;
|A| Lebesgue measure of A ⊂ R

m+n;
Hm m-dimensional Hausdorff measure in R

m+n;
Λm(Rm+n) vector space of m-vectors in R

m+n;
Dm(U) space of smooth differential m-forms with compact support in an

open subset U ⊂ R
m+n;

Fm, (F p
m) integral flat chains (modulo p) of dimension m;

Rm, (Rp
m) integer rectifiable currents (modulo p) of dimension m; we write T =

�M,�τ, θ� if T is defined by integration with respect to �τ θHm M for
a locallyHm-rectifiable set M oriented by the Borel measurable unit
m-vector field �τ with multiplicity θ; if M is an oriented submanifold
of class C1, then we simply write �M� for the associated multiplicity
one current;

Im, (I p
m) integral currents (modulo p) of dimension m;

M, (Mp) mass functional (mass modulo p);
‖T‖, (‖T‖p) Radon measure associated to a current T (to a class [T ]) with locally

finite mass (mass modulo p);
�T Borel measurable unit m-vector field in the polar decomposition

T = �T ‖T‖ of a current with locally finite mass; if T = �M,�τ, θ� is
rectifiable, then �T = sgn(θ)�τ ‖T‖-a.e., so that �T is an orientation
of M ;

T A restriction of the current T to the set A: well defined for any Borel
A when T has locally finite mass, and for A open if T is any current;

〈T, f, z〉 slice of the current T with the function f at the point z;
f�T push-forward of the current T through the map f ;

Θm(μ, x) m-dimensional density of the measure μ at the point x, given by
Θm(μ, x)
:= limr→0+

μ(Br(x))
ωm rm when the limit exists;

ΘT (x), Θ(T, x) same as Θm(‖T‖, x) if T is an m-dimensional current with locally
finite mass;

spt(μ) support of μ, where μ is a Radon measure on R
m+n: it is defined as

the set of all points x ∈ R
m+n such that μ(Br(x)) > 0 for all r > 0;

spt(T ) same as spt(‖T‖) if T is a current with locally finite mass;
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sptp(T ) support mod(p) of an integer rectifiable current T : it only depends
on the equivalence class [T ];

v(M, Θ) rectifiable m-varifold defined by ΘHm M ⊗ δT·M for a locally Hm-
rectifiable set M and a locally Hm M -integrable multiplicity Θ;

v(T ) integral varifold associated to an integer rectifiable current T : if
T = �M,�τ, θ�, then v(T ) = v(M, |θ|);

δV [X] first variation of the varifold V in the direction of the vector field
X;

AΣ second fundamental form of a submanifold Σ ⊂ R
m+n;

HΣ mean curvature of a submanifold Σ ⊂ R
m+n;

Lip(X, Y ) space of Lipschitz functions f : X → Y , where X, Y are metric
spaces;

Lip(f) Lipschitz constant of the Lipschitz function f ;
(AQ(Rn),G) metric space of classical Q-points in R

n;
(AQ(Rn),Gs) metric space of special Q-points in R

n;
η(S) average of the Q-point S, so that if S =

∑Q
i=1 �Si� ∈ AQ(Rn) then

η(S) = Q−1
∑Q

i=1 Si ∈ R
n;

η ◦ f average of the (possibly special) multiple valued function f ;
Gr(u) set-theoretical graph of a (possibly multi-valued) function u;

TF integer rectifiable current associated (via push-forward) to the im-
age of a (possibly special) multiple valued function;

Gu integer rectifiable current associated to the graph of a (possibly
special) multiple valued function.

Part 1. Preliminary observations and blow-up sequence

4 Preliminary reductions

We recall first that, as specified in [Fed69, 4.2.26], for any S ∈ Rm(Σ) we can find
a representative mod(p), namely a T ∈ Rm(Σ) congruent to S mod(p) such that

‖T‖(A) ≤ p

2
Hm(A) for every Borel A ⊂ Σ. (4.1)

In particular, such a representative has multiplicity function θ such that |θ| ≤ p/2
at ‖T‖-a.e. point, and it satisfies Mp([T U ]) = ‖T‖(U) for every open set U and
spt(T ) = sptp(T ) (observe in passing that the restriction to an open set U is defined
for every current). It is evident that if T ∈ Rm(Σ) is area minimizing mod(p) in
Ω ∩ Σ then T is necessarily representative mod(p) in Ω ∩ Σ, in the sense that (4.1)
holds true for every Borel A ⊂ Ω∩Σ. For this reason, we shall always assume that T
is representative mod(p), and that the aforementioned properties concerning multi-
plicity, mass and support of T are satisfied. Note also that such T is area minimizing
mod(p) in any smaller open set U ⊂ Ω. Moreover T is area minimizing mod(p) in Ω
if and only if T Ω is area minimizing mod(p) in Ω. Also, for Ω sufficiently small the
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regularity of Σ guarantees that Σ∩Ω is a graph, and thus, if in addition Ω is a ball,
Σ ∩ Ω is a Lipschitz deformation retract of R

m+n. A current S ∈ Rm(Σ∩Ω) is thus
a cycle mod(p) if and only if it is a cycle mod(p) in R

m+n. In these circumstances it
does not matter what the shape of the ambient manifold Σ is outside Ω and thus,
without loss of generality, we can assume that Σ is in fact an entire graph. By the
same type of arguments we can also assume that ∂p[T ] = 0 in Ω. We summarize
these reductions in the following assumption (which will be taken as a hypothesis in
most of our statements) and in a lemma (which will be used repeatedly).

Assumption 4.1. Σ is an entire C3,a0 (m + n̄)-dimensional graph in R
m+n with

0 < a0 ≤ 1, and Ω ⊂ R
m+n is an open ball. T is an m-dimensional representative

mod(p) in Σ that is area minimizing mod(p) in Σ ∩ Ω and such that (∂T ) Ω = 0
mod(p) in Ω.

Lemma 4.2. Let Ω, Σ and T be as in Assumption 4.1. Let T ′ ∈ Rm(Σ) be such that
spt(T ′ − T ) ⊂ Ω and ∂T ′ = ∂T mod(p). Then

M(T Ω) ≤M(T ′ Ω) . (4.2)

Theorem 1.4 is then equivalent to

Theorem 4.3. Under the Assumption 4.1 Sing(T ) has Hausdorff dimension at most
m− 1.

5 Stationarity and compactness

Another important tool that will be used repeatedly in the sequel is the fact that
the integral varifold v(T ) induced by an area minimizing representative mod(p) T
is stationary in the open set Ω ∩ Σ \ sptp(∂T ).

Lemma 5.1. Let Ω, Σ and T be as in Assumption 4.1. Then v(T ) is stationary in
Σ ∩ Ω, namely

δv(T )[X] = 0 for all X ∈ C1
c (Ω, Rm+n) tangent to Σ. (5.1)

More generally, for X ∈ C1
c (Ω, Rm+n) we have

δv(T )[X] = −
ˆ

X · �HT (x) d‖T‖(x) , (5.2)

where the mean curvature vector �HT can be explicitly computed from the second
fundamental form AΣ of Σ. More precisely, if the orienting vector field of T is
�T (x) = v1 ∧ . . . ∧ vm and vi are orthonormal, then

�HT (x) =
m∑

i=1

AΣ(vi, vi) . (5.3)
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Proof. Consider a diffeomorphism Φ of Ω such that Φ(Σ∩Ω) ⊂ Σ∩Ω and Φ|Ω\K ≡
id|Ω\K for some compact set K ⊂ Σ∩Ω. The current Φ�T satisfies spt(T−Φ�T ) � Σ∩
Ω. Moreover, since ∂(Φ�T ) = Φ�(∂T ) and ∂T = 0 mod(p), also ∂(Φ�T ) = 0 mod(p),
so that, in particular,

∂(Φ�T ) = ∂T mod(p). (5.4)

From (4.2), and setting V := v(T ), we then get

‖V ‖(Ω) = M(T Ω) ≤M(Φ�T Ω) = ‖Φ�V ‖(Ω) .

This easily implies that V is stationary in Σ ∩ Ω.
The second claim of the Lemma follows then from the stationarity of V in Σ, see

for instance [Sim83].

Consider now an open ball BR = Ω ⊂ R
m+n, a sequence of Riemannian manifolds

Σk and a sequence of currents Tk such that each triple (Ω, Σk, Tk) satisfies the
Assumption 4.1. In addition assume that:

(a) Σk converges locally strongly in C2 to a Riemannian submanifold Σ of R
m+n

which is also an entire graph;
(b) supk ‖Tk‖(BR) = supk M

p(Tk BR) <∞;
(c) supk M

p(∂(Tk BR)) <∞.

By the compactness theorem for integral currents mod(p) (cf. [Fed69, Theorem
(4.2.17)ν , p. 432]), we conclude the existence of a subsequence, not relabeled, of
a current T ∈ Rm(Rm+n) and of a compact set K ⊃ BR such that

lim
k→∞

F p
K(Tk BR − T ) = 0

and

(∂T ) BR = 0 mod(p) .

Let Uδ be the closure of the δ-neighborhood of Σ and consider that, for a sufficiently
small δ > 0, the compact set K ′ := BR ∩ Uδ is a Lipschitz deformation retract of
R

m+n. For k sufficiently large, the currents Tk BR are supported in K ′ and [Fed69,
Theorem (4.2.17)ν ] implies that spt(T ) ⊂ K ′. Since δ can be chosen arbitrarily small,
we conclude that spt(T ) ⊂ Σ and hence that T ∈ Rm(Σ).

At the same time, by Allard’s compactness theorem for stationary integral vari-
folds, we can assume, up to extraction of a subsequence, that v(Tk BR) converges
to some integral varifold V in the sense of varifolds.

Proposition 5.2. Consider Ω, Σk, Tk, Σ, T and V as above. Then

(i) T is minimizing mod(p) in Ω ∩ Σ, so that, in particular, T is representative
mod(p);

(ii) V = v(T ) is the varifold induced by T .
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Proof. Let us simplify the notation by writing Tk in place of Tk BR. Recall that
F p

K(Tk−T )→ 0 for some compact set K ⊃ BR. This means that there are sequences
of rectifiable currents Rk, Sk and integral currents Qk

1 with support in K such that

Tk − T = Rk + ∂Sk + pQk (5.5)

and
lim

k→∞
(M(Rk) + M(Sk)) = 0 . (5.6)

As above, denote by Uδ the closure of the δ-neighborhood of the submanifold Σ.
Observe next that, for every δ sufficiently small, Kδ := Uδ ∩ BR is a Lipschitz
deformation retract. Moreover, for each k sufficiently large spt(Tk) ⊂ Kδ. We can
thus assume, without loss of generality, the existence of a k̄(δ) ∈ N such that

spt(Rk), spt(Sk), spt(Qk) ⊂ Kδ ∀k ≥ k̄(δ) . (5.7)

Next, if we denote by Uδ,k the closures of the δ-neighborhoods of Σk, due to their
C2 regularity and C2 convergence to Σ, for a δ > 0 sufficiently small (independent
of k) the nearest point projections

pk : Uδ,k → Σk

are well defined. Moreover,

lim
σ↓0

sup
k

Lip(pk|Uσ,k
) = 1 . (5.8)

We now show that T is area minimizing mod(p) in BR ∩ Σ. Assume not: then
there is a ρ < R and a current T̂ with spt(T − T̂ ) ⊂ Bρ ∩ Σ such that

∂T̂ = ∂T mod(p)

and, for every s ∈]ρ, R[,

ε := M(T Bs)−M(T̂ Bs) > 0 , (5.9)

where ε is independent of s because of the condition spt(T − T̂ ) ⊂ Bρ.
Denote by d : R

m+n → R the map x �→ |x| and consider the slices 〈Sk, d, s〉. By
Chebyshev’s inequality, for each k we can select an sk ∈]ρ, R+ρ

2 [ such that

M(〈Sk, d, sk〉) ≤ 2
R− ρ

M(Sk) . (5.10)

Consider therefore the current:

T̂k := Tk (Rm+n \Bsk
)− 〈Sk, d, sk〉+ Rk Bsk

+ T̂ Bsk
. (5.11)

1 Although the definition of flat convergence modulo p is given with Qk flat chains, a simple
density argument shows that we can in fact take them integral.
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Observe first that spt(Tk − T̂k) ⊂ BR+ρ

2
. Also, note that (5.5) implies that ∂Sk has

finite mass. Hence, by [Sim83, Lemma 28.5(2)],

〈Sk, d, sk〉 = ∂(Sk Bsk
)− (∂Sk) Bsk

.

In particular, combining the latter equality with (5.5), we get

∂T̂k : = ∂(Tk R
m+n \ Bsk) + ∂((Tk − T − Rk − pQk) Bsk) + ∂(Rk Bsk) + ∂(T̂ Bsk )

= ∂Tk − p∂(Qk Bsk) + ∂(T̂ − T ) ,

where in the second line we have used that spt(T̂−T ) ⊂ Bρ ⊂ Bsk
. Since ∂(T̂−T ) =

0 mod(p) in Σ ⊂ R
m+n, we conclude that ∂(T̂k−Tk) = 0 mod(p) in R

m+n. However,
considering (5.7), for k large enough the currents T̂k, Sk, Rk, Qk, T and T̂ are all
supported in the domain of definition of the retraction pk. Since (pk)�Tk = Tk, we
then have that ∂(Tk− (pk)�T̂k) = 0 mod(p) in Σk. Consider also that, for each σ > 0
fixed, there is a k̄(σ) ∈ N such that all the currents above are indeed supported in
Uσ,k when k ≥ k̄(σ). This implies in particular that, by (5.8),

lim inf
k↑∞

M((pk)�T̂k) = lim inf
k↑∞

M(T̂k) .

Up to extraction of a subsequence, we can assume that sk → s for some s ∈ [ρ, R+ρ
2 ].

Recalling the semicontinuity of the p-mass with respect to the flat convergence
mod(p), we easily see that (since the Tk’s and T are all representative mod(p))

lim inf
k→∞

M(Tk Bsk
) ≥M(T Bs) .

Next, by the estimates (5.10) and (5.6) we immediately gain

lim inf
k↑∞

(M(T̂k)−M(Tk)) ≤ −ε .

Finally, since the map pk is the identity on Σk, again thanks to (5.8) and to the
observation on the supports of T̂k−Tk, it turns out that spt((pk)�T̂k−Tk) ⊂ Σk∩BR

for k large enough. We thus have contradicted the minimality of Tk.
Observe that, if in the argument above we replace T̂ with T itself, we easily

achieve that, for every fixed ρ > 0, there is a sequence {sk} ⊂]ρ, R+ρ
2 [ converging to

some s ∈ [ρ, R+ρ
2 ], with the property that

lim inf
k↑∞

(M(T Bsk
)−M(Tk Bsk

)) ≥ 0 .

By this and by the semicontinuity of the p-mass under flat convergence, we easily
conclude that

lim
k→∞

‖Tk‖(Bρ) = ‖T‖(Bρ) for every ρ < R.
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The latter implies then that ‖Tk‖ ∗
⇀ ‖T‖ in the sense of measures in BR. Consider

now the rectifiable sets Ek, E and the Borel functions Θk : Ek → N \ {0}, Θ : E →
N \ {0} such that

‖Tk‖ = ΘkHm Ek , ‖T‖ = ΘHm E .

Let TqEk (resp. TqE) be the approximate tangent space to Ek (resp. E) at Hm-a.e.
point q. The varifold v(Tk) is then defined to be ΘkHm Ek ⊗ δTqEk

. If the varifold
limit V is given by Θ′Hm F ⊗ δTqF , we then know that ‖Vk‖ ∗

⇀ ‖V ‖ = Θ′Hm F .
But since ‖Vk‖ = ‖Tk‖, we then know that Hm((F \ E) ∪ (E \ F )) = 0 and that
Θ′ = Θ Hm-almost everywhere. This shows then that V = v(T ).

6 Slicing formula mod(p)

In this section we prove a suitable version of the slicing formula for currents mod(p),
which will be useful in several contexts. We let I p

m(C) denote the group of integral
currents mod(p), that is of classes [T ] ∈ Rp

m(C) such that ∂p [T ] ∈ Rp
m−1(C).

Lemma 6.1. Let Ω ⊂ R
m+n be a bounded ball, let [T ] ∈ I p

m(Ω) be an integral
current mod(p), and let f : Ω → R be a Lipschitz function. If T ∈ Rm(Ω) is any
rectifiable representative of [T ] and Z ∈ Rm−1(Ω) is any rectifiable representative
of [∂T ], then the following holds for a.e. t ∈ R:

(i) 〈T, f, t〉 = ∂(T {f < t})− Z {f < t}mod(p);
(ii) 〈T, f, t〉 is a representative mod(p) if T is a representative mod(p);
(iii) if T is a representative mod(p), and if ∂T = 0 mod(p), then

M(〈T, f, t〉) = Mp(∂(T {f < t})) .

Before coming to the proof of Lemma 6.1 we wish to point out two elementary
consequences of the theory of currents mod(p) which are going to be rather useful
in the sequel.

Lemma 6.2. If T is an integer rectifiable m-dimensional current in R
m+n and f :

R
m+n → R

k is a Lipschitz map with k ≤ m, then:

(i) T is a representative mod(p) if and only if the density of T is at most p
2 ‖T‖-a.e.

(ii) If T is a representative mod(p), then 〈T, f, t〉 is a representative mod(p) for a.e.
t ∈ R

k.
(iii) If n = 0 and spt(T ) ⊂ K for a compact set K, then F p

K(T ) = Mp(T ).
(iv) Let T be as in (iii) and in particular T = Θ �K�, where Θ is integer valued. If

we let
|Θ(x)|p := min{|Θ(x)− kp| : k ∈ Z} , (6.1)

then

Mp(T E) =
ˆ

E
|Θ(x)|p dx for all Borel E ⊂ R

m. (6.2)
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Proof. (i) is an obvious consequence of Federer’s characterization in [Fed69]: an
integer rectifiable current T of dimension m is a representative mod(p) if and only
if ‖T‖(E) ≤ p

2Hm(E) for every Borel set E. By the coarea formula for rectifiable
sets, this property is preserved for a.e. slice and thus (ii) is immediate. Moreover,
again by Federer’s characterization, if T is as in (iv), and if k(x) = arg min{|Θ(x)−
kp| : k ∈ Z}, then setting Θ′(x) := Θ(x) − k(x) p we have that T ′ = Θ′ �K� is a
representative mod(p) of T , and thus, since |Θ′| = |Θ|p, (6.2) follows directly from
Mp(T E) = ‖T ′‖(E).

As for (iii), since T is a top-dimensional current, Rm+1(K) = {0}. We thus have

F p
K(T ) = inf {M(R) : T = R + pP for some R ∈ Rm(K) and P ∈ Fm(K)} .

Observe however that, since K is m-dimensional, Fm(K) consists of the integer
rectifiable currents with support in K. A simple computation gives then

F p
K(T ) =

ˆ
K
|Θ(x)|p dx

and we can use (iv) to conclude.

Proof of Lemma 6.1. (ii) has been addressed already in Lemma 6.2, and (iii) is a
simple consequence of Lemma 6.2 and of (i) with the choice Z = 0.

We now come to the proof of (i). By [MS18, Theorem 3.4], there exists a sequence
{Pk}∞k=1 of integral polyhedral chains and currents Rk ∈ Rm(Ω), Sk ∈ Rm+1(Ω) and
Qk ∈ Im(Ω), with the following properties for every k ≥ 1:

T − Pk = Rk + ∂Sk + pQk , (6.3)

Mp(Pk) ≤Mp(T ) +
1

k2k
, (6.4)

Mp(∂Pk Ω) ≤Mp(∂T Ω) +
1

k2k
, (6.5)

M(Rk) + M(Sk) ≤ 2
k2k

. (6.6)

Since Pk is an integral current, by the classical slicing theory (cf. for instance [Sim83,
Lemma 28.5(2)]), the following formula holds for a.e. t ∈ R:

〈Pk, f, t〉 = ∂ (Pk {f < t})− (∂Pk) {f < t}. (6.7)

The identity (6.3) implies that ∂Sk has locally finite mass, and thus Sk is an integral
current. In particular, ∂〈Sk, f, t〉 = −〈∂Sk, f, t〉. Furthermore, the slicing formula
holds true for Sk as well, that is for a.e. t ∈ R one has:

〈Sk, f, t〉 = ∂ (Sk {f < t})− (∂Sk) {f < t} . (6.8)
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Since Z = ∂T mod(p), there exist currents R̃k ∈ Rm−1(Ω), S̃k ∈ Rm(Ω) and
Q̃k ∈ Im−1(Ω) such that for every k ≥ 1:

Z − ∂T = R̃k + ∂S̃k + pQ̃k , (6.9)

M(R̃k) + M(S̃k) ≤ 1
k2k

. (6.10)

Combining (6.3) and (6.9), we can therefore write:

Z − ∂Pk = ∂T − ∂Pk + Z − ∂T

= R̃k + ∂(Rk + S̃k) + p(∂Qk + Q̃k) .
(6.11)

The identity (6.11) implies that ∂(Rk + S̃k) has locally finite mass, and thus in
particular Rk + S̃k is an integral current. Hence, for a.e. t ∈ R the slicing formula
holds true for Rk + S̃k, that is:

〈Rk + S̃k, f, t〉 = ∂
(
(Rk + S̃k) {f < t}

)
−
(
∂(Rk + S̃k)

)
{f < t} . (6.12)

From the identities (6.3) and (6.11), and using (6.7), (6.8), (6.12), and the slicing
formula for Qk we easily conclude that the following holds for a.e. t ∈ R:

〈T, f, t〉 − ∂(T {f < t}) + Z {f < t}
=R̃k {f < t} − 〈S̃k, f, t〉+ ∂(S̃k {f < t}) + pQ̃k {f < t} . (6.13)

Now, Q̃k {f < t} is an integral current and thus, setting K := Ω, we can
estimate

F p
K(〈T, f, t〉 − (∂ (T {f < t} − Z {f < t})) ≤M(R̃k) + M(S̃k) + M(〈S̃k, f, t〉) .

Since limk

(
M(R̃k) + M(S̃k)

)
= 0, it remains to show that, for a.e. t,

lim
k→∞

M(〈S̃k, f, t〉) = 0 .

In order to see this, fix ε > 0. By [Sim83, Lemma 28.5(1)], we have that there is a
Borel set Ek with measure |Ek| ≤ ε

2k such that

M(〈S̃k, f, t〉) ≤ Lip(f)
2k

ε
M(S̃k) for all t �∈ Ek . (6.14)

In particular, if we set E :=
⋃

k Ek, we have |E| ≤ 2ε, and using (6.10) we see that

M(〈S̃k, f, t〉) ≤ ε−1Lip(f)k−1 for all t �∈ E .

Hence limk→∞ M(〈S̃k, f, t〉) = 0 for all t �∈ E. Since ε is arbitrary, this concludes the
proof.
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Remark 6.3. We are actually able to give a much shorter proof of Lemma 6.1(i),
provided one can prove that there exists an integral current T̃ such that T̃ =
T mod(p). Indeed, in this case, since T̃ is integral the classical slicing formula gives

〈T̃ , f, t〉 = ∂
(
T̃ {f < t}

)
− (∂T̃ ) {f < t}.

On the other hand, the conditions T̃ = T mod(p) and ∂T̃ = ∂T = Z mod(p) imply
that there are rectifiable currents R and Q such that T = T̃ +pR and Z = ∂T̃ +pQ,
and thus we deduce

〈T, f, t〉 = ∂ (T {f < t})− Z {f < t}+ p (−∂ (R {f < t}) + 〈R, f, t〉+ Q {f < t}) ,

as we wanted.
The existence of an integral representative in any integral class mod(p) is in fact

a very delicate question. If K is any given compact subset of R
m+n then a class

[T ] ∈ I p
m(K) does not necessarily have a representative in Im(K) when m ≥ 2; see

[MS18, Proposition 4.10]. Positive answers have been given, instead, when m = 1
in the class Im(K) for any given compact K in [MS18, Theorem 4.5], and in any
dimension in the class

⋃
K Im(K) in the remarkable work [You18].

7 Monotonicity formula and tangent cones

From Lemma 5.1 and the classical monotonicity formula for stationary varifolds, cf.
[All72] and [Sim83], we conclude directly the following corollary.

Corollary 7.1. Let T, Σ and Ω = BR be as in Assumption 4.1. Then, if q ∈
spt(T ) ∩Ω, the following monotonicity identity holds for every 0 < s < r < R− |q|:

r−m‖T‖(Br(q))− s−m‖T‖(Bs(q))−
ˆ
Br(q)\Bs(q)

|(x− q)⊥|2
|x− q|m+2

d‖T‖(x)

=
ˆ r

s
ρ−m−1

ˆ
Bρ(q)

(x− q)⊥ · �HT (x) d‖T‖(x) dρ , (7.1)

where Y ⊥(x) denotes the component of the vector Y (x) orthogonal to the tangent
plane of T at x (which is oriented by �T (x)). In particular:

(i) There is a dimensional constant C(m) such that the map r → eC‖AΣ‖0r ‖T‖(Br(q))
ωmrm

is monotone increasing.
(ii) The limit

ΘT (q) := lim
r↓0

‖T‖(Br(q))
ωmrm

exists and is finite at every point q ∈ BR.
(iii) The map q �→ ΘT (q) is upper semicontinuous and it is a positive integer at

Hm-a.e. q ∈ spt(T ). In particular spt(T ) ∩BR = {ΘT ≥ 1}.
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Next, we introduce the usual blow-up procedure to analyze tangent cones at
q ∈ spt(T ).

Definition 7.2. Fix a point q ∈ spt(T ) and define

ιq,r(x) :=
x− q

r
∀ r > 0 .

We denote by Tq,r the currents

Tq,r := (ιq,r)�T ∀ r > 0 .

Recalling Allard’s theory of stationary varifolds, we then know that, for every
sequence rk ↓ 0, a subsequence, not relabeled, of v(Tq,rk

) converges locally to a
varifold C which is a stationary cone in TqΣ (the tangent space to Σ at q). Combined
with Proposition 5.2 we achieve the following corollary.

Corollary 7.3. Let T, Σ and Ω = BR be as in Assumption 4.1, let q ∈ spt(T )∩Ω,
and let rk ↓ 0. Then there is a subsequence, not relabeled, and a current T0 with the
following properties:

(i) T0 Bρ ∈ Rm(TqΣ), ∂T0 Bρ = 0 mod(p) for every ρ > 0.
(ii) T0 Bρ is a representative mod(p) and is area minimizing mod(p) in Bρ ∩ TqΣ

for every ρ > 0.
(iii) T0 is a cone, namely (ι0,r)�T0 = T0 for every r > 0.
(iv) For every ρ > 0 there is r ≥ ρ and K ⊃ Br such that

lim
k→∞

F p
K(Tq,rk

Br − T0 Br) = 0 .

(v) If sptp(T0) = spt(T0) is contained in an m-dimensional plane π0, then T0 =
Q �π0� for some Q ∈ Z ∩ [−p

2 , p
2 ].

Before coming to its proof, let us state an important lemma which will be used
frequently during the rest of the paper. See [DPH14, Theorem 7.6] for a proof.

Lemma 7.4 (Constancy Lemma). Assume π ⊂ R
m+n is an m-dimensional plane and

let Ω ⊂ R
m+n be an open set such that Ω∩ π is connected. Assume T ∈ Rm(π) is a

current such that (∂pT ) Ω = 0. Finally let �v = v1∧. . .∧vm for an orthonormal basis
v1, . . . , vm of π. Then there is a Q ∈ Z ∩ [−p

2 , p
2 ] such that T Ω = Q�vHm (Ω ∩ π)

mod(p).

Proof of Corollary 7.3. Note that (v) is an obvious consequence of the constancy
lemma and of (i). In order to prove the remaining statements, first extract a sub-
sequence such that Vk = v(Tq,rk

) converges to a stationary cone C as above. Then
observe that for every j ∈ N, using a classical Fubini argument and Lemma 6.1 we
find a radius ρ(j) ∈ [j, j + 1] such that

lim inf
k

Mp(∂(Tq,rk
Bρ(j))) = lim inf

k
M(〈Tq,rk

, | · |, ρ(j)〉)
≤ lim inf

k
‖Tq,rk

‖(Bj+1 \Bj) = ωmΘT (q)((j + 1)m − jm) .
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Thus we can find a subsequence to which we can apply the compactness Proposi-
tion 5.2. By a standard diagonal argument we can thus find a single subsequence rk

with the following properties:

(a) For each j there is a current T j ∈ Rm(TqΣ) such that

lim
k→∞

F p

Bj+1
(Tq,rk

Bρ(j) − T j) = 0 .

(b) Each T j is a representative mod(p) and v(T j) = C Bρ(j).
(c) Each T j is area minimizing mod(p) in Bρ(j).

Notice next that T j Bρ(i) = T i mod(p) for every i ≤ j. If we then define the current

T0 :=
∑
i∈N

T i (Bρ(i) \Bρ(i−1)) ,

with ρ(−1) := 0, then the latter satisfies the conclusions (i), (ii) and (iv).
In the remaining part of the proof we wish to show (iii), after possibly changing

T0 to another representative mod(p) of the same class.
To this aim, consider that, by standard regularity theory for stationary varifolds,

the closed set R = spt(C) is countably m-rectifiable, it is a cone with vertex at the
origin and ‖C‖ = ΘC(x)Hm R, where ΘC is the density of the varifold C. By the
monotonicity formula and v(T ) = C we have

ΘT0(x) = ΘC(x) .

If x is a point where the approximate tangent TxR exists, we then conclude easily
that, up to subsequences, we can apply the same argument above and find that
(T0)x,rk

with rk ↓ 0 converges locally mod(p) to a current S satisfying the corre-
sponding conclusions:

(i)’ S Bρ ∈ Rm(TqΣ) and ∂S Bρ = 0 mod(p) for every ρ > 0.
(ii)’ S Bρ is a representative mod(p) and is area minimizing mod(p) in Bρ ∩ TqΣ

for every ρ > 0.
(iv)’ For every ρ > 0 there is r ≥ ρ and K ⊃ Br such that

lim
k→∞

F p
K((T0)x,rk

Br − S Br) = 0 .

However, for S we would additionally know that it is supported in TxR, which is
an m-dimensional plane. We then could apply the Constancy Lemma and conclude
that, if v1, . . . , vm is an orthonormal basis of TxR, then ΘC(x) ∈ N ∩ [1, p

2 ] and, for
any ρ > 0,

either S Bρ = ΘC(x)v1 ∧ . . . ∧ vmHm TxR ∩Bρ mod(p)
or S Bρ = −ΘC(x)v1 ∧ . . . ∧ vmHm TxR ∩Bρ mod(p) .
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In particular we conclude that there is a Borel function ε : spt(C) = R → {−1, 1}
such that

T0 = ε ΘC �vHm R , (7.2)

where �v(x) is an orienting Borel unit m-vector for TxR. Clearly, since R is a cone, we
can choose �v(x) with the additional property that �v(x) = �v(λx) for every positive
λ. Also, since the varifold C is a cone, the density ΘC is 0-homogeneous as well.
Moreover, at all points x where ΘC(x) = p

2 we can arbitrarily set ε(x) = 1, since
this would neither change the class mod(p), nor the fact that T0 is representative
mod(p).

Fix now a radius s > 0 such that the conclusions of Lemma 6.1 hold with
T = T0, f = |·|, and t = s, and consider the cone T ′ := 〈T0, | · |, s〉 ××{0}. Observe
that ∂(T ′ − T0 Bs) = 0 mod(p). We now make the following simple observation: if
Z ∈ Rm(Rm+n) with spt(Z) compact is such that ∂Z = 0 mod(p) in R

m+n, then
∂(Z ××{0}) = Z mod(p). The proof is in fact a simple consequence of the definition,
since ∂Z = 0 mod(p) implies the existence of integer rectifiable currents Q

(1)
k and

Q
(2)
k and flat currents Qk such that

∂Z = pQk + Q
(1)
k + ∂Q

(2)
k

and

M(Q(1)
k ) + M(Q(2)

k )→ 0 .

Using the general formula ∂(A×× 0) = A− (∂A)×× 0 we then obtain

∂(Z ×× 0) = Z − pQk ×× 0−Q
(1)
k ××{0}+ ∂(Q(2)

k ×× 0)−Q
(2)
k ,

which by

M(Q(1)
k ××{0}+ Q

(2)
k ) + M(Q(2)

k ×× 0)→ 0

implies that indeed ∂(Z ×× 0) = Z mod(p).
We apply the above observation to Z = T ′ − T0 Bs. In that case we conclude

however that the cone

Z ×× 0 is identically 0,

because it is an (m + 1)-dimensional rectifiable current supported in the countably
m-rectifiable set R. We thus must necessarily have that T ′ − T0 Bs = 0 mod(p).
Applying the argument of the previous paragraph, we of course again conclude that

T ′ = ε′ ΘC �vHm R ∩Bs . (7.3)

Consider now, as above, a point x ∈ Bs where the approximate tangent plane
to R exists. Then (T ′)x,r converges, as r ↓ 0, to ε′(x) ΘC(x)�v(x)Hm TxR, whereas
(T0)x,r converges, as r ↓ 0, to ε(x) ΘC(x)�v(x)Hm TxR. However the two limits must
be congruent mod(p) and, in case ΘC(x) < p

2 , this necessarily implies ε(x) = ε′(x).
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Fix now λ > 0. Since T ′ is a cone and s is arbitrary, we conclude that for Hm

a.e. x ∈ R ∩ {ΘC < p
2} we must necessarily have ε(x) = ε′(x) = ε′(λx) = ε(λx).

On the other hand we already have ε(x) = ε(λx) = 1 if ΘC(x) = p
2 . Hence we have

concluded that ε(λx) = ε(x) for Hm-a.e. x ∈ R. In particular (ι0,λ)�T0 = T0. The
arbitrariness of λ implies now the desired conclusion (iii) and completes the proof
of the corollary.

8 Strata and blow-up sequence

Definition 8.1. (Q-points) For every Q ∈ N \ {0}, we will let DQ(T ) denote the
points of density Q of the current T , namely

DQ(T ) := {q ∈ Ω : ΘT (q) = Q} .

We also set

RegQ(T ) := Reg(T ) ∩DQ(T ) and SingQ(T ) := Sing(T ) ∩DQ(T ).

Theorem 1.7 is thus equivalent to

Theorem 8.2. Under Assumption 4.1, for every Q < p
2 the set SingQ(T ) has Haus-

dorff dimension at most m− 2.

Before proceeding, we need to recall the following definition.

Definition 8.3. An integral m-varifold V is called a k-symmetric cone (where 0 ≤
k ≤ m) if it can be written as the product of a k-dimensional plane passing through
the origin times an (m−k)-dimensional cone. The largest plane passing through the
origin such that the above holds is called the spine of V . If V is stationary, then the
standard stratification of V is

S0 ⊂ S1 ⊂ · · · ⊂ Sm, (8.1)

where

Sk := {q ∈ spt(V ) : no tangent cone to V at q is (k + 1)-symmetric}. (8.2)

As a consequence of Corollary 7.3 and of the classical Almgren’s stratification
theorem, we have now the following

Proposition 8.4. Let T, Σ and Ω be as in Assumption 4.1 and consider the set

Z := Ω ∩ spt(T ) \
⋃

Q∈N\{0},Q≤ p

2

DQ(T ) .

Then Hm−1+α(Z) = 0 for every α > 0.
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Proof. By Lemma 5.1, the varifold V = v(T ) is stationary in Σ ∩ Ω, thus we can
consider the stratification of V as in (8.1) and (8.2). If q ∈ Sm \ Sm−1 then there
is at least one tangent cone to V at q which is supported in a flat plane π0. Then
there is a current T0 as in Corollary 7.3, obtained as a limit Tq,rk

for an appropriate
rk ↓ 0, which satisfies v(T0) = V . Thus by the constancy lemma ΘT0(0) = ΘT (q)
must belong to [1, p

2 ] ∩ N. This implies that Z ⊂ Sm−1. Our statement then follows
immediately from the well known fact that dimH Sk ≤ k for every 0 ≤ k ≤ m.

We shall also need the following elementary yet fundamental lemmas. Given
v ∈ R

m+n, we will adopt the notation τv := ιv,1, so that τv(x) := x− v.

Lemma 8.5. Assume T ∈ Rm(Rm+n) is an m-dimensional integer rectifiable current
such that ∂T = 0 mod(p) and the associated varifold v(T ) is a k-symmetric cone
with spine R

k × {0} ⊂ R
m+n. Then

(τv)�T = T mod(p) for every v ∈ R
k × {0} , (8.3)

and there exists an (m− k)-dimensional cone T ′ such that

T = �Rk�× T ′ mod(p) . (8.4)

Furthermore, if T is a representative mod(p) then so is T ′; in this case, v(T ) =
v(

�
R

k
� × T ′), and v(T ′) has trivial spine. Finally, if T is locally area minimizing

mod(p), then so is T ′.

Proof. Write T = �M,�τ, θ�, so that v(T ) = v(M, |θ|). Since v(T ) is a k-symmetric
cone with spine R

k×{0}, the locallyHm-rectifiable set M is a cone which is invariant
with respect to R

k × {0}, in the sense that there exists a locally Hm−k-rectifiable
set M ′ ⊂ R

m+n−k such that M = R
k ×M ′. Furthermore, |θ| is a 0-homogeneous

function such that |θ|(x+v) = |θ|(x) for every v ∈ R
k×{0}. By the properties of M ,

modulo changing the sign of θ, we can also assume that the orienting unit m-vector
field �τ is a 0-homogeneous function such that �τ(x+v) = �τ(x) for every v ∈ R

k×{0}.
Now, given two smooth and proper maps f, g : R

m+n → R
m+n, and letting

h : [0, 1]×R
m+n → R

m+n be the linear homotopy from f to g, namely the function
defined by

h(t, x) := (1− t) f(x) + t g(x) ,

the homotopy formula (see [Sim83, Equation 26.22]) states that

g�T − f�T = ∂h�(�(0, 1)�× T ) + h�(�(0, 1)�× ∂T ) . (8.5)

Since ∂T = 0 mod(p), (8.5) yields

g�T − f�T = ∂h�(�(0, 1)�× T ) mod(p) . (8.6)

Now, let v ∈ R
k × {0}, and apply (8.6) with

f(x) = x and g(x) = τv(x) = x− v .
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We can compute, for any ω ∈ D1+m(R× R
m+n):

h�(�(0, 1)�× T )(ω) : = (�(0, 1)�× T )(h�ω)

=
ˆ 1

0
dt

ˆ
〈ω(h(t, x)), [dh(t,x)]�(e1 ∧ �T (x))〉 d‖T‖(x)

= −
ˆ 1

0
dt

ˆ
〈ω(h(t, x)), v ∧ �T (x)〉 d‖T‖(x) = 0 ,

where we have used that v ∈ R
k × {0}, �T (x) ∈ Λm(Tan(M, x)) at ‖T‖-a.e. x, and

M is invariant with respect to R
k × {0}. Using that ω can be chosen arbitrarily, we

conclude (8.3) from (8.6).
Next, let p : R

m+n → R
m+n be the orthogonal projection operator onto R

k×{0}.
Using standard properties of the slicing of integer rectifiable currents (see e.g. [Fed69,
Theorem 4.3.2(7)]) and (8.3), we can conclude then that

(τv)�〈T,p, z + v〉 = 〈(τv)�T,p, z〉 = 〈T,p, z〉 mod(p) , (8.7)

for every z, v ∈ R
k × {0} such that the slices exist, or, equivalently, that

〈T,p, z〉 = (τw−z)�〈T,p, w〉 mod(p) (8.8)

for every z, w ∈ R
k × {0} such that the slices exist. Fix z such that 〈T,p, z〉 exists,

and let T ′ ∈ Rm−k(Rm+n−k) be such that 〈T,p, z〉 = (τ−z)�T
′ after identifying

R
m+n−k with {0} × R

m+n−k. Then, the current T̃ := �Rk�× T ′ satisfies

〈T − T̃ ,p, z〉 = 0 mod(p) for Hk-a.e. z ∈ R
k × {0} . (8.9)

Observe that we may write

T = θ �τ Hm M , T̃ = θ̃ �τ Hm M , (8.10)

for a 0-homogeneous function θ̃ such that θ̃(x+v) = θ̃(x) for every v ∈ R
k×{0}. Also

notice that, since M is invariant with respect to R
k × {0} and p is the orthogonal

projection onto R
k × {0}, if we identify R

k × {0} with R
k and if we set φ := p|M ,

then Jkφ(x) > 0 for Hm-a.e. x ∈M , where Jkφ(x) is the k-dimensional Jacobian of
φ, defined by

Jkφ(x) :=
(
det
(
dφ(x) ◦ dφ(x)T

))1/2
, dφ(x) : TxM → R

k

at all points x ∈M such that TxM exists.
By the considerations above, the standard slicing theory of rectifiable currents

(see e.g. [Fed69, Theorem 4.3.8]) implies that for Hk-a.e. z ∈ R
k × {0} the set

Mz := M ∩ p−1(z) is (m− k)-rectifiable and

〈T,p, z〉 = �Mz, ζ, θ|Mz
� , 〈T̃ ,p, z〉 = �Mz, ζ, θ̃

∣∣∣
Mz

� (8.11)
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for a Borel measurable unit (m−k)-vector field ζ = ζz which is uniquely determined
by �τ and dφ. If z ∈ R

k × {0} is such that both (8.9) and (8.11) hold, then

θ(x) = θ̃(x) mod(p) at Hm−k-a.e. x ∈Mz . (8.12)

By Fubini’s theorem, the conclusion in (8.12) holds at Hm-a.e. x ∈M , so that (8.4)
follows from (8.10) and the definition of T̃ .

If T is a representative mod(p), then 〈T,p, z〉 is a representative mod(p) for Hk-
a.e. z ∈ R

k × {0}, and thus we can choose z such that the corresponding T ′ is a
representative mod(p). With this choice, T̃ is a representative mod(p) as well, and
since θ̃(x) = θ(x) mod(p) for Hm-a.e. x ∈M we deduce that

θ̃(x) = ε(x) θ(x) with ε(x) ∈ {−1, 1}, for Hm-a.e. x ∈M , (8.13)

where ε(x) = 1 or |θ(x)| = p
2 . As a consequence, |θ̃| = |θ| Hm M -a.e., which in turn

implies that v(T̃ ) = v(T ). The last conclusion of the lemma is elementary, and the
details of the proof are omitted.

Lemma 8.6. Assume T0 ∈ Rm(Rm+n) is an m-dimensional locally area minimizing
current mod(p) without boundary mod(p) which is a cone (in the sense of Corol-
lary 7.3 (iii)). Suppose, furthermore, that v(T0) is (m − 1)-symmetric but not m-
symmetric (namely not flat). Then, Θ(T0, 0) ≥ p

2 .

Proof. Let T0 = �M,�τ, θ�, so that v(T0) = v(M, |θ|). Since v(T0) is (m − 1)-
symmetric but not m-symmetric, by Lemma 8.5 T0 = �π�×T ′

0 mod(p), where π is the
(m− 1)-dimensional spine of v(T0), and T ′

0 is a one-dimensional cone which has no
boundary mod(p) and is locally area minimizing mod(p). Since Θ(T ′

0, 0) = Θ(T0, 0),
we can reduce the proof of the lemma to the case when m = 1.

Thus we can assume that T0 =
∑

i Qi ��i�, where �1, . . . , �N are pairwise distinct
oriented half lines in R

1+n with the origin as common endpoint and the Qi’s are
integers. Without loss of generality we can assume that ∂ ��i� = − �0�. Observe
that

Θ(T0, 0) =
1
2

∑
i

|Qi|

and that
∑

i Qi = 0 mod(p) since T0 has no boundary mod(p). If
∑

i Qi = 0, then
T0 would be an integral current without boundary, which in turn would have to be
area minimizing. But since T0 is by assumption not flat, this is not possible. Thus∑

i Qi = kp for some nonzero integer k. This clearly implies
∑

i

|Qi| ≥ |k|p ≥ p ,

which in turn yields Θ(T0, 0) ≥ p
2 .
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We are now ready to state the starting point of our proof of Theorem 4.3 and
Theorem 8.2, which will be achieved by contradiction.

Proposition 8.7 (Contradiction sequence). Assume Theorem 8.2 is false. Then
there are integers m, n ≥ 1 and 2 ≤ Q < p

2 and reals α, η > 0 with the follow-
ing property. There are

(i) T, Σ and Ω as in Assumption 4.1 such that 0 ∈ SingQ(T );
(ii) a sequence of radii rk ↓ 0 and an m-dimensional plane π0 such that v(T0,rk

)
converges to V = QHm π0 ⊗ δπ0 ;

(iii) limk→∞Hm−2+α∞ (DQ(T0,rk
) ∩B1) ≥ η.

If Theorem 4.3 is false then either there is a sequence as above or, for Q = p
2 , there

is a sequence as above where (iii) is replaced by

(iii)s limk→∞Hm−1+α∞ (DQ(T0,rk
) ∩B1) ≥ η.

Proof. Suppose first that Theorem 4.3 is false. Fix p ∈ N \ {0, 1}, and let m ≥ 1
be the smallest integer for which the assertion of Theorem 4.3 is false. Observe that
m > 1. Fix thus a T, Σ and Ω satisfying Assumption 4.1 for which there is an α > 0
with Hm−1+α(Sing(T )) > 0. Then, by Proposition 8.4, there must be a Q ∈ N∩ [1, p

2 ]
such that Hm−1+α(SingQ(T )) > 0.

By [Sim83, Theorem 3.6], Hm−1+α-a.e. point in SingQ(T ) has positive Hm−1+α∞ -
upper density: fix a point q with this property, and assume, without loss of generality,
that q = 0 and that (∂T ) B1 = 0 mod(p). Then, there exists a sequence of radii rk

such that rk ↓ 0 as k →∞ and such that

lim
k→∞

Hm−1+α
∞ (SingQ(T0,rk

) ∩B1) = lim
k→∞

Hm−1+α∞ (SingQ(T ) ∩Brk
)

rm−1+α
k

> 0. (8.14)

Moreover, we can assume that the sequence of stationary varifolds v(T0,rk
) converges

to a stationary cone C ⊂ T0Σ. Consider the compact sets {ΘT0,rk
≥ Q} ∩ B1 and

assume, without loss of generality, that they converge in the Hausdorff sense to a
compact set K. As it is well known, by the monotonicity formula for stationary
varifolds we must have ΘC(q) ≥ Q for every q ∈ K. On the other hand, this implies
that every point q ∈ K belongs to the spine of the cone C; see [Whi97]. In turn, by the
upper semicontinuity of the Hm−1+α∞ measure with respect to Hausdorff convergence
of compact sets, we have

Hm−1+α
∞ (K) ≥ lim sup

k→∞
Hm−1+α

∞ (DQ(T0,rk
) ∩B1) > 0 . (8.15)

Recall that the spine of the cone C is however a linear subspace of R
m+n, cf. again

[Whi97]. This implies in turn that C must be supported in a plane, which completes
the proof under the assumption that Theorem 4.3 is false.

Now, let us suppose Theorem 8.2 is false. Then, we can find p, m, n and
Q < p

2 , together with Ω, Σ, T as in Assumption 4.1, and α > 0 such that
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Hm−2+α(SingQ(T )) > 0. Arguing as above, we can then find a point q ∈ SingQ(T )
with positive Hm−2+α∞ -upper density, and we can suppose, without loss of generality,
that q = 0. Then, there is a sequence of radii rk with rk ↓ 0 as k →∞ such that:

• the blow-up sequence T0,rk
converges, in the sense of Corollary 7.3 (iv), to a

current T0 ∈ Rm(T0Σ) satisfying properties (i), (ii), and (iii) of Corollary 7.3;
• limk→∞Hm−2+α∞ (SingQ(T0,rk

) ∩B1) > 0;
• the sequence of varifolds v(T0,rk

) converges to a stationary cone C in T0Σ;
• C = v(T0).
• the spine of C is a linear subspace of T0Σ having dimension at least m− 1.

Now, if the spine of C is (m− 1)-dimensional, then C is (m− 1)-symmetric but
not flat, hence forcing Θ(T0, 0) ≥ p

2 by Lemma 8.6, which is a contradiction to the
fact that 0 ∈ DQ(T ) with Q < p

2 . Thus, C is supported in an m-dimensional plane,
and the proof is complete.

Part 2. Approximation with multiple valued graphs

Following the blueprint of Almgren’s partial regularity theory for area minimizing
currents, we now wish to show that any area minimizing current modulo p can be
efficiently approximated, in a region where it is “sufficiently flat”, with the graph
of a multiple valued function which minimizes a suitably defined Dirichlet energy.
Suppose that, in the region of interest, the current is a Q-fold cover of a given
m-plane π, where Q ∈ [1, p

2

]
. The “classical” theory of Dir-minimizing Q-valued

functions as in [DLS11] is powerful enough to accomplish the task whenever Q < p
2

(which is always the case when p is odd). If p is even and Q = p
2 , on the other hand,

Almgren’s Q-valued functions are not anymore the appropriate maps, and we will
need to work with the class of special multiple valued function defined in [DLHMS].

9 First Lipschitz approximation

From now on we denote by Br(x, π) the disk Br(x)∩ (x+π), where π is some linear
m-dimensional plane. The symbol Cr(x, π), instead, will always denote the cylinder
Br(x, π) × π⊥. If we omit the plane π we then assume that π = π0 := R

m × {0},
and the point x will be omitted when it is the origin. Let ei be the unit vectors in
the standard basis. We will regard π0 as an oriented plane and we will denote by
�π0 the m-vector e1 ∧ . . . ∧ em orienting it. We denote by pπ and p⊥

π the orthogonal
projection operators onto, respectively, π and its orthogonal complement π⊥. If we
omit the subscript we then assume again that π = π0.

We will make the following

Assumption 9.1. Σ ⊂ R
m+n is a C2 submanifold of dimension m + n̄ = m + n− l,

which is the graph of an entire function Ψ : R
m+n̄ → R

l satisfying the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0 , (9.1)
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where c0 is a positive (small) dimensional constant. T is a representative mod(p)
of dimension m with spt(T ) ⊂ Σ and which, for some open cylinder C4r(x) (with
r ≤ 1) and some positive integer Q ≤ p

2 , satisfies

p�T = Q �B4r(x)�mod(p) and (∂T ) C4r(x) = 0 mod(p) . (9.2)

We next define the following relevant quantities.

Definition 9.2 (Excess measure). For a current T as in Assumption 9.1 we define
the cylindrical excess E(T,C4r(x)), the excess measure eT and its density dT :

E(T,C4r(x)) :=
1

ωm(4r)m
(‖T‖(C4r(x))−Q|B4r(x)|) ,

eT (A) := ‖T‖(A× R
n)−Q|A|, for every Borel A ⊂ B4r(x)

dT (y) := lim sup
s→0

eT (Bs(y))
ωmsm

= lim sup
s→0

E(T,Cs(y)) .

The subscript T will be omitted whenever it is clear from the context.
We define the height function of T in the cylinder C4r(x) by

h(T,C4r(x), π0) := sup{|p⊥(q)− p⊥(q′)| : q, q′ ∈ spt(T ) ∩C4r(x)}.
Remark 9.3. Note that, since T is a representative mod(p), we have ‖T‖ = ‖T‖p,
where ‖T‖p denotes the Radon measure on R

m+n defined by the mass mod(p).
However, it is false in general that ‖p�T‖(A) = Q|A|, since p�T is not necessar-
ily a representative mod(p). The excess written above can thus be rewritten as
ω−1

m (4r)−m (‖T‖p(C4r(x))− ‖p�T‖p(C4r(x))), but not as ω−1
m (4r)−m

(‖T‖(C4r(x))− ‖p�T‖(C4r(x))), which is the standard cylindrical excess in the clas-
sical regularity theory for area minimizing currents. Of course, since ‖p�T‖p ≤ ‖p�T‖
as measures, this “excess mod(p)” is, in general, larger than the classical excess.

Observe also that, under the assumptions valid in the regularity theory for clas-
sical area minimizing currents, where the identities in (9.2) hold in the sense of
currents and not only mod(p), the cylindrical excess can be classically written as

1
ωm(4r)m

(‖T‖(C4r(x))− ‖p�T‖(C4r(x))) =
1

2ωm(4r)m

ˆ
C4r(x)

|�T − �π0|2 d‖T‖ ,

(9.3)
see e.g. [KP08, Lemma 9.1.5]. The quantity appearing on the right-hand side of
(9.3) is the most flexible and natural in view of the forthcoming elliptic estimates.
Unfortunately, in our setting not only the identity in (9.3) is false, but we do not have
an integral representation of the excess mod(p) either. For these reasons, later on we
shall introduce a different notion of excess, called the nonoriented excess (see (13.2)),
which shares the structural features of the quantity on the right-hand side of (9.3).
The nonoriented excess and the excess mod(p) are then shown to be comparable in
appropriate smallness regimes in Theorem 16.1. Nonetheless, in the context of the
Lipschitz approximation we will work with the excess mod(p), because it is more
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suitable to the arguments involving slicing which are needed in the BV estimate of
Lemma 10.3.

Definition 9.4. In general, given a measure μ on a domain Ω ⊂ R
m we define its

noncentered maximal function as

mμ(y) := sup
{

μ(Bs(z))
ωmsm

: y ∈ Bs(z) ⊂ Ω
}

.

If f is a locally Lebesgue integrable non-negative function, we denote by mf the
maximal function of the measure fL m.

The first Lipschitz approximation is given by the following proposition, accord-
ing to which a representative mod(p) T as in Assumption 9.1 can be realized as
the graph of a Lipschitz continuous multiple valued function in regions where the
maximal function of its excess measure is suitably small. As already motivated, the
approximating function needs to be a special multi-valued function whenever p is
even and Q = p

2 . Concerning special multi-valued functions, we will adopt the no-
tation introduced in [DLHMS]: in particular, the space of special Q-points in R

n

is denoted AQ(Rn), Gs is the metric on it, and |S| := Gs(S, Q �0�) if S ∈ AQ(Rn).
Given a function u : Ω → AQ(Rn) (possibly classical, namely with target AQ(Rn)),
we will let Gr(u) and Gu denote the set-theoretic graph of u and the integer rectifi-
able current associated with it, respectively; see Section 2 and [DLHMS, Definition
4.1]. Also, we will let osc(u) denote the quantity

osc(u) := inf
q∈Rn

‖|u� q|‖L∞(Ω) = inf
q∈Rn

‖Gs(u(x), Q�q�)‖L∞(Ω) . (9.4)

Remark 9.5. The definition given in (9.4) for the quantity osc(u) is the special
multi-valued counterpart of the definition provided in [DLS14] for theAQ(Rn)-valued
case. In [DLS16a], on the other hand, the following comparable definition for the
oscillation is used:

oscC(u) := sup{|v − w| : x, y ∈ Ω, v ∈ spt(u(x)), w ∈ spt(u(y))} .

More precisely one has
1
2

oscC(u) ≤ osc(u) ≤
√

Q oscC(u) .

To see the first inequality, let x, y ∈ Ω and v ∈ spt(u(x)), w ∈ spt(u(y)); then, for
any q ∈ R

n we have

|v − w| ≤ |v − q|+ |w − q| ≤ |u(x)� q|+ |u(y)� q| ≤ 2‖|u� q|‖L∞(Ω).

Taking the infimum over all q ∈ R
n gives the claimed inequality. For the second

inequality, fix any arbitrary y ∈ Ω and q ∈ spt(u(y)). Then, for any x ∈ Ω we have

|u(x)� q| ≤
√

Q oscC(u).

Taking the supremum over all x ∈ Ω and afterwards the infimum in q ∈ spt(u(y))
gives the desired bound.



GAFA REGULARITY OF AREA MINIMIZING CURRENTS MOD p

Proposition 9.6 (Lipschitz approximation). There exists a constant C = C
(m, n, Q) > 0 with the following properties. Let T and Ψ be as in Assumption 9.1 in
the cylinder C4s(x). Set E := E(T,C4s(x)), let 0 < δ < 1 be such that 16mE < δ,
and define

K :=
{
meT ≤ δ

} ∩B3s(x) .

Then, there is a Lipschitz map u defined on B3s(x) and taking either values in
AQ(Rn), if Q < p

2 , or in AQ(Rn), if Q = p
2 , for which the following facts hold.

(i) Gr(u) ⊂ Σ;
(ii) Lip(u) ≤ C

(
δ1/2 + ‖DΨ‖0

)
and osc (u) ≤ Ch(T,C4s(x), π0) + Cs‖DΨ‖0.

(iii) Gu (K × R
n) = T (K × R

n) mod(p);
(iv) for r0 := 16 m

√
E/δ < 1 we have

|Br(x) \K| ≤ 5m

δ
eT

(
{meT ≥ δ} ∩Br+r0s(x)

)
∀ r ≤ 3 s. (9.5)

We remark that in Proposition 9.6 we are not assuming that T is area minimiz-
ing modulo p. The proof of the proposition will require a suitable BV estimate for
0-dimensional slices mod(p), which is the content of the next section. This Jerrard-
Soner type estimate is in fact a delicate point of the present paper, since the approach
of [DLS14] (which relies on testing the current with a suitable class of differen-
tial m-forms) is unavailable in our setting, since Assumption 9.1 only guarantees
∂T C4s(x) = 0 mod(p) and not ∂T C4s(x) = 0.

10 A BV estimate for slices modulo p

Recall that Fk(C) denotes the group of k-dimensional integral flat chains supported
in a closed set C.

Definition 10.1. We define the groups

X := {Z ∈ F0(Rn) : Z = ∂S for some S ∈ R1(Rn)} ,

X̃p := {Z ∈ F0(Rn) : Z = ∂S + pP for some S ∈ R1(Rn), P ∈ F0(Rn)} .

On X we define the distance function

dF (T1, T2) = F(T1 − T2) := inf
{
M(S) : S ∈ R1(Rn) such that T1 − T2 = ∂S

}
,

whereas on X̃p we set

dFp(T1, T2) = Fp(T1 − T2) := inf
{
M(S) : S ∈ R1(R

n) such that T1 − T2 = ∂S + pP

for some P ∈ F0(R
n)
}
.

Remark 10.2. Note that the following properties are satisfied:

(i) both X and X̃p are subgroups of F0(Rn), with X ⊂ X̃p;
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(ii) X̃p = {T ∈ F0(Rn) : T = S mod(p) for some S ∈ X}, the non-trivial inclu-
sion being a consequence of [MS18, Corollary 4.7]. Hence, the quotient groups
X/mod(p) and X̃p/mod(p) coincide and they are characterized by X/mod(p) =
X̃p/mod(p) = Xp, where

Xp := {[T ] ∈ F p
0 (Rn) : T = ∂S mod(p) for some S ∈ R1(Rn)} ;

(iii) for T ∈ X (resp. T ∈ X̃p), one has F(T ) ≥ F (T ) ( resp. Fp(T ) ≥ F p(T ));
(iv) (X,dF ) is a complete metric space; the pseudo-metric dFp induces a complete

metric space structure on the quotient Xp, which we still denote dFp .

In the rest of the section we will use the theory of BV maps defined over Eu-
clidean domains and taking values in metric spaces, as established in Ambrosio’s
foundational paper [Amb90].

Lemma 10.3. Assume T is a one-dimensional integer rectifiable current satisfying
Assumption 9.1 in C4 (that is, set m = 1, x = 0 and r = 1 in Assumption 9.1),
and let Tt be the slice 〈T,p, t〉 ∈ R0(R1+n) for a.e. t ∈ B4 =]− 4, 4[. Then, the map

Φ: t ∈ J :=]− 4, 4[ �→
[
p⊥

� Tt

]
is in BV (J, Xp), and moreover

|DΦ|(I)2 ≤ 2eT (I)‖T‖(I × R
n) for every Borel set I ⊂ J. (10.1)

Proof. Let us first observe that since (∂T ) C4 = 0 mod(p) then by Lemma 6.1 for
a.e. t ∈ J we have

Tt = ∂ (T {p < t}) mod(p) , (10.2)

and thus Φ(t) =
[
∂p⊥

� (T {p < t})
]
∈ Xp. Fix now t0 ∈ J such that (10.2) holds.

Again by Lemma 6.1, for a.e. t ∈]t0, 4[ we have Φ(t)−Φ(t0) =
[
∂p⊥

� (T ((t0, t)× R
n))
]
.

So
Fp(Φ(t)− Φ(t0)) ≤M(p⊥

� (T ((t0, t)× R
n))). (10.3)

Arguing analogously for the t ∈ (−4, t0) and integrating allows to concludeˆ 4

−4
dFp(Φ(t), Φ(t0)) dt ≤ CM(T C4) , (10.4)

which shows that Φ ∈ L1(J, Xp).
Next, we pass to the proof of (10.1). Without loss of generality, assume I = (a, b)

to be an interval with a and b Lebesgue points for Φ. It is a consequence of [Fed69,
Theorem 4.5.9] (see also [DPH12, Section 8.1]) that |DΦ|(I) equals the classical
essential variation ess var(Φ) given by

ess var(Φ) := sup
{ N∑

i=1

dFp(Φ(ti), Φ(ti−1)) : a ≤ t0 < t1 < . . . tN ≤ b

with t0, . . . , tN Lebesgue points for Φ
}

.

(10.5)
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Let t0, . . . , tN be as in (10.5), and let e denote the constant unit 1-vector orienting
R× {0} ⊂ R

1+n. Then, one has

N∑
i=1

dFp(Φ(ti), Φ(ti−1)) =

N∑
i=1

Fp(p⊥
� Tti − p⊥

� Tti−1) ≤
N∑

i=1

M(p⊥
� (T ((ti−1, ti) × R

n)))

≤
ˆ

I×Rn

|�T − 〈�T , e〉e| d‖T‖ =

ˆ
I×Rn

√
1 − 〈�T , e〉2 d‖T‖

≤
√

2

ˆ
I×Rn

√
1 − 〈�T , e〉 d‖T‖

≤
√

2 (‖T‖(I × R
n) − ‖p�T‖(I × R

n))
1
2 (‖T‖(I × R

n))
1
2

≤
√

2(eT (I))
1
2 (‖T‖(I × R

n))
1
2 ,

where the first inequality has been deduced analogously to (10.3), and the last one
follows from ‖p�T‖p ≤ ‖p�T‖ as measures. This shows (10.1) and concludes the
proof.

11 Comparison between distances

Another delicate point in the proof of Proposition 9.6 is that Lemma 10.3 is not
powerful enough to guarantee the Lipschitz continuity of the approximating map u.
To that aim, we shall need to combine the Jerrard-Soner type estimate (10.1) with
the result of Proposition 11.1 below.

Let Q and p be positive integers with Q ≤ p
2 , and fix any A, B ∈ AQ(Rn). Observe

that A, B ∈ F0(Rn). Furthermore, the flat chain A−B is an element of the subgroup
X of Definition 10.1, so that we can compute F(A − B). Next, let us consider the
flat chain A + B. In the case when Q = p

2 , we claim that A + B ∈ X̃p, so that we
can compute Fp(A + B). Indeed, fix any z ∈ R

n, and let hz : (0, 1) × R
n → R

n be
the function defined by

hz(t, x) := z + t(x− z).

Then, the cone over A + B with vertex z, that is the 1-dimensional integral current
R given by

R := z ×× (A + B) := (hz)�(�(0, 1)�× (A + B))

satisfies

∂R = A + B − 2Q �z� = A + B − p �z� ,

which proves our claim. Furthermore, the above argument also shows that

Fp(A + B) ≤M(R) = F(A−Q �z�) + F(B −Q �z�) . (11.1)

Having this in mind, we extend the norm F to A + B by setting

F(A + B) := inf
z∈Rn

{F(A−Q�z�) + F(B −Q�z�)} when Q =
p

2
, (11.2)
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so that (11.1) implies that

Fp(A + B) ≤ F(A + B) for every A, B ∈ AQ(Rn) when Q =
p

2
. (11.3)

The following result holds.

Proposition 11.1. Let p and Q be positive integers with Q ≤ p
2 . Let A :=

∑Q
i=1�Ai�

and B :=
∑Q

i=1�Bi� in AQ(Rn), and let σ ∈ {−1, 1}. If

(a) either σ = 1,
(b) or σ = −1 and Q = p

2 ,

then

Fp(A− σB) = F(A− σB) . (11.4)

The proof of Proposition 11.1 hinges upon a simple combinatorial argument.
However, in order not to divert attention away from the proof of Proposition 9.6,
we postpone it to “Appendix A”.

12 Proof of Proposition 9.6

Since the statement is scaling and translation invariant, there is no loss of generality
in assuming x = 0 and s = 1. Consider the slices Tx := 〈T,p, x〉 ∈ R0(Rm+n) for
a.e. x ∈ R

m × {0} and use [Fed69, Theorem 4.3.2(2)] and [AFP00, Corollary 2.23]
to conclude that

M(Tx) ≤ lim
r→0

‖T‖(Cr(x))
ωmrm

≤meT (x) + Q for a.e. x. (12.1)

Now, since meT (x) ≤ δ < 1 for every x ∈ K, we conclude that M(Tx) < Q + 1
for a.e. x ∈ K. On the other hand, setting M(x) := M(Tx) for x ∈ B4 we have the
simple inequality

ML m B4 ≥ ‖p�T‖ ≥ ‖p�T‖p = QL m B4 , (12.2)

so that we deduce

M(Tx) = M(x) ≥ Q for a.e. x ∈ B4 . (12.3)

From (12.1) and (12.3) we infer then that M(Tx) = Q for a.e. x ∈ K. Hence,
there are Q functions gi : K → R

n such that p⊥
� Tx =

∑Q
i=1 σi(x) �gi(x)� for a.e.

x ∈ K, with σi(x) ∈ {−1, 1}. In fact, since ‖p�T‖ ≥ QL m B4, the values of σi(x),
for fixed x, are independent of i, and thus p⊥

� Tx = σ(x)
∑Q

i=1�gi(x)�. Furthermore,
since p�T = Q�B4� mod(p), it has to be σ(x)Q ≡ Q mod(p) as integers. We therefore
have to distinguish between two cases:
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(A) Q < p
2 . In this case, the condition σ(x)Q ≡ Q mod(p) is satisfied if and

only if σ(x) = 1. Hence, the functions gi allow to define a measurable map
g : K → AQ(Rn) by setting

g(x) :=
Q∑

i=1

�gi(x)� .

(B) Q = p
2 . In this case, any measurable choice of σ : K → {−1, 1} would satisfy

the condition σ(x)Q ≡ Q mod(p). On the other hand

g(x) :=

(
Q∑

i=1

�gi(x)�, σ(x)

)

defines a measurable function g : K → AQ(Rn).

12.1 Lipschitz estimate. Fix j∈{1, . . . , m}, and let p̂j : R
m+n → R

m−1 be the
orthogonal projection onto the (m−1)-plane given by span(e1, . . . , ej−1, ej+1, . . . , em).
For almost every z ∈ R

m−1, consider the one-dimensional slice T j
z := 〈T, p̂j , z〉, and

observe that

ˆ
Rm−1

M(T j
z ) dz ≤M(T ).

Observe that T j
z satisfies Assumption 9.1 with m = 1 for a.e. z. Let now pj be

the orthogonal projection pj : R
m+n → span(ej), and for almost every t ∈ R let(

T j
z

)
t

:= 〈T j
z ,pj , t〉. By Lemma 10.3, the map Φj

z : t �→ p⊥
�

(
T j

z

)
t

is BV (R, Xp),
and moreover

|DΦj
z|(I)2 ≤ 2eT j

z
(I)‖T j

z ‖(I × R
n) for every Borel set I ⊂ B4 ∩ span(ej). (12.4)

Now, observe that

Φj
z(t) = p⊥

�

(
T j

z

)
t
= p⊥

� 〈〈T, p̂j , z〉,pj , t〉 = (−1)m−jp⊥
� 〈T,p, x(j, z, t)〉

= (−1)m−jp⊥
� Tx(j,z,t),

where x(j, z, t) := (z1, . . . , zj−1, t, zj+1, . . . , zm) ∈ R
m. By [DPH12, formula (79)], we

can therefore conclude that the map Φ: x ∈ R
m �→ p⊥

� Tx is in BV (Rm, Xp). Further-
more, if for every Borel set A ⊂ B4, for every j ∈ {1, . . . , m}
and for every z = (z1, . . . , zj−1, zj+1, . . . , zm) ∈ R

m−1 we denote
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Aj
z := {t ∈ R : (z1, . . . , zj−1, t, zj+1, . . . , zm) ∈ A}, we have

|DΦ|(A) ≤
m∑

j=1

ˆ
Rm−1

|DΦj
z|(Aj

z) dz

(10.1)

≤
√

2
m∑

j=1

ˆ
Rm−1

(
eT j

z
(Aj

z)
) 1

2
(‖T j

z ‖(Aj
z × R

n)
) 1

2 dz

≤
√

2
m∑

j=1

(ˆ
Rm−1

eT j
z
(Aj

z) dz

) 1
2
(ˆ

Rm−1

‖T j
z ‖(Aj

z × R
n) dz

) 1
2

≤
√

2m (eT (A))
1
2 (‖T‖(A× R

n))
1
2 .

(12.5)

Thus, from the definition of excess measure modulo p we deduce

|DΦ|(Br(y))2 ≤ 2m2eT (Br(y)) (Q|Br(y)|+ eT (Br(y))) ,

for any Br(y) ⊂ B4. Hence, if we define the maximal function

m|DΦ|(x) := sup
x∈Br(y)⊂B4

|DΦ|(Br(y))
|Br(y)| ,

we can conclude that

(m|DΦ|(x))2 ≤ 2m2
(
QmeT (x) + (meT (x))2

) ≤ Cδ for every x ∈ K.

By [AK00, Lemma 7.3], one immediately obtains

Fp(Φ(x)− Φ(y)) ≤ Cδ
1/2|x− y| for every x, y ∈ K Lebesgue point of Φ.

On the other hand, for a.e. x ∈ K we can regard Φ(x) = g(x) ∈ AQ(Rn) if Q < p
2 or

Φ(x) = σ(x)g0(x) with σ(x) ∈ {−1, 1} and g0(x) ∈ AQ(Rn) if Q = p
2 . In any case,

Proposition 11.1 implies that in fact

F(Φ(x)− Φ(y)) ≤ Cδ
1/2|x− y| for every x, y ∈ K Lebesgue point of Φ.

Now, first consider the case Q < p
2 . Writing Φ(·) = g(·), we observe that

F(g(x)− g(y)) = min
σ∈PQ

Q∑
i=1

|gi(x)− gσ(i)(y)| ≥ min
σ∈PQ

(
Q∑

i=1

|gi(x)− gσ(i)(y)|2
)1/2

= G(g(x), g(y)),

where PQ denotes the group of permutations of {1, . . . , Q}.
If Q = p

2 , instead, we have Φ(·) = σ(·)g0(·). If σ(x) = σ(y), then the same
computation produces

F(σ(x)g0(x)− σ(y)g0(y)) ≥ G(g0(x), g0(y)) = Gs(g(x), g(y)).
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If, on the other hand, σ(x) �= σ(y), and to fix the ideas say that σ(x) = 1 and
σ(y) = −1, then

F(g0(x) + g0(y)) : = inf
z∈Rn

{F(g0(x)−Q�z�) + F(g0(y)−Q�z�)}
≥ inf

z∈Rn
{G(g0(x), Q�z�) + G(g0(y), Q�z�)}

≥ inf
z∈Rn

(G(g0(x), Q�z�)2 + G(g0(y), Q�z�)2
)1/2

.

Now observe that

G(g0(x), Q�z�)2 + G(g0(y), Q�z�)2

= |g0(x)� η ◦ g0(x)|2 + |g0(y)� η ◦ g0(y)|2 + Q|η ◦ g0(x)− z|2 + Q|η ◦ g0(y)− z|2 .

Thus

inf
z∈Rn

(G(g0(x), Q�z�)2 + G(g0(y), Q�z�)2
)

= |g0(x)� η ◦ g0(x)|2 + |g0(y)� η ◦ g0(y)|2 +
Q

2
|η ◦ g0(x)− η ◦ g0(y)|2 .

≥ 1
2
Gs(g0(x), g0(y))2 .

This shows that g ∈ Lip(K,AQ(Rn)) (resp. g ∈ Lip(K,AQ(Rn)) with Lip(g) ≤
Cδ1/2.

12.2 Conclusion. Next, in case Q < p
2 , write

g(x) =
∑

i

�(hi(x), Ψ(x, hi(x)))�.

Obviously, x �→ h(x) :=
∑

i�hi(x)� ∈ AQ(Rn̄) is a Lipschitz map on K with Lipschitz
constant ≤ C δ1/2. Recalling [DLS11, Theorem 1.7], we can extend it to a map h̄ ∈
Lip(B3,AQ(Rn̄)) satisfying Lip(h̄) ≤ C δ1/2 (for a possibly larger C) and osc (h̄) ≤
Cosc (h). Finally, set

u(x) :=
∑

i

�(h̄i(x), Ψ(x, h̄i(x)))�.

The same computations of [DLS14, Section 3.2] then show the Lipschitz and the
oscillation bound in Claim (ii) of the Proposition.

For Q = p
2 we argue analogously, using this time the Extension Corollary [DLHMS,

Corollary 5.3] in place of [DLS11, Theorem 1.7].
Note that the points (i) and (iii) of the proposition are obvious by construction.

Next observe that, since meT is lower semicontinuous, K is obviously closed. Let
U := {meT > δ} be its complement. Fix r ≤ 3 and for every point x ∈ U ∩ Br
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consider a ball Bx of radius r(x) which contains x and satisfies eT (Bx) > δωmr(x)m.
Since eT (Bx) ≤ E we obviously have

r(x) < m

√
E

ωmδ
< r0 < 1 .

Now, by the definition of the maximal function it follows clearly that Bx ⊂ U∩Br+r0 .
In turn, by the 5r covering theorem we can select countably many pairwise disjoint
Bxi such that the corresponding concentric balls B̂i with radii 5r(xi) cover U ∩Br.
Then we get

|U ∩Br| ≤ 5m
∑

i

ωmr(xi)m ≤ 5m

δ

∑
i

eT (Bxi) ≤ 5m

δ
eT (U ∩Br+r0) .

This shows claim (iv) of the proposition and completes the proof.

13 First harmonic approximation

Remark 13.1. (Good system of coordinates) Let T be as in Assumption 9.1 in the
cylinder C4r(x). If the excess E = E(T,C4r(x)) is smaller than a geometric constant,
then without loss of generality we can assume that the function Ψ: R

m+n̄ → R
l

parametrizing the manifold Σ satisfies Ψ(0) = 0, ‖DΨ‖0 ≤ C(E1/2 + rA) and
‖D2Ψ‖0 ≤ CA. This can be shown using a small variation of the argument outlined
in [DLS14, Remark 2.5]. First of all, as anticipated in Remark 9.3, we introduce a
suitable notion of nonoriented excess. Given the plane π0 we consider the m-vector
�π0 of mass 1 which gives the standard orientation to it. We then let

|�T (y)− π0|no := min{|�T (y)− �π0|, |�T (y) + �π0|} , (13.1)

where | · | is the norm associated to the standard inner product on the space Λm(Rm+n)
of m-vectors in R

m+n, and define

Eno(T,C4r(x)) =
1

2ωm(4r)m

ˆ
C4r(x)

|�T (y)− π0|2no d‖T‖(y) . (13.2)

Consider next the orthogonal projection p : R
m+n → π0 and the corresponding

slices 〈T,p, y〉 with y ∈ B4r(x). For a.e. y, such a slice is an integral 0-dimensional
current and we let M(y) ∈ N be its mass. Once again (cf. (12.2)), we observe that
under the Assumption 9.1 we have

ML m B4r(x) ≥ ‖p�T‖ ≥ ‖p�T‖p = QL m B4r(x) .
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Thus, an elementary computation gives

Eno(T,C4r(x)) =
1

ωm(4r)m

(
‖T‖(C4r(x))−

ˆ
B4r(x)

M(y) dy

)

≤ 1
ωm(4r)m

(‖T‖(C4r(x))− ‖p�T‖(C4r(x)))

≤ 1
ωm(4r)m

(‖T‖(C4r(x))− ‖p�T‖p(C4r(x)))

= E(T,C4r(x)) = E .

At this point we find clearly a point q ∈ spt(T ) ∩C4r(x) such that

min{|�T (q)− �π0|, |�T (q)− (−�π0)|} ≤ CE
1/2

and we can proceed with the very same argument of [DLS14, Remark 3.5].

Definition 13.2 (Eβ-Lipschitz approximation). Let β ∈ (0, 1
2m

)
, let T be as in

Proposition 9.6 such that 32E
1−2β

m < 1. If the coordinates are fixed as in Remark 13.1,
then the Lipschitz approximation of T provided by Proposition 9.6 corresponding
to the choice δ = E2β will be called the Eβ-Lipschitz approximation of T in C3s(x).

In the following theorem, we show that the minimality assumption on the current
T and the smallness of the excess imply that the Eβ-Lipschitz approximation of T
in C3s(x) is close to a Dirichlet minimizer h, and we quantify the distance between
u and h in terms of the excess.

Theorem 13.3. For every η∗ > 0 and every β ∈ (0, 1
2m) there exist constants ε∗ > 0

and C > 0 with the following property. Let T and Ψ be as in Assumption 9.1 in the
cylinder C4s(x), and assume that T is area minimizing mod(p) in there. Let u be
the Eβ-Lipschitz approximation of T in B3s(x), and let K be the set satisfying all

the properties of Proposition 9.6 for δ = E2β . If E ≤ ε∗ and sA ≤ ε∗E
1
2 , then

eT (B5s/2 \K) ≤ η∗Esm , (13.3)

and
Dir(u, B2s(x) \K) ≤ Cη∗Esm . (13.4)

Moreover, there exists a map h defined on B3s(x) and taking either values inAQ(Rn),
if Q < p

2 , or in AQ(Rn), if Q = p
2 , for which the following facts hold:

(i) h(x) = (h̄(x), Ψ(x, h̄(x)) with h̄ Dirichlet minimizing;
(ii)

s−2

ˆ
B2s(x)

Gs(u, h)2 +
ˆ

B2s(x)
(|Du| − |Dh|)2 ≤ η∗Esm, (13.5)

ˆ
B2s(x)

|D(η ◦ u)−D(η ◦ h)|2 ≤ η∗Esm . (13.6)
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Remark 13.4. There exists a dimensional constant c such that, if E ≤ c and sA ≤
E1/2, then the Eβ-Lipschitz approximation u of T in C3s(x) satisfies:

Lip(u) ≤ C Eβ , (13.7)
Dir(u, B3s(x)) ≤ C E sm . (13.8)

Equation (13.7) follows from property (ii) of the Lipschitz approximation in
Proposition 9.6, the choice of δ = E2β , and the scaling of A. The estimate in
(13.8), instead, is a consequence of the Taylor expansion of the mass of multiple
valued graphs deduced in [DLHMS, Corollary 13.2]. Indeed, the remainder term in
equation [DLHMS, Equation (13.5)] can be estimated by
ˆ

B3s(x)

∑
i

R̄4(Dui) ≤ C

ˆ
B3s(x)

|Du|4 ≤ C E2β Dir(u, B3s(x)) <
1
4

Dir(u, B3s(x))

for suitably small E. Hence, [DLHMS, Equation (13.5)] yields

1
4
Dir(u, B3s(x)) ≤ ‖Gu‖(C3s(x))−Qωm(3s)m

≤ (‖T‖(C3s(x))−Qωm(3s)m) + ‖Gu‖((B3s(x) \K)× R
n)

≤ ωm E (3s)m + C E2β |B3s(x) \K| ≤ C E sm

by property (iv) in Proposition 9.6.

Proof. Let us first observe that (13.3) implies (13.4): indeed, the estimate (9.5)
implies:

Dir(u, B2s(x) \K) ≤ Lip(u)2|B2s(x) \K| ≤ C eT (B 5
2
s(x) \K).

Then, note that we can embed AQ(Rn) naturally and isometrically into AQ(Rn)
using the map T ∈ AQ(Rn) �→ (T, 1). Hence, without loss of generality we may
assume that u takes values in AQ(Rn). Furthermore, each Lipschitz approximation
is of the form u(x) = (ū(x), Ψ(x, ū)) with ū taking values in AQ(Rn̄).

Finally, since the statement is scale invariant we may assume x = 0 and s = 1.
We will now show the following.
Given any sequence of currents Tk supported in manifolds Σk = Gr(Ψk) and

corresponding Lipschitz approximations uk satisfying all the assumptions in B3 with

Ek → 0 and Ak = o(E
1
2
k ) as k →∞,

then the following conclusions hold:

(i)

eTk
(B 5

2
\Kk) = o(Ek).
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(ii) One of the following holds true: either there is a single Dirichlet minimzing
map h̄ ∈W 1,2(B 5

2
,AQ(Rn̄)) such that

ˆ
Bs

Gs(E
− 1

2
k ūk, h̄)2 +

(
E

− 1
2

k |Dūk| − |Dh̄|
)2

= o(1) for all s <
5
2
;

or there are Dirichlet minimizing maps hj ∈ W 1,2(B 5
2
,AQj

(Rn̄) with j =
1, . . . , J ,

∑
j Qj = Q, and sequences {yj,k}k∈N ∈ R

n̄ such that if we consider
the sequence of maps in W 1,2(B 5

2
,AQ(Rn̄)) given by

h̄k :=

⎛
⎝∑

j

�yj,k ⊕ hj� , σ

⎞
⎠

with σ ∈ {−1, 1} fixed we have
ˆ

Bs

Gs(E
− 1

2
k ūk, h̄k)2 +

(
E

− 1
2

k |Dūk| − |Dh̄k|
)2

= o(1) for all s <
5
2
.

For sufficiently large k the conclusion of the Theorem therefore holds, since we can
replace in point (ii) ūk by uk and h̄k by hk = (h̄k, E

− 1
2

k Ψk(·, E
1
2
k h̄k)). This can be

seen as follows. Recall that by remark 13.1, we have ‖DΨk‖0 +
∥∥D2Ψk

∥∥
0

= O(E
1
2
k ).

As a first step, we may replace in (ii) (E
− 1

2
k |Dūk| − |Dh̄|)2 by |E−1

k |Dūk|2 − |Dh̄|2|.
Indeed, for any sequence of non-negative measurable functions ak, bk we haveˆ

|ak − bk|2 ≤
ˆ
|a2

k − b2
k| =

ˆ
|ak + bk| |ak − bk|

≤ 2
(ˆ

|bk|2
) 1

2
(ˆ

|ak − bk|2
) 1

2

+
ˆ
|ak − bk|2 ;

hence ‖ak − bk‖2 = o(1) if and only if
∥∥(ak)2 − (bk)2

∥∥
1

= o(1). Thus it remains to

show that E−1
k

´
Bs

∣∣∣|DΨk(·, ūk)|2 − |DΨk(·, E
1
2
k h̄k)|2

∣∣∣ is o(1). We compute explicitly:

Q∑
i=1

E−1
k

ˆ
Bs

∣∣∣|DΨk(·, ūi
k)|2 − |DΨk(·, E

1
2
k h̄i

k)|2
∣∣∣

=

Q∑
i=1

E−1
k

ˆ
Bs

∣∣|DxΨk(·, ūi
k) + DyΨ(x, ūi

k) Dūi
k|2

−|DxΨk(·, E
1
2
k h̄i

k) + DyΨ(x, E
1
2
k h̄i

k) E
1
2 Dh̄i

k|2
∣∣∣

≤
Q∑

i=1

ˆ
Bs

E−1
k

∣∣∣|DxΨk(·, ūi
k))|2 − |DxΨk(·, E

1
2
k h̄i

k)|2
∣∣∣

+ E
− 1

2
k C1

k(x)

(
E

− 1
2

k |Dūi
k| +

ˆ
Bs

E−1
k |Dūi

k|2
)

+ E
− 1

2
k C2

k(x)

(
|Dh̄i

k| +

ˆ
Bs

E
1
2
k |Dh̄i

k|2
)

,
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where the measurable functions Cj
k(x), j = 1, 2, consist of a product of two first

derivatives of Ψk, and hence
∥∥∥Cj

k

∥∥∥
0

= O(Ek)). Since E−1
k Dir(ūk, B 5

2
), Dir(h̄k, B 5

2
)

are uniformly bounded by (13.8), the last two integrals are o(1).
The remaining term can be estimated by

ˆ
Bs

Q∑
i=1

E−1
k

∣∣∣|DxΨk(·, ūi
k))|2 − |DxΨk(·, E

1
2
k h̄i

k)|2
∣∣∣

≤
ˆ

Bs

Q∑
i=1

E
− 1

2
k

∣∣∣DxΨk(·, ūi
k) + DxΨk(·, E

1
2
k h̄i

k)
∣∣∣ E

− 1
2

k

∣∣∣DxΨk(·, ūi
k) − DxΨk(·, E

1
2
k h̄i

k)
∣∣∣

≤ C

ˆ
Bs

E
− 1

2
k ‖DΨk‖0

∥∥D2Ψk

∥∥
0
Gs(E

− 1
2

k ūk, h̄k) = o(1).

13.1 Construction of the maps h̄ or hj . Let ι be the isometry defined in
[DLHMS, Proposition 2.6], and define (v̄k, w̄k, η ◦ ūk) = ι ◦ ūk. As in [DLHMS,
Definition 2.7], we set

Bk
+ := {x ∈ B 5

2
: |v̄k| = |ū+

k � η ◦ ūk| > 0} and

Bk
− := {x ∈ B 5

2
: |w̄k| = |ū−

k � η ◦ ūk| > 0} .

We distinguish if the limit

lim sup
k→∞

min{|Bk
+|, |Bk

−|} =: b

satisfies b > 0 or b = 0.
Case b > 0 : After translating the currents Tk vertically we may assume without

loss of generality that
ffl
B 5

2

η ◦ ūk = 0 for all k. Since both v̄k and w̄k vanish on sets

of measure at least b > 0, we claim that there exists a constant C = Cb such thatˆ
B 5

2

|ūk|2 ≤ Cb Ek . (13.9)

Indeed, observe that the classical Poincaré inequality givesˆ
B 5

2

|ūk|2 =
ˆ

B 5
2

|ūk � η ◦ ūk|2 + Q

ˆ
B 5

2

|η ◦ ūk|2

=
ˆ

B 5
2

|v̄k|2 +
ˆ

B 5
2

|w̄k|2 + Q

ˆ
B 5

2

|η ◦ ūk|2

≤ Cb

ˆ
B 5

2

|D|v̄k||2 + Cb

ˆ
B 5

2

|D|w̄k||2 + Cb

ˆ
B 5

2

|Dη ◦ ūk|2 ≤ Cb Dir(ūk, B 5
2
) ,

which implies (13.9) again by (13.8).
Modulo passing to an appropriate subsequence, we therefore have that

E
− 1

2
k ūk → h̄
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weakly in W 1,2(B 5
2
,AQ(Rn̄)).

Case b = 0 : We assume that |Bk−| → 0, the other case being equivalent. Consider
the map ū+

k in W 1,2(B 5
2
,AQ(Rn̄)). When needed, we may identify ū+

k with (ū+
k , 1)

taking values in AQ(Rn̄). We note that

Dir(ū+
k , B 5

2
) ≤ C Dir(ūk, B 5

2
) ≤ CEk ;

ˆ
B 5

2

Gs(ūk, ū
+
k )2 =

ˆ
Bk

−

|ū−
k � η ◦ ūk|2 ≤ |Bk

−|1− 2
2∗

(ˆ
Bk

−

|ū−
k � η ◦ ūk|2∗

) 2
2∗

≤ C|Bk
−|1− 2

2∗ Ek = o(Ek).

We used in the last line Poincaré’s inequality for ū−
k that is vanishing on a set

of uniformly positive measure. Now we can apply the concentration compactness
lemma, [DLS14, Proposition 4.3], to the sequence E

− 1
2

k ū+
k and deduce the existence

of translating sheets

h̄k =
∑

j

�yj,k ⊕ hj�

with maps hj ∈ W 1,2(B 5
2
,AQj

(Rn̄)) and points yj,k ∈ R
n̄ such that the following

properties are satisfied:∥∥∥Gs(E
− 1

2
k ū+

k , h̄k)
∥∥∥

2
→ 0, (13.10)

lim inf
k→∞

(ˆ
B 5

2
∩Kk

E−1
k |Dū+

k |2 −
ˆ

B 5
2

|Dh̄k|2
)
≥ 0, (13.11)

lim sup
k→∞

ˆ
B 5

2

(
E

− 1
2

k |Dū+
k | − |Dh̄k|

)2

≤ lim sup
k→∞

(
E−1

k Dir(ū+
k , B 5

2
)−Dir(h̄k, B 5

2
)
)

.

(13.12)

13.2 Lipschitz approximation of the competitors to h̄ and hj . We fix a
radius s < 5

2 .
To be able to interpolate later between h̄ (h̄k) and ūk and similarly between the

currents Tk and Guk
, by using a Fubini type argument we may fix s < t < 5

2 such
that for some C > 0 depending on 5

2 − s we have

lim sup
k→∞

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄)2∥∥∥Gs(E
− 1

2
k ūk, h̄)

∥∥∥
2

2

+ E−1
k |Dūk|2 + |Dh̄|2 ≤ C in case b > 0 ,

(13.13)

lim sup
k→∞

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄k)2∥∥∥Gs(E
− 1

2
k ūk, h̄k)

∥∥∥
2

2

+ E−1
k |Dūk|2 + |Dh̄k|2 ≤ C in case b = 0 ,

(13.14)
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Mp(〈Tk −Guk
, f, t〉) ≤ CMp((Tk −Guk

) C3) ≤ CE1−2β
k , (13.15)

where, in (13.15), f is the function defined by f(y, z) := |y| for (y, z) ∈ π0×π⊥
0 . Also,

in (13.14) we identified as before h̄k with the map (h̄k, 1) taking values in AQ(Rn̄)
and used (13.10); in (13.15) we used the conclusions of Proposition 9.6 as well as
the Taylor expansion in [DLHMS, Equation (13.5)].

Now let us fix an arbitrary ε > 0.
Case b > 0: Given any competitor c̄ ∈W 1,2(B 5

2
,AQ(Rn̄)) to h̄ that agrees with h̄

outside of Bs, we may apply the Lipschitz approximation Lemma for special multi-
valued maps [DLHMS, Lemma 5.5] to h̄ and c̄ in order to obtain Lipschitz continuous
maps h̄ε and c̄ε for which the inequalities [DLHMS, Equations (5.20) & (5.21)] hold
true with ε2 in place of ε.

Case b = 0: We apply the same procedure as in the case of b > 0. Given
competitors cj ∈ W 1,2(B 5

2
,AQj

(Rn̄)) to hj that agree with hj outside of Bs we
may apply the Lipschitz approximation lemma to each hj and cj in order to obtain
Lipschitz continuous maps hε

j and cε
j such that the inequalities [DLHMS, Equations

(5.20) & (5.21)] hold true with ε2 in place of ε. Furthermore we define

h̄ε
k :=

∑
j

�
yj,k ⊕ hε

j

�
,

c̄ε
k :=

∑
j

�
yj,k ⊕ cε

j

�
.

13.3 Interpolating functions. The argument below does not distinguish be-
tween the cases b > 0, b = 0. To handle them simultaneously, we just consider the
trivial sequence h̄k = h̄ in the case when b > 0.

For each k we fix now an interpolating map ϕk ∈W 1,2(Bt \B(1−ε)t,AQ(Rn̄)) by
means of Luckhaus’ Lemma [DLHMS, Lemma 5.4] such that

ϕk(x) = E
− 1

2
k ūk(x) and ϕk((1− ε)x) = h̄ε

k(x) for all x ∈ ∂Bt,ˆ
Bt\B(1−ε)t

|Dϕk|2 ≤ Cε

(ˆ
∂Bt

E−1
k |Dūk|2 + |Dh̄ε

k|2
)

+
C

ε

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄

ε
k)

2.

Observe that by our choice of the Lipschitz approximation h̄ε
k we have

ˆ
Bt\B(1−ε)t

|Dϕk|2 ≤ Cε for large k (depending on ε) . (13.16)

Moreover, observe that, by construction, lim supk→∞ Lip(h̄ε
k) ≤ C∗

ε , where C∗
ε is

a constant depending on ε but independent of k. Also, again for large values of k
(depending on our fixed ε):

∥∥∥Gs(E
−1/2
k ūk, h̄ε

k)
∥∥∥

L∞(∂Bt)
≤ C

∥∥∥Gs(E
−1/2
k ūk, h̄ε

k)
∥∥∥

L2(∂Bt)
+ C Lip(E

−1/2
k ūk) + C Lip(h̄ε

k)

≤ C ε + C E
β−1/2
k + C∗

ε .
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Hence, from [DLHMS, Equation (5.19)] we conclude that

Lip(ϕk) ≤ Cε E
β−1/2
k + Cε ≤ Cε E

β−1/2
k , (13.17)

where the last inequality is a consequence of the fact that E
β−1/2
k →∞ as k ↑ ∞.

In particular we can define competitors to E
− 1

2
k ūk on Bt by

ĉk(x) :=

{
ϕk(x) for (1− ε)t ≤ |x| ≤ t,

c̄ε
k(

x
1−ε) for |x| ≤ (1− ε)t.

We observe that by our construction we have

lim inf
k→∞

E−1
k Dir(ūk, Bt ∩Kk)−Dir(ĉk, Bt) ≥

⎛
⎝∑

j

Dir(hj , Bt)−Dir(cj , Bt)

⎞
⎠− Cε.

(13.18)
We have used (13.11), the closeness of the Dirichlet energies of cj and cε

j and (13.16).
As we have seen in the calculations below point (ii) above, we can use the fact that

‖DΨk‖0 +
∥∥D2Ψk

∥∥
0

= O(E
1
2
k ) to pass to uk and wk = (E

1
2
k ĉk, Ψk(·, E

1
2
k ĉk)) still

satisfying

lim inf
k→∞

E−1
k (Dir(uk, Bt ∩Kk)−Dir(wk, Bt)) ≥

⎛
⎝∑

j

Dir(hj , Bt)−Dir(cj , Bt)

⎞
⎠−Cε.

(13.19)

13.4 Interpolating Currents. By our choice of t, (13.15), and the fact that
the boundary operator commutes with slicing we have

∂p〈Tk −Guk
, f, t〉 = 0.

Using [Fed69, (4.2.10)ν ], we can fix an isoperimetric filling Sk, which can be assumed
to be representative mod(p), such that

∂Sk = 〈Tk −Guk
, f, t〉mod(p)

and

M(Sk) = Mp(Sk) ≤ CMp(〈Tk −Guk
, f, t〉) m

m−1 ≤ C E
m(1−2β)

m−1

k = o(Ek)

by the choice of β.
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13.5 Dirichlet minimality. We can now finally define a competitor to Tk by

Zk := Tk (C4 \Ct) + Sk + Gwk
.

Observe that, by the hypotheses on Tk, Lemma 6.1, and the choice of Sk, we have

∂pZk = − [〈Tk, f, t〉] + [〈Tk −Guk
, f, t〉] + [〈Guk

, f, t〉] = 0 .

Let us observe that by construction, and using once again the Taylor expansion of
the mass of a special multi-valued graph [DLHMS, Equation (13.5)], we compute:

eTk
(Bt)− 1

2
Dir(uk, Bt ∩Kk) = eTk

(Bt \Kk) + o(Ek) ,

eZk
(Bt)− 1

2
Dir(wk, Bt) ≤M(Sk) + eGwk

(Bt)− 1
2
Dir(wk, Bt) ≤ o(Ek) ,

where in the last equality we have used that Dir(wk, Bt) = O(Ek) whereas Lip(wk) ≤
Cε Eβ

k , so that

eGwk
− 1

2
Dir(wk, Bt) =

ˆ
Bt

∑
i

R̄4(Dwi
k) ≤ C E1+2β

k = o(Ek) as k ↑ ∞ .

By minimality of Tk in C3 we then have

0 ≥M(Tk C3)−M(Zk C3)
= eTk

(Bt)− eZk
(Bt)

≥ 1
2

(Dir(uk, Bt ∩Kk)−Dir(wk, Bt)) + eTk
(Bt \Kk)− o(Ek) .

Hence dividing by Ek and taking the lim sup as k →∞ we deduce by (13.19)

0 ≥ 1
2

⎛
⎝∑

j

Dir(hj , Bt)−Dir(cj , Bt)

⎞
⎠+ lim sup

k→∞
E−1

k eTk
(Bt \Kk).

Since ε is arbitrary:

(i) Choosing cj = hj , we see that lim supk→∞ E−1
k eTk

(Bt \Kk) = 0.
(ii) By the arbitrariness of cj we conclude the Dirichlet minimality of hj . After-

wards by (13.11) we deduce that lim supk→∞ E−1
k Dir(uk, Bt∩Kt)−Dir(hk, Bt) =

0. In combination with (13.12) we obtain the second part of (ii), thus complet-
ing the proof.



GAFA REGULARITY OF AREA MINIMIZING CURRENTS MOD p

14 Improved excess estimate and higher integrability

So far, Proposition 9.6 and Theorem 13.3 have shown that if T is as in Assump-
tion 9.1 then there is a Lipschitz continuous multiple valued function (possibly spe-
cial, in case p is an even integer and Q = p

2) whose graph coincides with the current in
a region where the excess measure is suitably small in a uniform sense; furthermore,
if T is also area minimizing mod(p) then such an approximating Lipschitz multiple
valued function is almost Dirichlet minimizing, and both the Dirichlet energy of the
approximating function and the excess of the original current in the “bad region”
decay faster than the excess. The goal of this section is to exploit the closeness of
the Lipschitz approximation to a Dir-minimizer in order to deduce extra information
concerning the behavior of the excess measure of T . We begin observing that the
classical result on the higher integrability of the gradient of a harmonic function
extends not only to classical multiple valued functions, as it is shown in [DLS14,
Theorem 6.1], but also to special multiple valued functions.

Theorem 14.1. There exists p > 2 such that for every Ω′ � Ω ⊂ R
m open domains,

there is a constant C > 0 such that

‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) for every Dir-minimizing u ∈W 1,2(Ω,AQ(Rn)).

Proof. The proof is the very same presented in [DLS14, Theorem 6.1]: one only has
to replace the Almgren embedding ξ for AQ(Rn) used in there with the new version
of the Almgren embedding ζ for AQ(Rn) introduced in [DLHMS, Theorem 5.1].

As a direct corollary of the first harmonic approximation and the higher integra-
bility of the gradient we obtain the following result.

Corollary 14.2. For every η > 0 there exist an ε > 0 and a constant C > 0 with
the property that, if T satisfies Assumption 9.1 and is area minimzing mod(p) in the
cylinder C4s(x) with E ≤ ε then for every A ⊂ Bs with |A ∩Bs| ≤ ε|Bs| we have

eT (A) ≤ (ηE + CA2s2
)
sm. (14.1)

Proof. By scaling and translating we may assume without loss of generality that
x = 0 and s = 1. We fix β = 1

4m and η∗ > 0 to be determined below. Now let
ε∗ = ε∗(β, η∗) taken from Theorem 13.3. We distinguish the following two cases:
either A ≤ ε∗E

1
2 or A > ε∗E

1
2 . In the latter case the inequality holds trivially with

C = ε−2∗ because

eT (A) ≤ E ≤ ε−2
∗ A2.

In the first case, we can apply the first harmonic approximation, Theorem 13.3. Now
let h(x) = (h̄(x), Ψ(x, h̄(x))), with h̄ Dirichlet minimizing, the associated map as in
(i). By (13.3) we directly conclude that

eT (A \K) ≤ η∗E , (14.2)
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where K is, as usual, the “good set” for the Eβ-Lipschitz approximation of T in C3

as in Proposition 9.6. In order to estimate the eT measure of the portion of A inside
K, we observe that

∣∣∣∣eT (A ∩ K) − 1

2

ˆ
A∩K

|Dh|2
∣∣∣∣ =
∣∣∣∣eG u(A ∩ K) − 1

2

ˆ
A∩K

|Dh|2
∣∣∣∣

≤
∣∣∣∣eG u(A ∩ K) − 1

2

ˆ
A∩K

|Du|2
∣∣∣∣+

1

2

∣∣∣∣
ˆ

A∩K

|Du|2 − |Dh|2
∣∣∣∣

=: I + II.

The first addendum can be bounded by the Taylor expansion of mass by

I ≤ C Lip(u)2
ˆ

A∩K
|Du|2 ≤ CE1+2β ;

the second can be estimated using (13.5) and |Du|2− |Dh|2 = (|Du|+ |Dh|)(|Du| −
|Dh|) by

II ≤ C

(ˆ
A∩K

|Du|2 + |Dh|2
) 1

2
(ˆ

A∩K
(|Du| − |Dh|)2

) 1
2

≤ Cη
1
2∗ E.

Recall that A ≤ ε∗E
1
2 implies that ‖DΨ‖ ≤ C E

1
2 . Hence we have

ˆ
A∩K

|Dh|2 =
ˆ

A∩K
|Dh̄|2 + |DxΨ(x, h̄) + DyΨ(x, h̄)Dh̄|2

≤ (1 + C E)
ˆ

A∩K
|Dh̄|2 + C E|A ∩K|.

Using the higher integrability for Dirichlet minimizers we can estimate further

ˆ
A∩K

|Dh̄|2 ≤ |A ∩K|1− 2
p

(ˆ
A∩K

|Dh̄|p
) 2

p

≤ C|A ∩K|1− 2
p

ˆ
B2

|Dh̄|2 ≤ C|A ∩K|1− 2
p E.

Collecting all the estimates we get in conclusion

eT (A) ≤ eT (A \K) +
∣∣∣∣eT (A ∩K)− 1

2

ˆ
A∩K

|Dh|2
∣∣∣∣+

1
2

ˆ
A∩K

|Dh|2

≤
(
η∗ + CE2β + Cη

1
2∗ + C|A ∩K|1− 2

p

)
E.

Hence, the estimate in (14.1) follows also in this case after suitably choosing ε and
η∗ depending on η.
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For the following proof, we introduce the centered maximal function for a general
radon measure μ on R

m by setting

mcμ(x) := sup
s≥0

μ(Bs(x))
ωmsm

.

Observe that one has the straightforward comparison between the centered and
non-centered maximal functions

mcμ(x) ≤mμ(x) ≤ 2m mcμ(x).

Although the two quantities are therefore comparable, we decided to work for this
proof with the centered version since in our opinion the geometric idea becomes
more easily accessible. Furthermore we note that since the map x �→ μ(Bs(x))

ωm sm is
lower semicontinuous, x �→ mcμ(x) is lower semicontinuous as it is the supremum
of a family of lower semicontinuous functions.

Theorem 14.3. There exist constants 0 < q < 1, C, ε > 0 with the following prop-
erty. If T is area minimzing mod(p) in the cylinder C4 and satisfies Assumption 9.1
with E ≤ ε then ˆ

B2

(min{mce, 1})q de ≤ CeCA2
E1+q. (14.3)

In particular this implies the following estimate
ˆ

B2∩{mce≤1}
(mce)q de ≤ CeCA2

E1+q.

Remark 14.4. Observe that the excess measure e can be decomposed as

e = dL m + esing ,

where L m denotes the Lebesgue measure in R
m, esing ⊥ L m and d is the excess

density as in Definition 9.2. Since d(x) ≤mce(x) for every x ∈ B2, we have
ˆ

B2

(min{mce, 1})q de ≥
ˆ

B2

(min{d, 1})q de ≥
ˆ

B2

(min{d, 1})q d dx ,

so that formula (14.3) in particular implies the following higher integrability of the
excess density: ˆ

{d≤1}∩B2

d1+q dx ≤ CeCA2
E1+q ≤ CE1+q . (14.4)

Proof. Let us first observe that given any measure μ on R
m we have that, for any

fixed r > 0 and t > 0, if

μ(Bs(x))
ωmsm

≤
(

3
4

)m

t ∀s ≥ 4r,
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then for some constant C depending on m we have

|Br(x) ∩ {y : mcμ(y) > t}| ≤ C

t
μ

(
B4r(x) ∩

{
y : mcμ(y) >

t

2

})
. (14.5)

This can be seen as follows: we first note that for y ∈ Br(x) we have

μ(Bs(y))
ωmsm

≤
⎧⎨
⎩

(
4r
s

)m μ(B4r(x))
ωm(4r)m if s + |x− y| ≤ 4r,(

s+|x−y|
s

)m μ(Bs+|x−y|(x))
ωm(s+|x−y|)m if s + |x− y| ≥ 4r.

Hence, we deduce that if s ≥ 3r then μ(Bs(y))
ωmsm ≤ t: in other words, if μ(Bs(y))

ωmsm > t
then we must have Bs(y) ⊂ B4r(x). This implies that

Br(x) ∩ {y : mcμ(y) ≥ t} = Br(x) ∩ {y : mcμ B4r(x)(y) ≥ t} ,

so that (14.5) follows by a variation of the classical maximal function estimate ap-
plied to μ B4r(x). 2

Furthermore we recall that by classical differentiation theory of radon measures
3 one has as well

μ (Br(x) ∩ {y : mcμ(y) ≤ t}) ≤ t|Br(x) ∩ {y : mcμ(y) ≤ t}|. (14.6)

In what follows, for the sake of simplicity, we will work with the measure e =
e B4, which is defined on the whole R

m.
Step 1: For every η > 0 there exist positive constants λ, ε, C with the property

that if

r := sup
{

s :
e(Bs(x))
ωmsm

≥ t

λ

}
and

t

λ
≤ ε, (14.7)

then

e (Br(x) ∩ {y : mce(y) > t})

≤
(

2 ω−1
m η + CA2

(
2λ

t
e
(

Br(x) ∩
{

y : mce(y) >
t

2λ

}))m+2
m

)

e
(

Br(x) ∩
{

y : mce(y) >
t

2λ

})
. (14.8)

Proof of Step 1: Let η > 0 be given, and let ε > 0 be given by Corollary 14.2
in correspondence with this choice of η. Also fix λ >

(
4
3

)m. By the definition of r

2 The variation in use here can be deduced in a straightforward fashion from the classical estimate
for the whole space: apply the classical estimate (see e.g. [Mat95, Theorem 2.19 (2)]) to the measure
μ̃ := μ {mcμ > t

2
} and note that since μ ≤ μ̃ + t

2
L m we have {mcμ > t} ⊂ {mcμ̃ > t

2
}.

3 Note for each y ∈ Br(x) ∩ {mcμ ≤ t} one has lim infr↓0
μ(Br(y))
|Br(y)| ≤ t, hence (14.6) follows for

instance from [Mat95, Lemma 2.13 (1)].
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and the continuity of measures along increasing and decreasing sequence of sets, we
easily see that

e(Br(x))
ωmrm

=
e(Br(x))
ωmrm

=
t

λ
>

e(Bs(x))
ωmsm

for all s > r. (14.9)

Thus we can apply (14.5) with μ = e, thus deducing that

|Br(x) ∩ {y : mce(y) > t}| ≤ C

t
e
(

B4r(x) ∩
{

y : mce(y) >
t

2

})
≤ C

λ
ωm(4r)m.

Since t
λ ≤ ε, if we choose λ ≥ 4mC

ε then we can apply Corollary 14.2, which, together
with (14.9), yields

e (Br(x) ∩ {y : mce(y) > t}) ≤ ω−1
m 4−mη e(B4r(x)) + CA2rm+2

≤ ω−1
m η e(Br(x)) + CA2rm+2. (14.10)

Using (14.6) and (14.9), namely the identity t
λωmrm = e(Br(x)) we have

e
(

Br(x) ∩
{

y : mce(y) ≤ t

2λ

})
≤ t

2λ
|Br(x)| ≤ 1

2
e(Br(x)).

This implies that

ωmrm =
λ

t
e(Br(x)) ≤ 2λ

t
e
(

Br(x) ∩
{

y : mce(y) >
t

2λ

})
.

Using this estimate in (14.10) we deduce (14.8).
Step 2: For every η > 0 there exist positive constants λ, ε, C such that if

42mE ≤ t

λ
≤ ε and r ≤ 3,

then, setting r̄ := r + 4
(

λE
t

) 1
m , we have

e (Br ∩ {y : mce(y) > t})

≤ cB

(
η + CA2

(
2λE

t

)m+2
m

)
e
(

Br̄ ∩
{

y : mce(y) >
t

2λ

})
, (14.11)

where cB denotes the Besicovitch constant in R
m.

Proof of Step 2: For each x ∈ Br ∩ {y : mce(y) > t} we let

rx := sup
{

s :
e(Bs(x))
ωmsm

≥ t

λ

}
.

We must have 0 < rx ≤ 1
4 , since mce(x) > t ≥ t/λ, and since for each x ∈ B3 we

have

e(Bs(x))
ωmsm

≤ 42mE ≤ t

λ
∀s ≥ 1

4
.
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We apply the Besicovitch covering theorem to the family

B := {Brx
(x) : x ∈ Br ∩ {y : mce(y) > t}}

and obtain sub-collections B1, . . . ,BcB
of balls such that each subfamily is pairwise

disjoint and

Br ∩ {y : mce(y) > t} ⊂
cB⋃
j=1

⋃
Brx(x)∈Bj

Brx
(x) .

Since for each of these balls we have ωm rx
m = λ

t e(Brx
(x)) ≤ λ

t Eωm4m, we
deduce Brx

(x) ⊂ Br̄. Hence the result follows from

e (Br ∩ {y : mce(y) > t}) ≤
cB∑
i=1

∑
Brx(x)∈Bi

e (Brx
(x) ∩ {y : mce(y) > t}) ,

where we used that by Step 1 e(∂Brx
(x) = 0 for each of these balls, and then

applying (14.8) of Step 1 to each.
Step 3: For every η > 0 there are constants C, λ, ε such that for every k ≥ 2

with

(2λ)kE ≤ ε and r ≤ 5
2

we have

e
(
Br ∩ {y : mce(y) > (2λ)kE}

)
≤ (cBη)keCA2

e
(
Br+ 1

2
∩ {y : mce(y) > 2λE}

)
.

(14.12)
Proof of Step 3: This is obtained by iterating Step 2. More precisely, for each
2 ≤ l ≤ k we set

tl := (2λ)lE ,

⎧
⎨
⎩

rk := r,

rl−1 := rl + 4
(

λE
tl

) 1
m = rl + 4λ

1
m

(2λ)
l

m
for 2 ≤ l ≤ k − 1 .

Using f(r, t) := e(Br ∩ {y : mce(y) > t}) and cA := CA2

cBη we may write (14.11) as

f(rl, tl) ≤ cBη

(
1 + cA

(
2λE

tl

)m+2
m

)
f(rl−1, tl−1)

= cBη

(
1 + cA

(
1
2λ

)m+2
m

(l−1)
)

f(rl−1, tl−1).
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Now (14.12) is a consequence of the following estimates (λ is sufficient large)

r1 = rk + 4λ
1
m

k∑
l=2

(2λ)− l

m ≤ r + 4λ
1
m

∞∑
l=2

(2λ)− l

m ≤ r +
1
2
,

k∏
l=2

cBη

(
1 + cA

(
1
2λ

)m+2
m

(l−1)
)
≤ (cBη)keCcA .

In particular, the first estimates ensures that we may apply step 2 for each pair
(tl, rl).

Conclusion: First we fix η > 0 sufficiently small, so that cBη < 1, and afterwards
q > 0 such that a := (2λ)q cBη < 1. Now we observe that with (2λ)k0E ≤ ελ <
(2λ)k0+1E we have
ˆ

B2∩{(2λ)2E<mce}
(min{mce, λε})q de

≤
k0∑

k=2

ˆ
B2∩{(2λ)kE<mce≤(2λ)k+1E}

(mce)q de +
ˆ

B2∩{(2λ)k0+1E<mce}

(
(2λ)k0+1E

)q
de

≤ (4λ)qEq
k0+1∑
k=2

(2λ)qk e(B2 ∩ {mce > (2λ)kE}) ≤ (4λ)qEqeCA2
E(ωm4m)

k0+1∑
k=2

ak

≤ CeCA2
E1+q.

Combining this with
ˆ

B2∩{mce≤(2λ)2E}
(mce)q de ≤ (2λ)2qEqe(B2 ∩ {mce ≤ 2λE}) ≤ CE1+q

proves the result, modulo choosing a smaller value for ε.

15 Almgren’s strong approximation theorem

We can finally state and prove the main Lipschitz approximation result for area
minimizing currents mod(p), which contains improved estimates with respect to
Proposition 9.6.

Theorem 15.1 (Almgren’s strong approximation). There exist constants ε, γ, C >
0 (depending on m, n̄, n, Q) with the following property. Let T be as in Assump-
tion 9.1 in the cylinder C4r(x), and assume it is area minimizing mod(p). Also
assume that E = E(T,C4r(x)) < ε. Then, there are u : Br(x) → AQ(Rn) if Q < p

2 ,
or u : Br(x)→ AQ(Rn) if Q = p

2 , and a closed set K ⊂ Br(x) such that:

Gr(u) ⊂ Σ , (15.1)
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Lip(u) ≤ C(E + A2r2)γ and osc (u) ≤ Ch(T,C4r(x), π0) + Cr(E1/2 + rA) ,
(15.2)

Gu (K × R
n) = T (K × R

n) mod(p) , (15.3)

|Br(x) \K| ≤ ‖T‖((Br(x) \K)× R
n) ≤ C(E + r2A2)1+γrm , (15.4)∣∣∣∣‖T‖(Cσr(x))−Qωm(σr)m − 1

2

ˆ
Bσr

|Du|2
∣∣∣∣ ≤ (E + r2A2)1+γrm ∀ 0 < σ < 1 .

(15.5)

The key improvement with respect to the conclusions of Proposition 9.6 lies in
the superlinear power of the excess in (15.4) and (15.5). In turn, this gain is a con-
sequence of the following improved excess estimate, analogous to [DLS14, Theorem
7.1].

Theorem 15.2 (Almgren’s strong excess estimate). There exist constants ε∗, γ∗, C >
0 (depending on m, n̄, n, Q) with the following property. Assume T satisfies Assump-
tion 9.1 and is area minimizing mod(p) in C4. If E := E(T,C4) < ε∗, then

eT (A) ≤ C(Eγ∗ + |A|γ∗)(E + A2) for every Borel A ⊂ B9/8 . (15.6)

Let us assume for the moment the validity of Theorem 15.2, and let us then show
how Theorem 15.1 follows.

Proof of Theorem 15.1. As usual, since the statement is scale-invariant, we may
assume x = 0 and r = 1. Choose β < min

{
1

2m , γ∗
2(1+γ∗)

}
, where γ∗ is given

by Theorem 15.2. Let u be the Eβ-Lipschitz approximation of T , so that (15.1)
and (15.3) are an immediate consequence of Proposition 9.6. Also the estimates in
(15.2) follow in a straightforward fashion if we choose γ ≤ β and we recall that
‖DΨ‖0 ≤ C(E1/2 + A). Now we come to the proof of the volume estimate (15.4).
Set A :=

{
meT > E2β

} ∩ B9/8. By (9.5), we have that |A| ≤ CE1−2β . In order to
improve the estimate, we use Almgren’s strong excess estimate: indeed, equation
(15.6) implies that

eT (A) ≤ CEγ∗(1 + E−2βγ∗)(E + A2) , (15.7)

so that when we plug (15.7) back into (9.5) we have

|B1 \K| ≤ CE−2βeT (A) ≤ CEγ∗−2β(1+γ∗)(1 + E2βγ∗)(E + A2)

≤ CEγ∗−2β(1+γ∗)(E + A2) ,

and the inequality

|B1 \K| ≤ C(E + A2)1+γ
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follows with min{γ∗ − 2β(1 + γ∗), β} > 0 because of our choice of β. (15.4) is then
a simple consequence of

‖T‖((B1 \K)× R
n) ≤ eT (B1 \K) + Q|B1 \K| .

Finally, we take any 0 < σ < 1 and we estimate:
∣∣∣∣‖T‖(Cσ(x))−Qωmσm − 1

2

ˆ
Bσ

|Du|2
∣∣∣∣

≤ eT (Bσ \K) + eGu
(Bσ \K) +

∣∣∣∣eGu
(Bσ)− 1

2

ˆ
Bσ

|Du|2
∣∣∣∣

(15.7)

≤ C(E + A2)1+γ + C|Bσ \K|+ CLip(u)2
ˆ

Bσ

|Du|2

≤ C(E + A2)1+γ .

We turn now to the proof of Theorem 15.2. We will use in an essential way the
minimality mod(p) of T , and in order to do that we need to construct a suitable com-
petitor. In this process, a key role will be played by the following result, analogous
to [DLS14, Proposition 7.3]

Proposition 15.3. Let β ∈ (0, 1
2m

)
, and assume that T satisfies Assumption 9.1

and is area minimizing mod(p) in C4. Let u be its Eβ-Lipschitz approximation.
Then, there exist constants ε, γ, C > 0 and a subset of radii B ⊂ [9/8, 2] with
measure |B| > 1/2 with the following property. If E(T,C4) < ε, then for every σ ∈ B
there exists a Q-valued map g ∈ Lip(Bσ,AQ(Rn)) if Q < p

2 or g ∈ Lip(Bσ,AQ(Rn))
if Q = p

2 such that

g|∂Bσ
= u|∂Bσ

, Lip(g) ≤ C(E + r2A2)β , spt(g(x)) ⊂ Σ ∀x ∈ Bσ, (15.8)

and ˆ
Bσ

|Dg|2 ≤
ˆ

Bσ∩K
|Du|2 + C(E + A2)1+γ . (15.9)

Proof. The proof is obtained by a “regularization by convolution” procedure, analo-
gous to that of [DLS14, Proposition 7.3], modulo using the embedding ζ of [DLHMS,
Theorem 5.1] in place of ξ.

Proof of Theorem 15.2. Choose β := 1
4m , and let B ⊂ [9/8, 2] be the set of radii

provided by Proposition 15.3. By a standard Fubini type argument analogous to
what has been used in deriving (13.15) and the isoperimetric inequality mod(p),
we deduce that there exists s ∈ B and an integer rectifiable current R which is
representative mod(p) such that

∂R = 〈T −Gu, ϕ, s〉mod(p) and M(R) ≤ CE
2m−1
2m−2 ,

where u is the Eβ-Lipschitz approximation of T and ϕ(x) = |x|. Now, let g be
the Lipschitz map given in Proposition 15.3 corresponding with the choice σ = s.
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Since g|∂Bs
= u|∂Bs

, it also holds 〈Gu −Gg, ϕ, s〉 = 0 mod(p). Furthermore, since
(∂Gg) Cs = 0 mod(p), and since g takes values in Σ, the current Gg Cs + R is a
competitor for T in Cs, and thus, using [DLHMS, Equation (4.1)], the minimality
of T yields for some γ > 0:

‖T‖(Cs) ≤ ‖Gg Cs + R‖(Cs) ≤ Q|Bs|+ 1
2

ˆ
Bs

|Dg|2 + CE1+γ

(15.9)

≤ Q|Bs|+ 1
2

ˆ
Bs∩K

|Du|2 + CEγ(E + A2) .

(15.10)

On the other hand, again by [DLHMS, Equation (4.1)] we also have:

‖T‖(Cs) = ‖T‖((Bs \K)× R
n) + ‖Gu‖((Bs ∩K)× R

n)

≥ ‖T‖((Bs \K)× R
n) + Q|Bs ∩K|+ 1

2

ˆ
Bs∩K

|Du|2 − CE1+γ .
(15.11)

Combining (15.10) and (15.11) we conclude that eT (Bs \ K) ≤ CEγ(E + A2).
Now, we are able to prove the estimate (15.6). Let A ⊂ B9/8 be any Borel set. We
get:

eT (A) = eT (A ∩K) + eT (A \K) ≤ 1
2

ˆ
A∩K

|Du|2 + CE1+γ + eT (Bs \K)

≤ 1
2

ˆ
A∩K

|Du|2 + CEγ(E + A2) . (15.12)

On the other hand, observe that |Du|(x)2 ≤ Cmce(x) ≤ CE2β on K, and therefore
mce(x) ≤ 1 on K if E is suitably small. Let q > 0 be the exponent given by
Theorem 14.3, we deduce from (14.3) that

ˆ
A∩K

|Du|2(1+q) ≤ CE1+q ,

and thus the Hölder inequality produces

ˆ
A∩K

|Du|2 ≤
(ˆ

A∩K
|Du|2(1+q)

) 2
1+q

|A ∩K| q

1+q ≤ CE|A ∩K| q

1+q . (15.13)

Plugging (15.13) into (15.12), we finally conclude (15.6), by possibly choosing a
smaller γ > 0.

As a corollary of Theorem 15.1 and of Theorem 13.3, we obtain the following
result.
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Theorem 15.4. Let γ be the constant of Theorem 15.1. Then, for every η̄ > 0 there
is a constant ε̄ > 0 with the following property. Assume T as in Assumption 9.1 is
area minimizing mod(p) in C4r(x), E = E(T,C4r(x)) < ε̄ and rA ≤ ε̄E1/2. If u is
the map in Theorem 15.1 and we fix good Cartesian coordinates, then there exists a
Dir-minimizing h̄ : Br(x)→ AQ(Rn̄) if Q < p

2 or h̄ : Br(x)→ AQ(Rn̄) if Q = p
2 such

that h := (h̄, Ψ(·, h̄)) satisfies

r−2

ˆ
Br(x)

G(u, h)2 +
ˆ

Br(x)
(|Du| − |Dh|)2 +

ˆ
Br(x)

|D(η ◦ u)−D(η ◦ h)|2 ≤ η̄Erm .

(15.14)

16 Strong approximation with the nonoriented excess

In this section we show that it is possible to draw the same conclusions of the
previous section replacing the cylindrical excess E(T,C4r(x)) with the nonoriented
Eno(T,C4r(x)) defined in (13.2). This will be vital, because in the remaining part
of the paper we will in fact use mostly the nonoriented excess, which is structurally
more suited to the arguments needed in the construction of the center manifold.
As discussed in Remark 9.3, in the classical regularity theory for integral currents
the cylindrical excess already possesses the required structural features; see [DLS14,
Remark 2.5].

Theorem 16.1. There exist constants ε, γ, C > 0 (depending on m, n̄, n, Q) with
the following property. Let T be as in Assumption 9.1 in the cylinder C4r(x), and
assume it is area minimizing mod(p). Also assume that E = E(T,C4r(x)) < 1

2 and
that Eno := Eno(T,C4r(x)) ≤ ε. Then

E(T,C2r(x)) ≤ CEno(T,C4r(x)) + CA2r2, (16.1)

and in particular all the conclusions of Theorem 15.1 (and of Theorem 15.4, provided
r2A2 ≤ ε̄2E ≤ ε̄3 for a suitable ε̄(η̄) > 0) hold in Br(x) with estimates where Eno

replaces E.

Before coming to the proof we state a simple variant of Theorem 15.1, where the
estimates are inferred in a radius which is just slightly smaller than the starting one.

Proposition 16.2. There are a constant C ≥ 1 and a ε̄ > 0 with the following
property. Let γ be as in Theorem 15.1. Fix a cylinder C4r(x) and a current T
which satisfies all the assumptions of Theorem 15.1 with the stronger bound E :=
E(T,C4r(x)) ≤ ε̄. Choose ω such that (1 − ωm)(1 + γ) = 1 + γ

2 and set ρ =
r(1 − C(E + r2A2)ω). Then there are a map u : B4ρ(x) → AQ(Rn) if Q < p

2 , or
u : B4ρ(x)→ AQ(Rn) if Q = p

2 , and a closed set K ⊂ B4ρ(x) such that:

Gr(u) ⊂ Σ , (16.2)
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Lip(u) ≤ C(E + r2A2)γ/2 and osc (u) ≤ Ch(T,C4r(x), π0) + Cr(E1/2 + rA) ,
(16.3)

Gu (K × R
n) = T (K × R

n) mod(p) , (16.4)

|B4ρ(x) \K| ≤ ‖T‖((B4ρ(x) \K)× R
n) ≤ C(E + r2A2)1+γ/2rm , (16.5)∣∣∣∣∣‖T‖(C4σρ(x))−Qωm(4σρ)m − 1

2

ˆ
B4σρ(x)

|Du|2
∣∣∣∣∣ ≤ (E + r2A2)1+γ/2rm ∀ 0 < σ < 1 .

(16.6)

Proof. For every point y ∈ B4r(1−(E+r2A2)ω)(x) and a corresponding cylinder Cy :=
C4r(E+r2A2)ω(y), note that

E(T,Cy) =
eT (B4r(E+r2A2)ω(y))

ωm (4r)m (E + r2A2)mω
≤ (E + r2A2)−mω E(T,C4r(x)) ≤ E1−mω .

Thus, by choosing ε̄ suitably small compared to ε in Theorem 15.1 we fall under
its assumptions. In particular, we find a function uy defined on the ball By :=
Br(E+r2A2)ω(y) taking values into either AQ(Rn) or AQ(Rn) (depending on whether
Q < p

2 or Q = p
2) and a set Ky for which the following conclusions hold:

Gr(uy) ⊂ Σ , (16.7)

Lip(uy) ≤ C(E + A2r2)(1−mω)γ , (16.8)

Guy (Ky × R
n) = T (Ky × R

n) mod(p) , (16.9)

|By \Ky| ≤ ‖T‖(By \Ky)× R
n) ≤ C(E + r2A2)(1−mω)(1+γ)|By| . (16.10)

We now consider the regular lattice (r(E + r2A2)ω)/(
√

m)Zm and for each element
y of the lattice contained in B4r(1−(E+r2A2)ω)(x) we consider the corresponding ball
By. Accordingly, we get a collection B of balls satisfying the following properties:

(o1) B covers B4ρ(x).
(o2) The cardinality of B is bounded by C(E + r2A2)−mω for a geometric constant

C = C(m).
(o3) Each element of B intersects at most N elements of B for a geometric constant

N = N(m).
(o4) Every pair z, w ∈ B4ρ(x) with |z − w| ≤ c(m)r(E + r2A2)ω is contained in a

single ball Bi, where c(m) is a positive geometric constant.
(o5) For each pair z, w ∈ B4ρ(x) with � := |z − w| ≥ c(m)r(E + r2A2)ω there is a

chain of balls B1, . . . , BN̄ ∈ B such that
(c1) N̄ ≤ C � r−1(E + r2A2)−ω for C = C(m);
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(c2) z ∈ B1 and w ∈ BN̄ ;
(c3) |Bi ∩ Bi+1| ≥ c̄(m) rm(E + r2A2)mω for every i = 1, . . . , N̄ − 1 for a

geometric constant c̄(m) > 0.

We now consider for each Bi = Byi the corresponding sets K̃i := Kyi and functions
ui := uyi . We next define the sets

Ki := K̃i \
⋃

j : Bj∩Bi �=∅
(Bj \ K̃j) .

We then set K :=
⋃

i K
i and observe that, by (o2), (o3) and (16.10), we must

have

|B4ρ(x) \K| ≤ ‖T‖((B4ρ(x) \K)× R
n) ≤

∑
i

‖T‖((Bi \Ki)× R
n)

≤ Cρm(E + r2A2)(1−mω)(1+γ) = Cρm(E + r2A2)1+γ/2 . (16.11)

Next, we find a globally defined function g on K by setting g|Ki := ui
∣∣
Ki . This

function certainly enjoys the estimate Lip(g|Ki) ≤ C(E + r2A2)(1−mω)γ ≤ C(E +
r2A2)γ/2 on each Ki. So, taken two points z, w ∈ K with |z−w| ≤ c(m)r(E+r2A2)ω

we get, by (o4), the estimate

G(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|(
resp. Gs(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|

)
.

If � := |z − w| ≥ c(m)r(E + r2A2)ω, we use the chain of balls Bi of (o5) and
remark that, thanks to the estimate on |Bi \Ki|, we can guarantee the existence of
intermediate points yi ∈ Ki ∩Ki+1 towards the estimate

G(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|(
resp. Gs(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|

)
.

This proves that g has the global Lipschitz bound C(E + r2A2)γ/2 on K. Further-
more, since the graph Gg is mod(p) equivalent to the current T in the cylinder
K ×R

n, we have osc(g) ≤ C h(T,C4r(x), π0), see Remark 9.5. Now we can proceed
as in Proposition 9.6 or Theorem 15.1. More precisely, we write g =

∑
i�(h, Ψ(·, h))�,

with h : K → AQ(Rn̄) if Q < p
2 or h : K → AQ(Rn̄) if Q = p

2 . The map h satisfies
Lip(h) ≤ C(E + r2A2)γ/2 and osc(h) ≤ C h(T,C4r(x), π0). Hence, taking advantage
of [DLS11, Theorem 1.7] if Q < p

2 or [DLHMS, Corollary 5.3] when Q = p
2 , we can

extend h to a map h̄ : B4ρ(x) → AQ(Rn) (resp. h̄ : B4ρ(x) → AQ(Rn)) which again
satisfies Lip(h̄) ≤ C(E + r2A2)γ/2 and osc(h̄) ≤ C h(T,C4r(x), π0). Finally, we set
u :=

∑
i�h̄, Ψ(·, h̄)�, thus achieving

Lip(u) ≤ C [(E + r2A2)
γ

2 + ‖DΨ‖0] , osc(u) ≤ C h(T,C4r(x), π0) + C r ‖DΨ‖0 .
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The estimate in (16.3) is then a consequence of the choice of coordinates discussed
in Remark 13.1.

Finally, the estimate (16.6) is a consequence of the other ones, following the ar-
gument already given for (15.5). Since (16.2) and (16.4) are obvious by construction,
this completes the proof.

Proof of Theorem 16.1. First of all we observe that it is enough to prove (16.1).
Indeed, if ε is sufficiently small, from (16.1) we conclude that we can apply Theo-
rem 15.1 to any cylinder C4(r/4)(y) with y ∈ Br(x). Since Br(x) can be covered with
a finite number C(m) of balls Br/4(yi) with centers yi ∈ Br(x), the existence of a
suitable Lipschitz approximation over Br(x) follows easily. Theorem 15.4 can then
be concluded by arguing as done for Theorem 13.3.

In order to show (16.1) we start observing that, by scaling and translating, we
can assume x = 0 and r = 1. We then argue in several steps.

Step 1. First of all we claim that, for every δ > 0 there is ε sufficiently small such
that E(T,C3) < δ. Otherwise, by contradiction, there would be a sequence {Tk}∞k=1

of area minimizing currents mod(p) satisfying the hypotheses in Assumption 9.1 in
C4 together with E(Tk,C4) < 1

2 for which Eno(Tk,C4) → 0 and Mp(Tk C3) ≥
(Q + δ)ωm3m. In particular, because of the uniform bound on the excess, we can
assume that Tk converge, up to subsequences, to a T which is an area minimizing
current mod(p) and satisfies Assumption 9.1. By convergence of the Mp in the
interior, we also know that

Mp(T C3) ≥ (Q + δ)ωm3m . (16.12)

On the other hand, since we can assume by Proposition 5.2 that v(Tk C4) →
v(T C4) as varifolds, and since the nonoriented excess is continuous in the varifold
convergence, we must have Eno(T,C4) = 0. Moreover, since T is a representative
mod(p) we must have ‖T‖(C4) ≤ ωm(Q+ 1

2)4m by the hypothesis that E(Tk,C4) < 1
2

for every k. The first condition implies that T is supported in a finite number of
planes parallel to π0. By the constancy Lemma 7.4 we can assume that T is a sum
of integer multiples of m-dimensional disks of radius 4 parallel to B4(0, π0). We thus
have that the sum of the moduli of such integers must be at most Q. This contradicts
(16.12).

Step 2. First of all, if E := E(T,C3) ≤ A2, then there is nothing to prove.
Hence, without loss of generality assume that

E ≥ A2 .

Now apply Proposition 16.2 to obtain a Lipschitz map u : B3−CEω → AQ(Rn) if
Q < p

2 and u : B3−CEω → AQ(Rn) if Q = p
2 , and a closed set K ⊂ B3−CEω(x) such

that:

Lip(u) ≤ CE
γ/2, (16.13)
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Gu (K × R
n) = T (K × R

n) mod(p) , (16.14)

|B3−CEω \K| ≤ CE1+γ/2 , (16.15)

∣∣∣∣‖T‖(C3−CEω)−Qωm(3− CEω)m − 1
2

ˆ
B3−CEω

|Du|2
∣∣∣∣ ≤ CE1+γ/2 . (16.16)

Now we set r1 := 3 − CEω, E1 := E(T,Cr1) and we consider the following three
alternatives:

(a) E1 ≤ A2;
(b) E1 ≥ max{E

2 ,A2};
(c) E

2 ≥ E1 ≥ A2.

In the first case, assuming ε sufficiently small, since C2 ⊂ Cr1 , we have concluded
our desired estimate (16.1). In the second case observe first that from the estimates
above we easily conclude

‖T‖(Cr1 \ (K × R
n)) ≤ CE1+γ/2 ≤ CE

1+γ/2
1 .

Consider now that, using T K × R
n = Gu K × R

n and standard computations,
we have

‖T‖(K × R
n)−Q|K| = 1

2

ˆ
K×Rn

|�T (y)− π0|2no d‖T‖.

We thus can combine these two estimates and claim

E1 = E(T,Cr1) ≤ CE
1+γ/2
1 + Eno(T,Cr1) ≤

E1

2
+ CEno(T,C4) . (16.17)

In particular we easily get

E(T,C2) ≤ CE(T,Cr1) ≤ CEno(T,C4) ,

and again we have proved (16.1).
Finally, if we are in case (c) we iterate the step above and get a Lipschitz ap-

proximation in the cylinder Cr2 where r2 = 3− CEω − CEω
1 and the new excess is

E2 := E(T,Cr2). We keep iterating this procedure which we stop at a certain radius

rk = 3− C

k∑
i=0

Eω
i ,

if either Ek ≤ A2 or Ek ≥ Ek−1

2 . Observe that as long as the procedure does not end
we have the recursive property Ei ≤ Ei−1

2 . We can thus estimate

rk ≥ 3− CEω
∞∑
i=0

2−ω i ≥ 3− CC̄(ω)Eω .
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Since ω is a fixed exponent, provided δ > E is sufficiently small (which from the
first step can be achieved by choosing ε sufficiently small), we have rk ≥ 2. Thus,
if the procedure stops we have proved (16.1). If the procedure does not stop, since
Ek → 0 we conclude easily that:

(i) A = 0;
(ii) if we set r∞ := limk→∞ rk, then 2 ≤ r∞ and E(T,Cr∞) = 0.

This implies that ‖T‖(Cr∞) = Qωmrm∞. Given that p�T Cr∞ = Q �Br∞(0, π0)�
mod(p), this is only possible if the current T in Cr∞ consists of a finite number of
disks parallel to Br∞(0, π0) counted with integer multiplicities θi so that

∑
i |θi| = Q.

In particular, since 2 ≤ r∞, obviously E(T,C2) = 0 ≤ Eno(T,C4), which shows the
validity of (16.1) even in this case.

Part 3. Center manifold and approximation on its normal bundle

This part of the paper deals with the construction of the center manifold. As it is
the case with the proof of the partial regularity result for area minimizing currents
in codimension higher than one, one might now attempt a proof of Theorems 4.3
and 8.2 carrying on the following program:

(1) Apply Almgren’s strong approximation Theorem 15.1 to construct a sequence
of Lipschitz maps uk approximating T0,rk

: here, rk is the contradiction sequence
of radii appearing in Proposition 8.7, and the maps uk take values in AQ(π⊥

0 )
or in AQ(π⊥

0 ) depending on whether Q < p
2 or Q = p

2 , respectively.
(2) Apply Theorem 15.4 to show that, after suitable normalization, a subsequence

of the uk converges to a multiple valued map u∞ minimizing the Dirichlet
energy (as in [DLS11] if Q < p

2 or as in [DLHMS] if Q = p
2).

(3) Use (iii) (resp. (iii)s) in Proposition 8.7 to infer that u∞ has a singular set
of positive Hm−2+α measure (resp. of positive Hm−1+α measure), thus con-
tradicting the linear theory in [DLS11] if Q < p

2 or in [DLHMS] if Q = p
2 ,

respectively.

The obstacle towards the success of this program is making point (3) work,
namely, showing that the “large” singular set of the currents persists in the limit as
the approximating functions uk converge to u∞. As it was just stated, this is false:
at this stage, nothing forces u∞ to actually exhibit any singularities. The center
manifold construction is needed precisely to address this issue: when we approximate
the current from the center manifold, we “subtract the regular part” of the Dir-
minimizer in the limit, which in turn allows us to close the contradiction argument.

In the first section of this part we will outline the arguments and present the
statements of the main results. The subsequent sections will then be devoted to the
proofs.



GAFA REGULARITY OF AREA MINIMIZING CURRENTS MOD p

17 Outline and main results

17.1 Preliminaries for the construction of the center manifold.

Notation 17.1 (Distance and nonoriented distance between m-planes). Throughout
this part, π0 continues to denote the plane R

m×{0}, with the standard orientation
given by �π0 = e1 ∧ . . .∧ em. Given a k-dimensional plane π in R

m+n, we will in fact
always identify π with a simple unit k-vector �π = v1 ∧ . . . ∧ vk orienting it (thereby
making a distinction when the same plane is given opposite orientations). By a slight
abuse of notation, given two k-planes π1 and π2, we will sometimes write |π1 − π2|
in place of |�π1 − �π2|, where the norm is induced by the standard inner product
in Λk(Rm+n). Furthermore, for a given integer rectifiable current T , we recall the
definition of |�T (y)−π0|no from (13.1). More in general, if π1 and π2 are two k-planes,
we can define |π1 − π2|no by

|π1 − π2|no := min {|�π1 − �π2|, |�π1 + �π2|} .

It is understood that |π1 − π2|no does not depend on the choice of the orientations
�π1 and �π2.

Definition 17.2 (Excess and height). Given an integer rectifiable m-dimensional
current T which is a representative mod(p) in R

m+n with finite mass and compact
support and an m-plane π, we define the nonoriented excess of T in the ball Br(x)
with respect to the plane π as

Eno(T,Br(x), π) := (2ωm rm)−1
ˆ
Br(x)

|�T − π|2no d‖T‖ . (17.1)

The height function in a set A ⊂ R
m+n with respect to π is

h(T, A, π) := sup
x,y ∈ spt(T ) ∩ A

|pπ⊥(x)− pπ⊥(y)| .

Definition 17.3 (Optimal planes). We say that an m-dimensional plane π opti-
mizes the nonoriented excess of T in a ball Br(x) if

Eno(T,Br(x)) := min
τ

Eno(T,Br(x), τ) = Eno(T,Br(x), π) (17.2)

and if, in addition:

among all other π′ s.t. (17.2) holds, |π − π0| is minimal. (17.3)

Observe that in general the plane optimizing the nonoriented excess is not necessarily
unique and h(T,Br(x), π) might depend on the optimizer π. Since for notational
purposes it is convenient to define a unique “height” function h(T,Br(x)), we call
a plane π as in (17.2) and (17.3) optimal if in addition

h(T,Br(x)) := min
{
h(T,Br(x), τ) : τ satisfies (17.2) and (17.3)

}
= h(T,Br(x), π) ,

(17.4)
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i.e. π optimizes the height among all planes that optimize the nonoriented excess.
However (17.4) does not play any further role apart from simplifying the presenta-
tion.

Remark 17.4. Observe that there are two differences with [DLS16a, Definition 1.2]:
first of all here we consider the nonoriented excess; secondly we have the additional
requirement (17.3). In fact the point of (17.3) is to ensure that the planes π “opti-
mizing the nonoriented excess” always satisfy |π − π0| = |π − π0|no.

We are now ready to formulate the main assumptions of the statements in this
section.

Assumption 17.5. ε0 ∈]0, 1] is a fixed constant and Σ ⊂ B7
√

m ⊂ R
m+n is a C3,ε0

(m + n̄)-dimensional submanifold with no boundary in B7
√

m. We moreover assume
that, for each q ∈ Σ, Σ is the graph of a C3,ε0 map Ψq : TqΣ ∩ B7

√
m → TqΣ⊥.

We denote by c(Σ) the number supq∈Σ ‖DΨq‖C2,ε0 . T 0 is an m-dimensional integer
rectifiable current of R

m+n which is a representative mod(p) and with support in
Σ ∩ B̄6

√
m. T 0 is area-minimizing mod(p) in Σ and moreover

Θ(T 0, 0) = Q and ∂T 0 B6
√

m = 0 mod(p), (17.5)

‖T 0‖(B6
√

mρ) ≤
(
ωmQ(6

√
m)m + ε2

2

)
ρm ∀ρ ≤ 1, (17.6)

Eno
(
T 0,B6

√
m

)
= Eno

(
T 0,B6

√
m, π0

)
, (17.7)

m0 := max
{
c(Σ)2,Eno

(
T 0,B6

√
m

)} ≤ ε2
2 ≤ 1 . (17.8)

Here, Q is a positive integer with 2 ≤ Q ≤ $p
2%, and ε2 is a positive number whose

choice will be specified in each subsequent statement.

Constants depending only upon m, n, n̄ and Q will be called geometric and usu-
ally denoted by C0.

Remark 17.6. Note that (17.8) implies A := ‖AΣ‖C0(Σ) ≤ C0m
1/2
0 , where AΣ de-

notes, as usual, the second fundamental form of Σ and C0 is a geometric constant.
Observe further that for q ∈ Σ the oscillation of Ψq is controlled in TqΣ ∩B6

√
m by

C0m
1/2
0 .

In what follows we set l := n − n̄. To avoid discussing domains of definitions it
is convenient to extend Σ so that it is an entire graph over all TqΣ. Moreover we
will often need to parametrize Σ as the graph of a map Ψ : R

m+n̄ → R
l. However

we do not assume that R
m+n̄ × {0} is tangent to Σ at any q and thus we need the

following lemma.
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Lemma 17.7. There are positive constants C0(m, n̄, n) and c0(m, n̄, n) such that,
provided ε2 < c0, the following holds. If Σ is as in Assumption 17.5, then we
can (modify it outside B6

√
m and) extend it to a complete submanifold of R

m+n

which, for every q ∈ Σ, is the graph of a global C3,ε0 map Ψq : TqΣ → TqΣ⊥ with

‖DΨq‖C2,ε0 ≤ C0m
1/2
0 . T 0 is still area-minimizing mod(p) in the extended manifold

and in addition we can apply a global affine isometry which leaves R
m × {0} fixed

and maps Σ onto Σ′ so that

|Rm+n̄ × {0} − T0Σ′| ≤ C0m
1/2
0 (17.9)

and Σ′ is the graph of a C3,ε0 map Ψ : R
m+n̄ → R

l with Ψ(0) = 0 and ‖DΨ‖C2,ε0 ≤
C0m

1/2
0 .

From now on we assume w.l.o.g. that Σ′ = Σ. The next lemma is a standard
consequence of the theory of area-minimizing currents (we include the proofs of
Lemma 17.7 and Lemma 17.8 in Section 18 for the reader’s convenience).

Lemma 17.8. There are positive constants C0(m, n, n̄, Q) and c0(m, n, n̄, Q) with
the following property. If T 0 is as in Assumption 17.5, ε2 < c0 and T := T 0 B23

√
m/4,

then:

∂T C11
√

m/2(0, π0) = 0 mod(p), (17.10)

(pπ0)�T C11
√

m/2(0, π0) = Q
�
B11

√
m/2(0, π0)

�
mod(p), (17.11)

and h(T,C5
√

m(0, π0)) ≤ C0m
1/2m

0 . (17.12)

In particular, for each x ∈ B11
√

m/2(0, π0) there is a point q ∈ spt(T ) with pπ0(q) = x.

17.2 Construction of the center manifold. From now we will always work
with the current T of Lemma 17.8. We specify next some notation which will be
recurrent in the paper when dealing with cubes of π0. For each j ∈ N, C j denotes
the family of closed cubes L of π0 of the form

[a1, a1 + 2�]× . . .× [am, am + 2�]× {0} ⊂ π0 , (17.13)

where 2 � = 21−j =: 2 �(L) is the side-length of the cube, ai ∈ 21−j
Z ∀i and we

require in addition −4 ≤ ai ≤ ai + 2� ≤ 4. To avoid cumbersome notation, we will
usually drop the factor {0} in (17.13) and treat each cube, its subsets and its points
as subsets and elements of R

m. Thus, for the center xL of L we will use the notation
xL = (a1 + �, . . . , am + �), although the precise one is (a1 + �, . . . , am + �, 0, . . . , 0).
Next we set C :=

⋃
j∈N

C j . If H and L are two cubes in C with H ⊂ L, then we
call L an ancestor of H and H a descendant of L. When in addition �(L) = 2�(H),
H is a son of L and L the father of H.
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Definition 17.9. A Whitney decomposition of [−4, 4]m ⊂ π0 consists of a closed
set Γ ⊂ [−4, 4]m and a family W ⊂ C satisfying the following properties:

(w1) Γ ∪⋃L∈W L = [−4, 4]m and Γ does not intersect any element of W ;
(w2) the interiors of any pair of distinct cubes L1, L2 ∈ W are disjoint;
(w3) if L1, L2 ∈ W have nonempty intersection, then 1

2�(L1) ≤ �(L2) ≤ 2 �(L1).

Observe that (w1)–(w3) imply

sep (Γ, L) := inf{|x− y| : x ∈ L, y ∈ Γ} ≥ 2�(L) for every L ∈ W . (17.14)

However, we do not require any inequality of the form sep (Γ, L) ≤ C�(L), although
this would be customary for what is commonly called a Whitney decomposition in
the literature.

The algorithm for the construction of the center manifold involves several param-
eters which depend in a complicated way upon several quantities and estimates. We
introduce these parameters and specify some relations among them in the following

Assumption 17.10. Ce, Ch, β2, δ2, M0 are positive real numbers and N0 is a natural
number for which we assume always

β2 = 4 δ2 = min
{

1
2m

,
γ1

100

}
,

where γ1 is the exponent in the estimates of Theorem 15.1, (17.15)
M0 ≥ C0(m, n, n̄, Q) ≥ 4 and

√
mM027−N0 ≤ 1 . (17.16)

As we can see, β2 and δ2 are fixed. The other parameters are not fixed but are
subject to further restrictions in the various statements, respecting the following “hi-
erarchy”. As already mentioned, “geometric constants” are assumed to depend only
upon m, n, n̄ and Q. The dependence of other constants upon the various parameters
pi will be highlighted using the notation C = C(p1, p2, . . .).

Assumption 17.11. (Hierarchy of the parameters) In all the coming statements:

(a) M0 is larger than a geometric constant (cf. (17.16)) or larger than a costant
C(δ2), see Proposition 17.29;

(b) N0 is larger than C(β2, δ2, M0) (see for instance (17.16) and Proposition 17.32);
(c) Ce is larger than C(β2, δ2, M0, N0) (see the statements of Proposition 17.13,

Theorem 17.19 and Proposition 17.29);
(d) Ch is larger than C(β2, δ2, M0, N0, Ce) (see Propositions 17.13 and 17.26 );
(e) ε2 is smaller than c(β2, δ2, M0, N0, Ce, Ch) (which will always be positive).

The functions C and c will vary in the various statements: the hierarchy above
guarantees however that there is a choice of the parameters for which all the restric-
tions required in the statements of the next propositions are simultaneously satisfied.
To simplify our exposition, for smallness conditions on ε2 as in (e) we will use the
sentence “ε2 is sufficiently small”.
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Thanks to Lemma 17.8, for every L ∈ C , we may choose yL ∈ π⊥
0 so that

pL := (xL, yL) ∈ spt(T ) (recall that xL is the center of L). yL is in general not
unique and we fix an arbitrary choice. A more correct notation for pL would be
xL + yL. This would however become rather cumbersome later, when we deal with
various decompositions of the ambient space in triples of orthogonal planes. We thus
abuse the notation slightly in using (x, y) instead of x+ y and, consistently, π0×π⊥

0

instead of π0 ⊕ π⊥
0 .

Definition 17.12 (Refining procedure). For L ∈ C we set rL := M0
√

m �(L) and
BL := B64rL

(pL). We next define the families of cubes S ⊂ C and W = We ∪Wh ∪
Wn ⊂ C with the convention that S j = S ∩C j ,W j = W ∩C j and W j

� = W� ∩C j

for � = h, n, e. We define W i = S i = ∅ for i < N0. We proceed with j ≥ N0

inductively: if no ancestor of L ∈ C j is in W , then

(EX) L ∈ W j
e if Eno(T,BL) > Cem0 �(L)2−2δ2 ;

(HT) L ∈ W j
h if L �∈ W j

e and h(T,BL) > Chm
1/2m

0 �(L)1+β2 ;

(NN) L ∈ W j
n if L �∈ W j

e ∪W j
h but it intersects an element of W j−1;

if none of the above occurs, then L ∈ S j . We finally set

Γ := [−4, 4]m \
⋃

L∈W
L =

⋂
j≥N0

⋃
L∈S j

L. (17.17)

Observe that, if j > N0 and L ∈ S j ∪W j , then necessarily its father belongs to
S j−1.

Proposition 17.13 (Whitney decomposition). Let Assumptions 17.5 and 17.10
hold and let ε2 be sufficiently small. Then (Γ,W ) is a Whitney decomposition of
[−4, 4]m ⊂ π0. Moreover, for any choice of M0 and N0, there is C� := C�(M0, N0)
such that, if Ce ≥ C� and Ch ≥ C�Ce, then

W j = ∅ for all j ≤ N0 + 6. (17.18)

Finally, the following estimates hold with C = C(β2, δ2, M0, N0, Ce, Ch):

Eno(T,BJ) ≤ Cem0 �(J)2−2δ2 and h(T,BJ) ≤ Chm
1/2m

0 �(J)1+β2 ∀J ∈ S ,

(17.19)

Eno(T,BL) ≤ C m0 �(L)2−2δ2 and h(T,BL) ≤ C m
1/2m

0 �(L)1+β2 ∀L ∈ W .

(17.20)

We will prove Proposition 17.13 in Section 19. Next, we fix two important func-
tions ϑ, � : R

m → R.

Assumption 17.14. � ∈ C∞
c (B1) is radial,

´
� = 1 and

´ |x|2�(x) dx = 0. For
λ > 0 �λ denotes, as usual, x �→ λ−m�(x

λ). ϑ ∈ C∞
c

(
[−17

16 , 17
16 ]m, [0, 1]

)
is identically

1 on [−1, 1]m.
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� will be used as convolution kernel for smoothing maps z defined on m-dimensional
planes π of R

m+n. In particular, having fixed an isometry A of R
m onto π, the

smoothing will be given by [(z ◦ A) ∗ �λ] ◦ A−1. Observe that since � is radial, our
map does not depend on the choice of the isometry and we will therefore use the
shorthand notation z ∗ �λ.

Definition 17.15 (π-approximations). Let L ∈ S ∪W and π be an m-dimensional
plane. If T C32rL

(pL, π) fulfills the assumptions of Theorem 16.1 in the cylinder
C32rL

(pL, π), then the resulting map u given by the theorem, which is defined on
B8rL

(pL, π) and takes values either in AQ(π⊥) (if Q < p
2) or in AQ(π⊥) (if Q = p

2) is

called a π-approximation of T in C8rL
(pL, π). The map ĥ : B7rL

(pL, π)→ π⊥ given
by ĥ := (η ◦ u) ∗ ��(L) will be called the smoothed average of the π-approximation.

Definition 17.16 (Reference plane πL). For each L ∈ S ∪ W we let π̂L be an
optimal plane in BL (cf. Definition 17.3) and choose an m-plane πL ⊂ TpL

Σ which
minimizes |π̂L − πL|.

The following lemma, which will be proved in Section 19, deals with graphs of
multivalued functions f in several systems of coordinates.

Lemma 17.17. Let the assumptions of Proposition 17.13 hold and assume Ce ≥
C� and Ch ≥ C�Ce (where C� is the constant of Proposition 17.13). For any
choice of the other parameters, if ε2 is sufficiently small, then T C32rL

(pL, πL)
satisfies the assumptions of Theorem 16.1 for any L ∈ W ∪ S . Moreover, if fL

is a πL-approximation, denote by ĥL its smoothed average and by h̄L the map
pTpL

Σ(ĥL), which takes values in the plane κL := TpL
Σ ∩ π⊥

L , i.e. the orthog-
onal complement of πL in TpL

Σ. If we let hL be the map x ∈ B7rL
(pL, πL) �→

hL(x) := (h̄L(x), ΨpL
(x, h̄L(x))) ∈ κL × TpL

Σ⊥, then there is a smooth map gL :
B4rL

(pL, π0)→ π⊥
0 such that GgL

= GhL
C4rL

(pL, π0).

For the sake of simplicity, in the future we will sometimes regard gL as a map
gL : B4rL

(xL, π0)→ π⊥
0 rather than as a map gL : B4rL

(pL, π0)→ π⊥
0 . In particular,

we will sometimes consider gL(x) with x ∈ B4rL
(xL, π0) even though the correct

writing is the more cumbersome gL((x, yL)).

Definition 17.18 (Interpolating functions). The maps hL and gL in Lemma 17.17
will be called, respectively, the tilted L-interpolating function and the L-interpolating
function. For each j let Pj := S j ∪ ⋃j

i=N0
W i and for L ∈ Pj define ϑL(y) :=

ϑ(y−xL

�(L) ). Set

ϕ̂j :=
∑

L∈Pj ϑL gL∑
L∈Pj ϑL

on ]− 4, 4[m, (17.21)

let ϕ̄j(y) be the first n̄ components of ϕ̂j(y) and define ϕj(y) :=
(
ϕ̄j(y), Ψ(y, ϕ̄j(y))

)
,

where Ψ is the map of Lemma 17.7. ϕj will be called the glued interpolation at the
step j.
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Theorem 17.19 (Existence of the center manifold). Assume that the hypotheses
of the Lemma 17.17 hold and let κ := min{ε0/2, β2/4}. For any choice of the other
parameters, if ε2 is sufficiently small, then

(i) ‖Dϕj‖C2,κ ≤ Cm
1/2
0 and ‖ϕj‖C0 ≤ Cm

1/2m

0 , with C = C(β2, δ2, M0, N0, Ce, Ch);
(ii) if L ∈ W i and H is a cube concentric to L with �(H) = 9

8�(L), then ϕj = ϕk

on H for any j, k ≥ i + 2;
(iii) ϕj converges in C3 to a map ϕ and M := Gr(ϕ|]−4,4[m) is a C3,κ submanifold

of Σ.

Definition 17.20 (Whitney regions). The manifold M in Theorem 17.19 is called
a center manifold of T relative to π0, and (Γ,W ) the Whitney decomposition asso-
ciated to M. Setting Φ(y) := (y, ϕ(y)), we call Φ(Γ) the contact set. Moreover, to
each L ∈ W we associate a Whitney region L on M as follows:

(WR) L := Φ(H∩[−7
2 , 7

2 ]m), where H is the cube concentric to L with �(H) = 17
16�(L).

We will present a proof of Theorem 17.19 in Section 20

17.3 The M-normal approximation and related estimates. In what fol-
lows we assume that the conclusions of Theorem 17.19 apply and denote by M the
corresponding center manifold. For any Borel set V ⊂ M we will denote by |V| its
Hm-measure and will write

´
V f for the integral of f with respect to Hm V. Br(q)

denotes the geodesic open balls in M.

Assumption 17.21. We fix the following notation and assumptions.

(U) U :=
{
x ∈ R

m+n : ∃! y = p(x) ∈M with |x− y| < 1 and (x− y) ⊥M}.
(P) p : U→M is the map defined by (U).
(R) For any choice of the other parameters, we assume ε2 to be so small that p

extends to C2,κ(Ū) and p−1(y) = y + B1(0, (TyM)⊥) for every y ∈M.
(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 17.19 and the construction algo-
rithm; see Section 21 for the proof.

Corollary 17.22. Under the hypotheses of Theorem 17.19 and of Assumption 17.21
we have:

(i) sptp(∂(T U)) ⊂ ∂lU, spt(T [−7
2 , 7

2 ]m × R
n) ⊂ U, and p�(T U) = Q �M�

mod(p);
(ii) spt(〈T,p, Φ(q)〉) ⊂ {y : |Φ(q) − y| ≤ Cm

1/2m

0 �(L)1+β2
}

for every q ∈ L ∈ W ,
where
C = C(β2, δ2, M0, N0, Ce, Ch);

(iii) 〈T,p, q〉 = Q �q� for every q ∈ Φ(Γ).

The next main goal is to couple the center manifold of Theorem 17.19 with a
good approximating map defined on it.
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Definition 17.23 (M-normal approximation). An M-normal approximation of T
is given by a pair (K, F ) with the following properties. K ⊂M is closed and contains
Φ
(
Γ ∩ [−7

2 , 7
2 ]m
)
. Moreover:

(a) If Q = p
2 , F is a Lipschitz map which takes values in AQ(Rm+n) and satisfies

the requirements of [DLHMS, Assumption 11.1].
(b) If Q < p

2 , F is a Lipschitz map which takes values in AQ(Rm+n) and has the
special form F (x) =

∑
i �x + Ni(x)�.

In both cases we require that

(A1) spt(TF ) ⊂ Σ;
(A2) TF p−1(K) = T p−1(K) mod(p),

where TF is the integer rectifiable current induced by F ; see [DLHMS, Definition
11.2]. The map N (for the case Q = p

2 see [DLHMS, Assumption 11.1]) is the normal
part of F .

In the definition above it is not required that the map F approximates efficiently
the current outside the set Φ

(
Γ ∩ [−7

2 , 7
2 ]m
)
. However, all the maps constructed

will approximate T with a high degree of accuracy in each Whitney region: such
estimates are detailed in the next theorem, the proof of which will be tackled in
Section 21.

Theorem 17.24 (Local estimates for the M-normal approximation). Let γ2 := γ
4 ,

with γ the constant of Theorem 15.1. Under the hypotheses of Theorem 17.19 and
Assumption 17.21, if ε2 is suitably small (depending upon all other parameters),
then there is an M-normal approximation (K, F ) such that the following estimates
hold on every Whitney region L associated to a cube L ∈ W , with constants C =
C(β2, δ2, M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2
0 �(L)γ2 and ‖N |L‖C0 ≤ Cm

1/2m

0 �(L)1+β2 , (17.22)

|L \ K|+ ‖TF − T‖p(p−1(L)) ≤ Cm1+γ2
0 �(L)m+2+γ2 , (17.23)ˆ

L
|DN |2 ≤ Cm0 �(L)m+2−2δ2 . (17.24)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2, M0, N0,
Ce, Ch))ˆ

V
|η ◦N | ≤ Cm0

(
�(L)m+3+β2/3 + a �(L)2+γ2/2|V|

)
+

C

a

ˆ
V
G�
(
N, Q �η ◦N�

)2+γ2 ,

(17.25)
where � = s in case p = 2Q, and it is empty otherwise.

From (17.22) to (17.24) it is not difficult to infer analogous “global versions” of
the estimates.
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Corollary 17.25 (Global estimates). Let M′ be the domain Φ
(
[−7

2 , 7
2 ]m
)

and N
the map of Theorem 17.24. Then, (again with C = C(β2, δ2, M0, N0, Ce, Ch))

Lip(N |M′) ≤ Cmγ2
0 and ‖N |M′‖C0 ≤ Cm

1/2m

0 , (17.26)

|M′ \ K|+ ‖TF − T‖p(p−1(M′)) ≤ Cm1+γ2
0 , (17.27)ˆ

M′
|DN |2 ≤ Cm0 . (17.28)

17.4 Separation and domains of influence of large excess cubes. We
now analyze more in detail the consequences of the various stopping conditions for
the cubes in W . We first deal with L ∈ Wh.

Proposition 17.26 (Separation). There is a constant C�(M0) > 0 with the follow-
ing property. Assume the hypotheses of Theorem 17.24 and in addition C2m

h ≥ C�Ce.
If ε2 is sufficiently small, then the following conclusions hold for every L ∈ Wh:

(S1) Θ(T, q) ≤ Q− 1
2 for every q ∈ B16rL

(pL);
(S2) L ∩H = ∅ for every H ∈ Wn with �(H) ≤ 1

2�(L);
(S3) G�

(
N(x), Q �η ◦N(x)�

) ≥ 1
4Chm

1/2m

0 �(L)1+β2 for every x ∈ Φ(B2
√

m�(L)(xL, π0)),
where � = s if p = 2Q or � = otherwise.

A simple corollary of the previous proposition is the following.

Corollary 17.27 Given any H ∈ Wn there is a chain L = L0, L1, . . . , Lj = H such
that:

(a) L0 ∈ We and Li ∈ Wn for all i > 0;
(b) Li ∩ Li−1 �= ∅ and �(Li) = 1

2�(Li−1) for all i > 0.

In particular, H ⊂ B3
√

m�(L)(xL, π0).

We use this last corollary to partition Wn.

Definition 17.28 (Domains of influence). We first fix an ordering of the cubes in
We as {Ji}i∈N so that their sidelengths do not increase. Then H ∈ Wn belongs to
Wn(J0) (the domain of influence of J0) if there is a chain as in Corollary 17.27 with
L0 = J0. Inductively, Wn(Jr) is the set of cubes H ∈ Wn \ ∪i<rWn(Ji) for which
there is a chain as in Corollary 17.27 with L0 = Jr.

17.5 Splitting before tilting. The following proposition contains a “typical”
splitting-before-tilting phenomenon: the key assumption of the theorem (i.e. L ∈
We) is that the excess does not decay at some given scale (“tilting”) and the main
conclusion (17.30) implies a certain amount of separation between the sheets of the
current (“splitting”); see Section 22 for the proof.
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Proposition 17.29 (Splitting I). There are functions C1(δ2), C2(M0, δ2) such that,
if M0 ≥ C1(δ2), Ce ≥ C2(M0, δ2), if the hypotheses of Theorem 17.24 hold and if ε2 is
chosen sufficiently small, then the following holds. If L ∈ We, q ∈ π0 with dist(L, q) ≤
4
√

m�(L) and Ω = Φ(B�(L)/4(q, π0)), then (with C, C3 = C(β2, δ2, M0, N0, Ce, Ch)):

Cem0�(L)m+2−2δ2 ≤ �(L)mEno(T,BL) ≤ C

ˆ
Ω
|DN |2 , (17.29)

ˆ
L
|DN |2 ≤ C�(L)mEno(T,BL) ≤ C3�(L)−2

ˆ
Ω
|N |2 . (17.30)

17.6 Persistence of multiplicity Q points. We next state two important
properties triggered by the existence of q ∈ spt(T ) with Θ(T, q) = Q, both related
to the splitting before tilting. Their proofs will be discussed in Section 23.

Proposition 17.30 (Splitting II). Let the hypotheses of Theorem 17.19 hold and
assume ε2 is sufficiently small. For any α, ᾱ, α̂ > 0, there is ε3 = ε3(α, ᾱ, α̂, β2, δ2,
M0, N0, Ce, Ch) > 0 as follows.

When Q < p
2 , if for some s ≤ 1

sup
{
�(L) : L ∈ W , L ∩B3s(0, π0) �= ∅

} ≤ s , (17.31)

Hm−2+α
∞

({Θ(T, ·) = Q} ∩Bs

) ≥ ᾱsm−2+α, (17.32)

and min
{
s,m0

} ≤ ε3, then,

sup
{
�(L) : L ∈ We and L ∩B19s/16(0, π0) �= ∅

} ≤ α̂s .

When Q = p
2 , the same conclusion can be reached if (17.32) is replaced by

Hm−1+α
∞

({Θ(T, ·) = Q} ∩Bs

) ≥ ᾱsm−1+α . (17.33)

Proposition 17.31 (Persistence of Q-points). Assume the hypotheses of Proposi-
tion 17.29 hold. For every η2 > 0 there are s̄, �̄ > 0, depending upon η2, β2, δ2, M0, N0, Ce

and Ch, such that, if ε2 is sufficiently small, then the following property holds. If
L ∈ We, �(L) ≤ �̄, Θ(T, q) = Q and dist(pπ0(p(q)), L) ≤ 4

√
m�(L), then

−
ˆ

Bs̄	(L)(p(q))
G�
(
N, Q �η ◦N�

)2 ≤ η2

�(L)m−2

ˆ
B	(L)(p(q))

|DN |2 , (17.34)

where � = s if p = 2Q or � = otherwise.

17.7 Comparison between center manifolds. We list here a final key con-
sequence of the splitting before tilting phenomenon. ι0,r denotes the map z �→ z

r .

Proposition 17.32 (Comparing center manifolds). There is a geometric constant
C0 and a function c̄s(β2, δ2, M0, N0, Ce, Ch) > 0 with the following property. Assume
the hypotheses of Proposition 17.29, N0 ≥ C0, cs := 1

64
√

m
and ε2 is sufficiently small.

If for some r ∈]0, 1[:
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(a) �(L) ≤ csρ for every ρ > r and every L ∈ W with L ∩Bρ(0, π0) �= ∅;
(b) Eno(T,B6

√
mρ) < ε2 for every ρ > r;

(c) there is L ∈ W such that �(L) ≥ csr and L ∩ B̄r(0, π0) �= ∅;
then

(i) the current T ′ := (ι0,r)�T B6
√

m and the submanifold Σ′ := ι0,r(Σ) ∩ B7
√

m

satisfy the assumptions of Theorem 17.24 for some plane π in place of π0;
(ii) for the center manifold M′ of T ′ relative to π and the M′-normal approxima-

tion N ′ as in Theorem 17.24, we haveˆ
M′∩B2

|N ′|2 ≥ c̄s max
{
Eno(T ′,B6

√
m), c(Σ′)2

}
. (17.35)

18 Height bound and first technical lemmas

We can now discuss the proofs of the main results outlined in the previous section. We
begin with a mod(p) version of the sheeting lemma appearing in [DLS16a, Theorem
A.1].

Theorem 18.1. Let p, Q, m, n̄ and n be positive integers, with Q ≤ p
2 . Then there

are ε(Q, m, p, n̄, n) > 0, ω(Q, m, p, n̄, n) > 0, and C0(Q, m, n̄, n) with the following
property. For r > 0 and C = Cr(x0) = Cr(x0, π0) assume:

(h1) Σ and T are as in Assumption 4.1;
(h2) ∂T C = 0 mod(p), (pπ0)�T C = Q �Br(pπ0(x0), π0)� mod(p), and E := E

(T,C) < ε.

Then there are k ∈ N \ {0}, points {y1, . . . , yk} ⊂ R
n and integers Q1, . . . , Qk such

that:

(i) having set σ := C0(E + A2)
1

2m and ρ := r(1− 2(E + A2)ω), the open sets

Si := R
m × (yi+ ]− rσ, rσ[n)

are pairwise disjoint and

spt(T ) ∩Cρ(x0) ⊂
⋃
i

Si ;

(ii) (pπ0)�[T (Cρ(x0) ∩ Si)] = Qi �Bρ(pπ0(x0), π0)� mod(p) ∀i ∈ {1, . . . , k}, with
Qi ∈ Z. When Q < p

2 all Qi must be positive, whereas for Q = p
2 either they

are all positive or they are all negative; in any case,
∑

i|Qi| = Q;
(iii) for every q ∈ spt(T ) ∩Cρ(x0) we have Θ(T, q) < maxi |Qi|+ 1

2 .

If we keep the same assumptions with E replaced by Eno := Eno(T,C), the conclu-
sions hold if we set ρ := r(1 − η − 2(E + A2)ω), where η > 0 is any fixed constant
(in turn ε will depend also on η).
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Remark 18.2. The proof that we are going to present is substantially different from
the one in [DLS16a, Theorem A.1], and it could be easily adapted to the case of
area minimizing integral currents as well. The statement above is sufficient for our
purposes; nonetheless, the proof is actually going to give us more. In particular,
in dimension m ≥ 3 the result holds with a better estimate on the bandwidth of
the various Si, namely with σ = C0 (E + A2)

1
m in place of σ = C0 (E + A2)

1
2m . In

dimension m = 2, the proof below also produces the height bound with the optimal
estimate featuring σ = O(E1/2), but only in the cylinder C r

2
(x0).

Proof. In the rest of the proof we denote by p the orthogonal projection onto π0 =
R

m×{0}. The last part of the statement, where E is replaced with Eno follows from
Theorem 16.1. Moreover, we assume x0 = 0 and r = 1 after appropriate translation
and rescaling. We also observe, as in the proof of [DLS16a, Theorem A.1] that (iii) is
a corollary of the interior monotonicity formula (the only ingredients of the argument
in there are the stationarity of the varifold induced by Ti := T (Cρ ∩ Si) and the
inequality M(Ti) ≤ ωm ρm(|Qi|+ E)).

We therefore focus on (i) and (ii) and since the case Q < p
2 is entirely analogous,

for the sake of simplicity we assume Q = p
2 . We first prove (i). We start by considering

an approximation as in Proposition 16.2. We thus find an exponent ω > 0 (which
depends only on Q, m and n), a Lipschitz map u : B1−(E+A2)ω → AQ(Rn) and a
K ⊂ B1−(E+A2)ω with the following properties:

(i) Lip(u) ≤ C (E + A2)ω;
(ii) Gu K × R

n = T K × R
n mod(p);

(iii) ‖T‖((B1−(E+A2)ω \K)× R
n) ≤ C(E + A2)1+ω.

We consider first the case m > 2. Recall the Poincaré inequality and find a point
T0 ∈ AQ(Rn) such that
(ˆ

B1−(E+A2)ω

Gs(T0, u(x))2
∗
dx

)1/2∗

≤ C‖Du‖L2(B1−(E+A2)ω ) ≤ C(E+A2)
1
2 , (18.1)

where 2∗ = 2m
m−2 . Define next the set K∗ := {x ∈ B1−(E+A2)ω : Gs(u(x), T0) ≤

C̄(E + A2)
1
m }, where C̄ is a constant which will be later chosen sufficiently large.

Using (18.1) and Chebyshev’s inequality, we easily conclude

|B1−(E+A2)ω \K∗| C̄ 2m

m−2 (E + A2)
2

m−2 ≤ C (E + A2)
m

m−2 . (18.2)

In particular, for any fixed η̄, if C̄ is chosen large enough, we reach the estimate

|B1−(E+A2)ω \K∗| ≤ η̄(E + A2) . (18.3)

Consider now the set K̄ := K ∩ K∗ and observe that, by choosing ε sufficiently
small, we reach

‖T‖((B1−(E+A2)ω \ K̄)× R
n) ≤ 2η̄(E + A2) . (18.4)
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To fix ideas assume now that T0 = (
∑J

j=1 kj �pj� , 1), where the pj ’s are pairwise
distinct and all kj are positive. Let spt(T0) = {p1, . . . pJ}. From (ii) and the definition
of K̄, it follows easily that dist(spt(T0),p⊥(spt(〈T,p, x)) ≤ C̄(E +A2)

1
m for x ∈ K̄.

Define thus the sets U :=
⋃

j{(x, y) : |y− pj | ≤ C̄(E +A2)
1
m } and U′ :=

⋃
j{(x, y) :

|y − pj | ≤ (C̄ + 1)(E + A2)
1
m }, then

‖T‖(C1−(E+A2)ω \U) ≤ ‖T‖((B1−(E+A2)ω \ K̄)× R
n) ≤ 2η̄(E + A2) . (18.5)

If q ∈ C1−2(E+A2)ω \ U′, then B
(E+A2)

1
m

(q) ⊂ C1−(E+A2)ω \ U (we are imposing

here ω ≤ 1
m), and by the monotonicity formula ‖T‖(B

(E+A2)
1
m

(q)) ≥ c0(E + A2),
where c0 is a geometric constant. This is however incompatible with (18.5) as soon
as 2η̄ is chosen smaller than c0, thus showing that spt(T ) ∩C1−2 (E+A2)ω ⊂ U′. We
can now subdivide U′ in a finite number of disjoint stripes Si of width C̃(E +A2)

1
m ,

where C̃ is larger than C̄ by a factor which depends only on Q. This shows therefore
the claim (i) of the theorem when m > 2.

The case m = 2 is slightly more subtle. Observe first that |Du|2 ≤ min{mce, 1}
and hence we can use the same argument as in the proof of Theorem 14.3 to achieve

ˆ
K
|Du|2(1+q) ≤ CE1+q−ω . (18.6)

The subtlety is in losing at most (E+A2)ω in the radius of the ball; as usual, the price
to pay is a slightly worse estimate, cf. (18.6) with (14.3). Since |B1−(E+A2)ω \K| ≤
E1+ω, if we choose q small enough we easily reach the estimate

‖Du‖L2+2q(B1−(E+A2)ω ) ≤ CE
1
4 .

In particular, if we set in this case K∗ := {x ∈ B1−(E+A2)ω : Gs(u(x), T0) ≤ C̄(E +
A2)

1
4 } then from Morrey’s embedding follows that K∗ = B1−(E+A2)ω , provided C̄

is chosen large enough. (18.3) is thus trivially true and the rest of the argument
remains unchanged.

We now come to claim (ii). By the constancy theorem, it is easy to see that

p�(T C1−2(E+A2)ω ∩ Si) = Qi

�
B1−2(E+A2)ω

�
mod(p) ,

for some integer Qi ∈ {−(Q−1), . . . ,−1, 0, 1, . . . , Q}. However, recall that for x ∈ K̄:

• the support S of the current Zi(x) := 〈T,p, x〉 C1−2(E+A2)ω ∩ Si consists of
at most Q points;

• either all points in S have positive integer multiplicity, or they all have negative
integer multiplicity;

• M(Zi(x)) ≤ Q.
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We thus conclude that each Qi is nonzero and that |Qi| = M(Zi(x)). Now, since
M(〈T,p, x〉) = Q, we must have

∑ |Qi| = Q. On the other hand

∑
i

p�(T C1−2(E+A2)ω ∩ Si) = p�(T C1−2(E+A2)) = Q
�
B1−2(E+A2)ω

�
mod(p) .

Hence
∑

i Qi = Q mod(p). Hence we conclude that either all Qi’s are positive or
they are all negative.

Before coming to the proofs of the Lemmas 17.7 and (17.17), we wish to make the
following elementary remark, which will be used throughout the rest of the paper:

Proposition 18.3. There are dimensional constants ε(m, n) > 0 and C(m, n) > 0
with the following property. Consider an oriented m-dimensional plane π ⊂ R

m+n

and an oriented (m + d)-dimensional plane Π ⊂ R
m+n, where d ∈ {0, . . . , n}. Let

π′ ⊂ Π be an oriented m-dimensional plane for which |π−π′| = minτ⊂Π |π− τ |, and
assume|π − π′| < ε. Then

|π − pΠ(π)|no = |π − pΠ(π)| ≤ C|π − π′| .

In particular:

(Eq) if α and β are m-dimensional oriented planes of R
m+n for which |α − β| is

smaller than a positive geometric constant, then |α− β|no = |α− β|.

The proposition is a simple geometric observation, and its proof is left to the
reader.

Proof of Lemma 17.7. The argument given in [DLS16a, Section 4] of [DLS16a, Lemma
1.5] for the existence of the global extension of Σ and the minimality of T 0 in the
extended manifold works in our case as well, with straightforward modifications.

We now come to the proof of (17.9), which again follows that given in [DLS16a,
Section 4] of [DLS16a, Lemma 1.5], but needs some extra care. First of all, by
Assumption 17.5 and Remark 17.6, A ≤ C0m

1/2
0 ≤ C0. Then, by the monotonicity

formula, ‖T 0‖(B1) ≥ c0 > 0 and so there is q ∈ spt(T 0) ∩B1 such that

| �T 0(q)− π0|2no ≤ C0
Eno(T 0,B1, π0)
‖T 0‖(B1)

≤ C0m0 .

Now, both �T 0(q) and − �T 0(q) orient a plane contained in TqΣ. We can thus apply
Proposition 18.3 provided m0 is sufficiently small. From it we conclude that pTqΣ(π0)
is an m-dimensional plane with |pTqΣ(π0) − π0| ≤ C0m

1/2
0 . From this inequality we

then conclude following literally the final arguments of [DLS16a, Proof of Lemma
1.5].
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Proof of Lemma 17.8. We follow the proof of [DLS16a, Lemma 1.6] given in [DLS16a,
Section 4]. First of all we notice that, once (17.10) and (17.11) are established,
(17.12) follows from Theorem 18.1, since we clearly have that Eno(T,C11

√
m/2, π0) ≤

CEno(T 0,B6
√

m, π0). Moreover, recall that there is a set of full measure A ⊂ B5
√

m

such that 〈T,pπ0 , x〉 is an integer rectifiable current for every x ∈ A. For any such x

we have thus 〈T,pπ0 , x〉 =
∑J(x)

i ki(x) �pi� where p1, . . . , pJ(x) is a finite collection of
points and each ki(x) is an integer. In particular we must have

∑
i ki(x) = Q mod(p)

and since 1 ≤ Q ≤ p
2 , at least one ki(x) must be nonzero, which means in turn that

spt(〈T,pπ0 , x〉) �= ∅. Hence we conclude that spt(T ) ∩ p−1
π0

(x) �= ∅ for every x ∈ A,
and by the density of A we conclude that spt(T ) ∩ p−1

π0
(x) �= ∅ for every x ∈ B5

√
m.

We next come to (17.10) and (17.11). As in the proof of [DLS16a, Lemma 1.6],
we argue by contradiction and assume that one among (17.10) and (17.11) fails
for a sequence T 0

k of currents which satisfy Assumption 17.5 with ε2 = ε2(k) ↓ 0.
The compactness property given by Proposition 5.2 ensures the existence of a subse-
quence, not relabeled, converging to a current T 0∞ in the F p

K norm for every compact
K ⊂ B6

√
m: in fact Proposition 5.2 ensures also that T 0∞ is area minimizing mod(p)

in a suitable (m + n̄)-dimensional plane (the limit of the Riemannian manifolds Σk)
and that the varifolds induced by T 0

k converge to the varifold induced by T 0∞. In
particular, ∂T 0∞ = 0 mod(p) in B6

√
m and the tangent plane to T 0∞ is parallel to π0

‖T 0∞‖-almost everywhere.
Observe that by upper semicontinuity of the density, (17.5) implies that 0 is a

point of density Q for T 0∞. On the other hand (17.6) implies that ‖T 0∞‖(B6
√

m) ≤
Qωm(6

√
m)m. Hence, by the monotonicity formula, T 0∞ must be a cone. Observe

that if q ∈ spt(T 0∞) is a point where the approximate tangent space πq exists, since
T 0∞ is a cone, we must have that q ∈ πq. Thus q ∈ π0 for ‖T 0∞‖-a.e. q, which in turn
implies that spt(T 0∞) ⊂ π0. In conclusion T 0∞ = Q�B6

√
m� mod(p), and moreover the

varifold convergence holds in the whole R
m+n.

Again by the monotonicity formula, spt(T 0
k ) is converging locally in the sense

of Hausdorff to spt(T 0∞). In particular if we set Tk := T 0
k B23

√
m/4, for k large Tk

will have no boundary mod(p) in C11
√

m/2. Hence it must be (17.11) which fails for
an infinite number of k’s. On the other hand we certainly have (pπ0)�Tk C11

√
m/2 =

Qk�B11
√

m/2� mod(p). Notice that by the varifold convergence we have ‖T 0
k ‖(C11

√
m/2\

B23
√

m/4)→ 0 as k →∞. In particular the limit of the currents (pπ0)�Tk C11
√

m/2

is the same as the limit of the currents (pπ0)�T
0
k C11

√
m/2 and thus it must be

Qk = Q mod(p) for k large enough.

19 Tilting of planes and proof of Proposition 17.13

Following [DLS16a], the first important technical step in the proof of the existence
of the center manifold is to gain a control on the tilting of the optimal planes as the
cubes get refined. The following proposition corresponds to [DLS16a, Proposition
4.1].
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Proposition 19.1 (Tilting of optimal planes). Assume that the hypotheses of As-
sumptions 17.5 and 17.10 hold, that Ce ≥ C� and Ch ≥ C�Ce, where C�(M0, N0) is
the constant of the previous section. If ε2 is sufficiently small, then

(i) BH ⊂ BL ⊂ B5
√

m for all H, L ∈ W ∪S with H ⊂ L.

Moreover, if H, L ∈ W ∪S and either H ⊂ L or H ∩L �= ∅ and �(L)
2 ≤ �(H) ≤ �(L),

then the following holds, for C̄ = C̄(β2, δ2, M0, N0, Ce) and C = C(β2, δ2, M0, N0,
Ce, Ch):

(ii) |π̂H − πH | ≤ C̄m
1/2
0 �(H)1−δ2 ;

(iii) |πH − πL| ≤ C̄m
1/2
0 �(L)1−δ2 ;

(iv) |πH − π0| ≤ C̄m
1/2
0 ;

(v) h(T,C36rH
(pH , π0)) ≤ Cm

1/2m

0 �(H) and spt(T ) ∩C36rH
(pH , π0) ⊂ BH ;

(vi) For π = πH , π̂H , h(T,C36rL
(pL, π)) ≤ Cm

1/2m

0 �(L)1+β2 and spt(T )∩C36rL
(pL, π)

⊂ BL.

In particular, the conclusions of Proposition 17.13 hold.

Proof. First of all we observe that, if we replace (ii), (iii) and (iv) with

(ii)no |π̂H − πH |no ≤ C̄m
1/2
0 �(H)1−δ2 ,

(iii)no |πH − πL|no ≤ C̄m
1/2
0 �(L)1−δ2 , and

(iv)no |πH − π0|no ≤ C̄m
1/2
0 ,

then the arguments given in the [DLS16a, Proof of Proposition 4.1] can be followed
literally with minor adjustments. Indeed those arguments depend only on:

• the monotonicity formula;
• the triangle inequality |α− γ| ≤ |α− β|+ |β − γ|;
• the elementary geometric observation that, for every subset E and every pair

of m-planes α and β, we have the inequality

h(T, E, α) ≤ h(T, E, β) + Cdiam (E)|α− β| ,
where C is a geometric constant.

However, it can be easily verified that all such properties remain true if we replace
| · | with | · |no.

We next come to (ii), (iii) and (iv). First observe that both πH and the (oriented)
m-plane with the same support and opposite orientation belong to TpH

Σ. For this
reason, the definition of πH implies that |πH − π̂H |no = |πH − π̂H |, thus allowing us
to infer (ii) from (ii)no.

Next, recall that we have |π̂H −π0| = |π̂H −π0|no, cf. Remark 17.4. Hence (iv)no
implies (iv). Now, combining (iv) for two planes H and L as in statement (iii) of
the proposition, we conclude that |πH − πL| ≤ |πH − π0| + |πL − π0| ≤ Cm

1/2
0 .

Hence, again assuming that ε2 is sufficiently small, we can apply Proposition 18.3,
in particular conclusion (Eq): |πH − πL| = |πH − πL|no. Thus (iii) is a consequence
of (iii)no.
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Remark 19.2. Notice that, even though our arguments use the nonoriented excess
as control parameter, the estimates of Proposition 19.1 on the tilt of optimal planes
which are needed for the construction of the center manifold involve a measure of
the classical distance between oriented planes. As seen in the proof, such estimates
continue to be valid in our setting thanks to our choice of optimal planes made in
(17.3) and to the observation made in Proposition 18.3.

Arguing as in [DLS16a, Section 4.3] we get the following existence theorem with
very minor modifications (the only adjustment that needs to be taken into consid-
eration is that the identities [DLS16a, (4.9)], [DLS16a, (4.10)] and the subsequent
analogous ones must be replaced with the same equalities mod(p)):

Proposition 19.3 (Existence of interpolating functions). Assume the conclusions
of the Proposition 19.1 apply. The following facts are true provided ε2 is sufficiently

small. Let H, L ∈ W ∪ S be such that either H ⊂ L or H ∩ L �= ∅ and �(L)
2 ≤

�(H) ≤ �(L). Then,

(i) For π = πH , π̂H , (pπ)�T C32rL
(pL, π) = Q �B32rL

(pL, π))� mod(p) and T
satisfies the assumptions of 16.1 in the cylinder C32rL

(pL, π).
(ii) Let fHL be the πH -approximation of T in C8rL

(pL, πH) and hHL := (η ◦fHL)∗
��(L) be its smoothed average. Set κH := π⊥

H ∩ TpH
Σ and consider the maps

x �→ h̄(x) := pTpH
Σ(h) ∈ κH

x �→ hHL(x) := (h̄(x), ΨpH
(x, h̄(x))) ∈ κH × (TpH

(Σ))⊥ .

Then there is a smooth gHL : B4rL
(pL, π0)→ π⊥

0 s.t. GgHL
= GhHL

C4rL
(pL, π0).

Definition 19.4. hHL and gHL will be called, respectively, tilted (H, L)-interpolating
function and (H, L)-interpolating function.

Observe that the tilted (L, L)-interpolating function and the (L, L)-interpolating
function correspond to the tilted L-interpolating function and to the L-interpolating
function of Definition 17.18. Obviously, Lemma 17.17 is just a particular case of
Proposition 19.3. As in Definition 17.18, we will set hL := hLL and gL := gLL.

20 The key construction estimates

Having at disposal the Existence Proposition 19.3 we can now come to the main
estimates on the building blocks of the center manifold, which in fact correspond
precisely to [DLS16a, Proposition 4.4] and are thus restated here only for the reader’s
convenience.

Proposition 20.1. (Construction estimates) Assume the conclusions of Proposi-
tions 19.1 and 19.3 apply and set κ = min{β2/4, ε0/2}. Then, the following holds for
any pair of cubes H, L ∈Pj (cf. Definition 17.18), where C = C(β2, δ2, M0, N0, Ce, Ch):
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(i) ‖gH‖C0(B) ≤ C m
1/2m

0 and ‖DgH‖C2,κ(B) ≤ Cm
1/2
0 , for B = B4rH

(xH , π0);

(ii) if H ∩ L �= ∅, then ‖gH − gL‖Ci(BrL
(xL,π0)) ≤ Cm

1/2
0 �(H)3+κ−i for every i ∈

{0, . . . , 3};
(iii) |D3gH(xH)−D3gL(xL)| ≤ Cm

1/2
0 |xH − xL|κ;

(iv) ‖gH − yH‖C0 ≤ Cm
1/2m

0 �(H) and |πH − T(x,gH(x))GgH
| ≤ Cm

1/2
0 �(H)1−δ2 ∀x ∈

H;
(v) if L′ is the cube concentric to L ∈ W j with �(L′) = 9

8�(L), then

‖ϕi − gL‖L1(L′) ≤ C m0 �(L)m+3+β2/3 for all i ≥ j .

The proof of Theorem 17.19 assuming the validity of Proposition 20.1 is given in
[DLS16a, Section 4.4, Proof of Theorem 1.17]. As for the proof of Proposition 20.1,
we discuss briefly why the arguments given in [DLS16a, Section 5] apply in our case
as well. First of all, the key tool in the proof, namely [DLS16a, Proposition 5.2], is
valid under our assumptions for the following reason. The proof given in [DLS16a,
Section 5.1] is based on the following facts:

• The first variation of T vanishes, and this allows to estimate the first variation
of Gf = GfHL

as in [DLS16a, Eq. (5.4)].
• The estimates claimed in [DLS16a, Eqs. (5.5)–(5.9)] are valid because of The-

orem 16.1 and the Taylor expansion of [DLHMS, Corollary 13.2].
• Using the decomposition δGf = δ(Gf+ B+) + δ(Gf− B−) + Qδ(Gη◦f B0)

we can show the validity of [DLS16a, Eq. (5.11)].

The three ingredients above are then used to show the first estimate of [DLS16a,
Proposition 5.2], namely [DLS16a, Eq. (5.1)]. The derivation of the remaining part
of [DLS16a, Proposition 5.2] is then a pure PDE argument based only on [DLS16a,
Eq. (5.1)].

In [DLS16a, Section 5.2] the [DLS16a, Proposition 4.4] is used to derive [DLS16a,
Lemma 5.3], which in fact includes the conclusions (i) and (ii) of Proposition 20.1.
This derivation does not depend anymore on the underlying current and thus the
proof given in [DLS16a, Section 5.2] works literally in our case as well. The remain-
ing part of Proposition 20.1 is derived from [DLS16a, Lemma 5.5]. The latter is
based solely on the estimates on the Lipschitz approximation (which are provided
by Theorem 16.1) and on [DLS16a, Lemma 5.5], whose role is taken, in our setting,
by [DLHMS, Lemma 16.1].

21 Existence and estimates on the M-normal approximation

Corollary 17.22 can be proved following the argument of [DLS16a, Section 6.1]. The
only adjustement needed is in the argument for claim (iii). Following the one of
[DLS16a, Section 6.1] we conclude that at every q ∈ Φ(Γ), if we denote by π the
oriented tangent plane to M at q, then the current Q �π� is the unique tangent



GAFA REGULARITY OF AREA MINIMIZING CURRENTS MOD p

mod(p) of T at q, in the sense of Corollary 7.3. We then can use Proposition 5.2 to
conclude that Θ(T, q) = Q.

For Theorem 17.24 we can repeat the arguments of [DLS16a, Section 6.2] in
order to prove the existence of the M-normal approximation and the validity of
(17.22) and (17.23). As for (17.25) we can repeat the arguments of [DLS16a, Section
6.3], whereas in order to get (17.24) we make the following adjustments to the first
part of [DLS16a, Section 6.3]. The paragraphs leading to [DLS16a, Eq. (6.11)] are
obviously valid in our setting. However [DLS16a, Eq. (6.11)] must be replaced with
the following analogous estimateˆ

p−1(L)
|�TF (x)− �M(p(x))|2nod‖TF ‖(x)

≤
ˆ
p−1(L)

|�T (x)− �M(p(x))|2nod‖T‖(x) + Cm1+γ2
0 �(L)m+2+γ2

≤
ˆ
p−1(L)

|�T (x)− �πL|2nod‖T‖(x) + Cm0�(L)m+2−2δ2 . (21.1)

From this one we proceed as in the rest of [DLS16a, Section 6.3] using the Taylor
expansion of [DLHMS, Proposition 13.3] in place of [DLS15, Proposition 3.4].

22 Separation and splitting before tilting

The arguments for Proposition 17.26 and Corollary 17.27 can be taken from [DLS16a,
Section 7.1], modulo using Theorem 18.1 in place of [DLS16a, Theorem A.1].

We next come to the proof of Proposition 17.29. A first important ingredient is
the Unique continuation property of [DLS16a, Lemma 7.1], which we will now prove
it is valid for AQ(Rn) minimizers as well.

Lemma 22.1 (Unique continuation for Dir-minimizers). For every η ∈ (0, 1) and
c > 0, there exists γ > 0 with the following property. If w : R

m ⊃ B2 r → AQ(Rn) is
Dir-minimizing, Dir (w, Br) ≥ c and Dir (w, B2r) = 1, then

Dir (w, Bs(q)) ≥ γ for every Bs(q) ⊂ B2r with s ≥ η r.

Proof. We follow partially the argument of [DLS16a, Section 7.2] for [DLS16a,
Lemma 7.1]. In particular, the second part of the argument, which reduces the
statement to the following claim, can be applied with no alterations:

(UC) if Ω is a connected open set and w ∈ W 1,2(Ω,AQ(Rn)) is Dir-minimizing in
any every bounded Ω′ ⊂⊂ Ω, then either w is constant or

´
J |Dw|2 > 0 for

every nontrivial open J ⊂ Ω.

However, the proof given in [DLS16a, Section 7.1] of (UC) when w ∈W 1,2(Ω,AQ(Rn))
cannot be repeated in our case, since it uses heavily the fact that the singular sets
of AQ(Rn)-valued Dir-minimizers cannot disconnect the domain, a property which
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is not enjoyed by AQ(Rn)-valued Dir-minimizers. We thus have to modify the proof
somewhat, although the tools used are essentially the same.

Assume by contradiction that there are a connected open set Ω ⊂ R
m, a map

w ∈W 1,2
loc (Ω,AQ(Rn)) and a nontrivial open subset J ⊂ Ω such that

(a) w is Dir-minimizing on every open Ω′ ⊂⊂ Ω;
(b) w is not constant, and thus

´
Ω′ |Dw|2 > 0 for some Ω′ ⊂⊂ Ω;

(c)
´
J |Dw|2 = 0.

Observe first that, from the classical unique continuation of harmonic functions,
either η ◦ w is constant, or it has positive Dirichlet energy on any nontrivial open
subset of Ω. Since however the Dirichlet energy of η ◦ w is controlled from above
by that of w, (c) excludes the second posssibility. Thus η ◦w is constant and hence,
without loss of generality, we can assume η ◦ w ≡ 0.

Next assume, without loss of generality, that J is connected. Clearly, w is con-
stantly equal to some P ∈ AQ(Rn) on J . Since, without loss of generality, we could
“flip the signs of the Dirac masses” which constitute the values of u, we can always
assume that P = (

∑
i �Pi� , 1). We then distinguish two cases.

First Case. The diameter of spt(P ) is positive, namely |Pi − Pj | > 0 for some
i �= j. In this case consider the interior U of the set {w = P}. We want to argue that
U = Ω, which contradicts (b). Since Ω is open and connected, it suffices to show
that ∂U ∩Ω = ∅. In order to show this, consider a point x ∈ ∂U . If x ∈ Ω, using the
continuity of the map w, we know that in a sufficiently small ball Bρ(x) there is an
AQ(Rn)-valued map z such that w(y) = (z(y), 1) for all y ∈ Bρ(x). As such, z must
be a Dir-minimizer to which we can apply [DLS16a, Section 7.2]: since

´
J ′ |Dz|2 = 0

for some nontrivial open J ′ ⊂ Bρ(x), we must have that z is constant on Bρ(x). But
then we would have Bρ(x) ⊂ U , thus contradicting the assumption that x ∈ ∂U .

Second Case. The remaining possibility is that P = Q �η ◦ w(x)� = Q �0� (which
equals both (Q �0� , 1) and (Q �0� ,−1), since the latter points are identified in
AQ(Rn)). Define therefore

K := {w = Q �0�} ,

and (since K ⊃ J) observe that |K| > 0. Consider now the set K̃ of points x ∈ R
m

such that

0 < lim
k→∞

|K ∩Brk
(x)|

ωmrm
k

< 1 for some rk ↓ 0+ , (22.1)

and notice that K̃ ⊂ K since w is continuous. The set K̃ is necessarily nonempty. If
it were empty, we could first apply the classical characterization of Federer of sets
of finite perimeter, cf. [Fed69, Theorem 4.5.11], to infer that K is a set of finite
perimeter, and subsequently we could then apply the classical structure theorem
of De Giorgi to conclude that, since the reduced boundary of K would be empty,
D1K = 0. The latter would imply that 1K is constant on the connected set Ω,
namely that Ω \K has zero Lebesgue measure, which in turn would contradict (b).
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Fix a point x ∈ K̃. Clearly it must be
´
Bρ(x) |Dw|2 > 0 for every ρ > 0, otherwise

w would be constant in a neighborhood of x and thus x would be an interior point
of K. Denoting Ix,w(·) the frequency function of w at x as in [DLHMS, Definition
9.1], from [DLHMS, Theorem 9.2] we must then have

∞ > I0 := lim
r↓0

Ix,w(r) > 0 .

Define then the maps y �→ wr(y), whose positive and negative parts are given by

w±
r (y) :=

∑
i

�
r−I0 w±

i (r y + x)
�

,

and observe that a subsequence of {wrk
}k∈N, not relabeled, is converging to a non-

trivial w0 ∈ W 1,2
loc (Rm,AQ(Rn)) which minimizes the Dirichlet energy on every

Ω′ ⊂⊂ R
m and is I0-homogeneous.

Next define the sets Krk
:= r−1

k (K − x), where the maps wrk
vanish identically,

and observe that, by (22.1), lim infk |Krk
∩ B1| > 0. Since the sets Krk

∩ B1 are
compact we can, without loss of generality, assume that they convergence in the
sense of Hausdorff to some set K0. The limiting map w0 vanishes on such set because
the wrk

are converging locally uniformly to w0. On the other hand it is elementary to
see that the Lebesgue measure is upper semicontinuous under Hausdorff convergence
and we thus conclude |K0| > 0.

We can now repeat the procedure above on some point y �= 0 where the Lebesgue
density of K0 does not exist or it is neither zero nor one. We find thus a corresponding
tangent function w1 that has all the properties of w0, namely

• it is nontrivial,
• it vanishes identically on a set of positive measure,
• it is I1-homogeneous for some positive constant I1,
• and it minimizes the Dirichlet energy on any bounded open set.

In addition w1 is invariant under translations along the direction y
|y| . Assuming, after

rotations, that such vector is em = (0, 0, . . . , 0, 1), the function w1 depends therefore
only on the variables x1, . . . , xm−1 and can thus be treated as a function defined
over R

m−1. Iterating m− 2 more times such procedure we achieve finally a function
wm−1 : R→ AQ(Rn) with the following properties:

(A) wm−1 is identically Q �0� on some set of positive measure;
(B)
´ −1
1 |Dwm−1|2 > 0;

(C) wm−1 is Dir-minimizing on ]a, b[ for every 0 < a < b <∞;
(D) wm−1 is α-homogeneous for some positive α > 0;
(E) η ◦ wm−1 ≡ 0.

Because of (A) and (D), wm−1 must be identically equal to Q �0� on at least one
of two half-lines ]−∞, 0] and [0,∞[. Without loss of generality we can assume this
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happens on the ] −∞, 0[. Let now wm−1(1) = (
∑

i �ci� , ε), where ε ∈ {−1, 1}. By
(D) we then have

wm−1(x) =

(∑
i

�cix
α�, ε

)
∀x ≥ 0 .

Observe that, because of (B), at least one of the ci’s is nonzero. Therefore ε can-
not be equal to 1, otherwise wm−1 would give an AQ(Rn)-valued Dir-minimizer on
the real line with a singularity, which is not possible. However, since (Q �0� , 1) =
(Q �0� ,−1), if ε equals −1 we reach precisely the same contradiction. This completes
the proof.

We keep following the strategy of [DLS16a, Section 7.2] towards a proof of Propo-
sition 17.29. First of all, we introduce some useful notation.

Definition 22.2. Let w : E → AQ(Rn), let E+, E− and E0 be the canonical de-
composition of E induced by w and let w+, w− and η ◦ w the corresponding maps,
as in [DLHMS, Definition 2.7]. For any f : E → R

n we denote by w⊕f (resp. w�f)
the AQ(Rn)-valued map which

• on E+ coincides with (w+ ⊕ f, 1) (resp. (w+ � f, 1)),
• on E− coincides with (w− ⊕ f,−1) (resp. (w− � f,−1)),
• and on E0 coincides with Q �η ◦ w + f� (resp. Q �η ◦ w − f�.

Moreover we use the shorthand notation w̄ for w � η ◦ w.

We next show that if the energy of an AQ(Rn)-valued Dir-minimizer w does not
decay appropriately, then the map must “split”, in other words w̄ cannot be too
small compared to η ◦ w. As in [DLS16a, Section 7.2], we fix λ > 0 such that

(1 + λ)(m+2) < 2δ2 , (22.2)

and we claim the following analog of [DLS16a, Proposition 7.2].

Proposition 22.3 (Decay estimate for Dir-minimizers). For every η > 0, there is
γ > 0 with the following property. Let w : R

m ⊃ B2r → AQ(Rn) be Dir-minimizing
in every Ω′ ⊂⊂ B2r such that

ˆ
B(1+λ)r

Gs

(
Dw, Q �D(η ◦ w)(0)�

)2 ≥ 2δ2−m−2 Dir (w, B2r) . (22.3)

Then, if we let w̄ be as in Definition 22.2, the following holds:

γ Dir (w, B(1+λ)r) ≤ Dir (w̄, B(1+λ)r) ≤
1

γ r2

ˆ
Bs(q)

|w̄|2 ∀ Bs(q) ⊂ B2 r with s ≥ η r .

(22.4)
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The proof of [DLS16a, Proposition 7.2] can be literally followed for our case using
the Unique continuation Lemma 22.1 in combination with the next simple algebraic
computation (which is the counterpart of [DLS16a, Lemma 7.3]).

Lemma 22.4. Let B ⊂ R
m be a ball centered at 0, w ∈ W 1,2(B,AQ(Rn)) Dir-

minimizing and w̄ as in Definition 22.2 We then have

Q

ˆ
B
|D(η ◦ w)−D(η ◦ w)(0)|2 =

ˆ
B
Gs(Dw, Q �D(η ◦ w)(0)�)2 −Dir (w̄, B) .

(22.5)

The detail of the necessary modifications to the argument in [DLS16a, Proof
of Proposition 7.2] towards proving Proposition 22.3 are left to the reader; we will
instead show how to prove the lemma above.

Proof. Let u := η ◦ w and observe that it is harmonic. Thus, using the mean value
property of harmonic functions and a straightforward computation we get

Q

ˆ
B
|Du−Du(0)|2 = Q

ˆ
B
|Du|2 −Q|B||Du(0)|2 . (22.6)

On the other hand, using again the mean value property of harmonic functions, it
is easy to see thatˆ

B
Gs(Dw, Q �Du(0)�)2 =

∑
ε=+,−

ˆ
Bε

G(Dwε, Q �Du(0)�)2 + Q

ˆ
B0

|Du−Du(0)|2

and ˆ
Bε

G(Dwε, Q �Du(0)�)2 =
ˆ

Bε

(|Dwε|2 − 2QDu : Du(0) + Q|Du(0)|2) .

In particular, we getˆ
B
Gs(Dw, Q �Du(0)�)2 =

ˆ
B
|Dw|2 + Q|B||Du(0)|2 − 2QDu(0) :

ˆ
B

Du

and again by the mean value property we concludeˆ
B
Gs(Dw, Q �Du(0)�)2 =

ˆ
B
|Dw|2 −Q|B||Du(0)|2 . (22.7)

Combining (22.6) and (22.7) we thus getˆ
B
Gs(Dw, Q �D(η ◦ w)(0)�)2 −Q

ˆ
B
|D(η ◦ w)−D(η ◦ w)(0)|2

=
ˆ

B
Gs(Dw, Q �Du(0)�)2 −Q

ˆ
B
|Du−Du(0)|2 =

ˆ
B
|Dw|2 −Q

ˆ
B
|Du|2

=
ˆ

B
|Dw|2 −Q

ˆ
B
|D(η ◦ w)|2 . (22.8)
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Next, a simple algebraic computations showsˆ
B
|Dw|2 =

∑
ε=+,−

ˆ
Bε

|Dwε|2 + Q

ˆ
B0

|D(η ◦ w)|2

=
∑

ε=+,−

(ˆ
Bε

|Dw̄ε|2 + Q|D(η ◦ wε)|2
)

+ Q

ˆ
B0

|D(η ◦ w)|2

=
ˆ

B
|Dw̄|2 + Q

ˆ
B
|D(η ◦ w)|2. (22.9)

Clearly, (22.8) and (22.9) give (22.5) and conclude the proof.

Proof of Proposition 17.29. Having at hand the analogs of the tools used in [DLS16a,
Section 7.3], we can following the argument given there for [DLS16a, Proposition
3.4]. In the first step of the proof (namely [DLS16a, Step 1, p. 548]) we use [DLHMS,
Corollary 13.2] in place of [DLS15, Corollary 3.3], we use Theorem 16.1 in place of
[DLS14, Theorem 2.4] and we replace E with Eno in the various formulas. We also
replace G with Gs in case p = 2Q. We then follow [DLS16a, Step 2, p. 550], where we
use Lemma 22.1 and Proposition 22.3 in place of [DLS16a, Lemma 7.1 & Proposition
7.2] in case p = 2Q. In the final [DLS16a, Step 3, p. 551] we use the reparametrization
Theorem [DLHMS, Theorem 15.1] in place of the corresponding [DLS15, Theorem
5.1] and measure the distance between m-planes using | · |no in place of | · |.

23 Persistence of multiplicity Q points

The proofs of Proposition 17.30 and Proposition 17.31 can be easily adapted to our
case from [DLS16a, Proofs of Proposition 3.5 & Proposition 3.6] once we prove the
following analog of [DLS14, Theorem 2.7]:

Theorem 23.1 (Persistence of Q-points). For every δ̂, C� > 0, there is s̄ ∈]0, 1
2 [ such

that, for every s < s̄, there exists ε̂(s, C∗, δ̂) > 0 with the following property. If T is as
in Theorem 16.1, Eno := Eno(T,C4 r(x)) < ε̂, r2A2 ≤ C�Eno and Θ(T, (p, q)) = Q
at some (p, q) ∈ Cr/2(x), then the approximation f of Theorem 15.1 satisfies

ˆ
Bsr(p)

G�(f, Q �η ◦ f�)2 ≤ δ̂smr2+mEno , (23.1)

where � = s if p = 2Q or � = otherwise.

In order to show Theorem 23.1 we can follow literally [DLS14, Section 9]. Indeed
the proof in [DLS14, Section 9] relies on the Hölder estimates for Dir minimizers
(which are valid in the AQ(Rn) case by [DLHMS, Theorem 8.1]), the estimates on
the Lipschitz approximation (given by Theorem 16.1 and the classical monotonicity
formula in the slightly improved version of [DLS14, Lemma A.1]. Although the latter
is stated for stationary integral currents in a Riemannian manifold, it is easy to see
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that the proof is in fact valid for stationary varifolds and as such can be applied
to mod(p) area-minimizing currents. We formulate the precise theorem here for the
reader’s convenience.

Lemma 23.2. There is a constant C depending only on m, n and n̄ with the fol-
lowing property. If Σ ⊂ R

m+n is a C2 (m + n̄)-dimensional submanifold with
‖AΣ‖∞ ≤ A, U is an open set in R

m+n and V an m-dimensional integral vari-
fold supported in Σ which is stationary in Σ ∩ U , then for every ξ ∈ Σ ∩ U the
function ρ �→ exp(CA2ρ2)ρ−m‖V ‖(Bρ(ξ)) is monotone on the interval ]0, ρ̄[, where
ρ̄ := min{dist(x, ∂U), (CA)−1}.
Remark 23.3. The proof of Theorem 23.1 can also be given following the alter-
native argument of Spolaor in [Spo19], which uses the Hardt-Simon inequality and
the classical version by Allard of Moser’s iteration for subharmonic functions on
varifolds. While Spolaor’s argument is more flexible and indeed works for integral
currents which are not minimizing but sufficiently close to minimizing ones in a
suitably quantified way, we prefer to adhere to the strategy of [DLS14] because it is
more homogeneous to our notation and terminology.

24 Proof of Proposition 17.32

The proof follows the one of [DLS16a, Proposition 3.7] given in [DLS16a, Section
9] with minor modifications. The necessary tools used there, namely the splitting
before tilting Propositions, the height bound and the reparametrization theorem are
all available from the previous sections.
Part 4. Blow-up and final argument

25 Intervals of flattening

Our argument for Theorem 4.3 is by contradiction, and we start therefore fixing a
current T , a submanifold Σ, an open set Ω, an integer 2 ≤ Q ≤ p

2 , positive reals α and
η and a sequence rk ↓ 0 of radii as in Proposition 8.7. In this section we proceed as in
[DLS16b, Section 2] and define appropriate intervals of flattening ]sj , tj ], which are
intervals over which we will construct appropriate center manifolds. These intervals,
which will be ordered so that tj+1 ≤ sj will satisfy several properties, among which
we anticipate the following fundamental one: aside from finitely many exceptions,
each radius rk belongs to one of the intervals. In particular, if they are finitely many,
then 0 is the left endpoint of the last one, whereas if they are infinitely many, then
tj ↓ 0. The definition of these intervals is taken literally from [DLS16b, Section
2.1], the only difference being that we take advantage of Theorem 17.19 in place of
[DLS16a, Theorem 1.17]. However we repeat the details for the reader’s convenience.

Without loss of generality we assume that B6
√

m(0) ⊂ Ω, and we fix a small pa-
rameter ε3 ∈]0, ε2[, where ε2 is the constant appearing in (17.8) of Assumption 17.5.
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Then, we take advantage of Proposition 8.7 and of a simple rescaling argument to
assume further that:

T0Σ = R
m+n̄ × {0} , Θ(T, 0) = Q , ∂T B6

√
m(0) = 0 mod(p) , (25.1)

‖T‖(B6
√

mρ(0)) ≤ (Q (6
√

m)m + ε2
3

)
ρm for all ρ ≤ 1 , (25.2)

c(Σ ∩B7
√

m(0)) ≤ ε3 . (25.3)

We next define

R :=
{
r ∈]0, 1] : Eno(T,B6

√
mr(0)) ≤ ε2

3

}
, (25.4)

Observe that {0} ∪ R is a closed set and that, since Eno(T,B6
√

mrk
)→ 0 as k ↑ ∞,

rk ∈ R for k large enough.
The intervals of flattening will form a covering of R. We first define t0 as the

maximum of R. We then define inductively s0, . . . , tj , sj in the following way.
Let us first assume that we have defined tj and we wish to define sj (in particular

this part is applied also with j = 0 to define s0). We first consider the rescaled current
Tj := ((ι0,tj

)�T ) B6
√

m, Σj := ι0,tj
(Σ) ∩ B7

√
m; moreover, consider for each j an

orthonormal system of coordinates so that, if we denote by π0 the m-plane R
m×{0},

then Eno(Tj ,B6
√

m, π0) = Eno(Tj ,B6
√

m) (alternatively we can keep the system of
coordinates fixed and rotate the currents Tj).

Definition 25.1. We let Mj be the corresponding center manifold constructed in
Theorem 17.19 applied to Tj and Σj with respect to the m-plane π0. The manifold
Mj is then the graph of a map ϕj : π0 ⊃ [−4, 4]m → π⊥

0 , and we set Φj(x) :=
(x, ϕj(x)) ∈ π0×π⊥

0 . We then let W (j) be the Whitney decomposition of [−4, 4]m ⊂
π0 as in Definition 17.9, applied to Tj . We denote by pj the orthogonal projection
on the center manifold Mj , which, given the C3,κ estimate on ϕj , is well defined in
a “slab” Uj of thickness 1 as defined in point (U) of Assumption 17.21.

Next we distinguish two cases:

(Go) For every L ∈ W (j),
�(L) < csdist(0, L) , (25.5)

where cs := 1
64

√
m

, see Proposition 17.32. In this case we set sj = 0. Observe
that in this case the origin is included in the set Γj defined in (17.17).

(Stop) Assuming that (Go) fails, we fix an L with maximal diameter among those
cubes of W (j) which violate the inequality (25.5). We then set

sj := tj
�(L)
cs

. (25.6)
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Observe that, in both cases, for every ρ > r̄ := sj/tj we have

�(L) < csρ for all L ∈ W (j) with L ∩Bρ(0, π0) �= ∅. (25.7)

We next come to the definition of tj+1 once we know sj . If sj = 0, then we stop
the procedure and we end up with finitely many intervals of flattening. Otherwise we
let tj+1 be the maximum of R∩]0, sj ]. Note that, since the vanishing sequence {rk}
belongs toR except for finitely many elements, clearly the latter set is nonempty and
thus tj+1 is a positive number. Observe also that, by (17.18) of Proposition 17.13 and
using that 2−N0 < cs by (17.16), we have �(L) ≤ 2−6−N0 ≤ cs

64 . Thus, sj

tj
< 2−5. This

ensures that, in case (Go) never holds (i.e. the intervals of flattening are infinitely
many), tj ↓ 0.

Definition 25.2. We denote by F the (finite or countable) family of intervals of
flattening as defined above.

The following proposition is the analog of [DLS16b, Proposition 2.2] and, since
the proof is a minor modification of the one given in [DLS16b, Section 2.2] we omit
it. Using the notation of Definition 17.12 we introduce the subfamilies W

(j)
e ,W

(j)
h

and W
(j)

n . Recall also that, given two sets A and B, we have defined their separation
as the number sep(A, B) := inf{|x− y| : x ∈ A, y ∈ B}.
Proposition 25.3. Assuming ε3 sufficiently small, then the following holds:

(i) sj < tj

25 and the family F is either countable and tj ↓ 0, or finite and Ij =]0, tj ]
for the largest j;

(ii) the union of the intervals of F cover R, and for k large enough the radii rk in
Proposition 8.7 belong to R;

(iii) if r ∈] sj

tj
, 3[ and J ∈ W

(j)
n intersects B := pπ0(Br(qj)), with qj := Φj(0), then J

is in the domain of influence W
(j)

n (H) (see Definition 17.28) of a cube H ∈ W
(j)

e

with

�(H) ≤ 3 cs r and max {sep (H, B), sep (H, J)} ≤ 3
√

m �(H) ≤ 3r

16
;

(iv) Eno(Tj ,Br) ≤ C0ε
2
3 r2−2δ2 for every r ∈] sj

tj
, 3[.

(v) sup{dist(x,Mj) : x ∈ spt(Tj) ∩ p−1
j (Br(qj))} ≤ C0 (mj

0)
1

2m r1+β2 for every

r ∈] sj

tj
, 3[, where mj

0 := max{c(Σj)2,Eno(Tj ,B6
√

m)}.

26 Frequency functions and its variations

As in [DLS16b, Section 3] we introduce the following Lipschitz (piecewise linear)
weight

φ(r) :=

⎧
⎪⎨
⎪⎩

1 for r ∈ [0, 1
2 ],

2− 2r for r ∈ ]12 , 1],
0 for r ∈ ]1, +∞[.
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For every interval of flattening Ij =]sj , tj ] ∈ F , we let Nj be the normal approxi-
mation of Tj on the center manifold Mj of Thereom 17.24. As in [DLS16b, Section
3] we introduce the corresponding frequency functions and state the main analyt-
ical estimate, which allows us to exclude infinite order of contact of the normal
approximations with the center manifolds Mj .

Definition 26.1 (Frequency functions). For every r ∈]0, 3] we define:

Dj(r) :=

ˆ
Mj

φ

(
dj(q)

r

)
|DNj |2(q) dq and Hj(r) := −

ˆ
Mj

φ′
(

dj(q)

r

) |Nj |2(q)
d(q)

dq ,

where dj(q) is the geodesic distance on Mj between q and Φj(0), and dq is short for

dHm(q). If Hj(r) > 0, we define the frequency function Ij(r) := rDj(r)
Hj(r)

.

Theorem 26.2 (Main frequency estimate). If ε3 is sufficiently small, then there
exists a geometric constant C0 such that, for every [a, b] ⊂ [ sj

tj
, 3] with Hj |[a,b] > 0,

we have
Ij(a) ≤ C0(1 + Ij(b)). (26.1)

To simplify the notation, in this section we drop the index j and omit the measure
Hm in the integrals over regions ofM. The proof exploits four identities collected in
Proposition 26.4, which is the analog of [DLS16b, Proposition 3.5] and whose proof
will be discussed in the next sections. Following [DLS16b, Section 3] we introduce
further auxiliary functions in order to express derivatives and estimates on the func-
tions D, H and I. We also remind the reader that in principle we must distinguish
two situations:

• If Q < p
2 , then the normal approximations are AQ(Rm+n)-valued maps and

thus all the quantities considered here coincide literally with the ones defined
in [DLS16b, Section 3].

• If Q = p
2 , then the normal approximations take values in AQ(Rm+n); in this

case we use the notational conventions of [DLHMS, Subsection 7.1] and thus,
although at the formal level the definitions of the various objects are identical,
the notation is underlying the fact that all integrals involved in the computa-
tions must be split into three domains to be reduced to integrals of expressions
involving the AQ(Rm+n)-valued maps N+, N− and Q �η ◦N�.

Definition 26.3. We let ∂r̂ denote the derivative with respect to arclength along
geodesics starting at Φ(0). We set

E(r) := −
ˆ

M
φ′
(

d(q)
r

) Q∑
i=1

〈Ni(q), ∂r̂Ni(q)〉 dq , (26.2)

G(r) := −
ˆ

M
φ′
(

d(q)
r

)
d(q) |∂r̂N(q)|2 dq and Σ(r) :=

ˆ
M

φ
(

d(q)
r

)
|N |2(q) dq .

(26.3)
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As in [DLS16b, Section 3] we observe that the estimate

D(r) ≤
ˆ

Br(Φ(0))
|DN |2 ≤ C0 m0 rm+2−2δ2 for every r ∈ ] s

t , 3
[
. (26.4)

is a consequence of the inequality (17.24) in Theorem 17.24. Consider indeed that
(25.7) bounds the side of each Whitney region L intersecting Br(Φ(0)) and that, on
the contact region K the map N vanishes identically: it suffices therefore to sum the
estimates (17.24) over the aforementioned Whitney regions L.

We are now ready to state the key four identities, cf. [DLS16b, Proposition 3.5]:

Proposition 26.4. (First variation estimates) For every γ3 sufficiently small there
is a constant C = C(γ3) > 0 such that, if ε3 is sufficiently small, [a, b] ⊂ [ s

t , 3] and
I ≥ 1 on [a, b], then the following inequalities hold for a.e. r ∈ [a, b]:

∣∣H′(r)− m−1
r H(r)− 2

r E(r)
∣∣ ≤ CH(r), (26.5)∣∣D(r)− r−1E(r)
∣∣ ≤ CD(r)1+γ3 + Cε2

3 Σ(r), (26.6)∣∣D′(r)− m−2
r D(r)− 2

r2 G(r)
∣∣ ≤ CD(r) + CD(r)γ3D′(r) + Cr−1D(r)1+γ3 ,

(26.7)
Σ(r) + r Σ′(r) ≤ C r2 D(r) ≤ Cr2+mε2

3. (26.8)

Theorem 26.2 follows from the latter four estimates and from (26.4) through
the computations given in [DLS16b, Section 3]. The proofs of the estimates (26.5)
and (26.8) given in [DLS16b, Section 3] are valid in our case as well, since they do
not exploit the connection between the approximation and the currents, but they
are in fact valid for any map N satisfying I ≥ 1. We therefore focus on (26.6) and
(26.7) which are instead obtained from first variation arguments applied to the area
minimizing current Tj . In our case the current is area minimizing mod(p), however a
close inspection of the proofs in [DLS16b] shows that the computations in there can
be transferred to our case because the varifold induced by Tj is stationary (and the
required estimates relating the varifold induced by the graph of Nj in the normal
bundle of Mj and the current Tj have been proved in the previous section).

In the rest of the section we omit the subscript j from Tj , Σj ,Mj and Nj .

26.1 First variations. We recall the vector field used in [DLS16b]. We will
consider:

• the outer variations, where X(q) = Xo(q) := φ
(

d(p(q))
r

)
(q − p(q));

• the inner variations, where X(q) = Xi(q) := Y (p(q)) with

Y (q) :=
d(q)
r

φ

(
d(q)
r

)
∂

∂r̂
∀ q ∈M .
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Note that Xi is the infinitesimal generator of a one parameter family of bilipschitz
homeomorphisms Φε defined as Φε(q) := Ψε(p(q)) + q − p(q), where Ψε is the one-
parameter family of bilipschitz homeomorphisms of M generated by Y .

Consider now the map F (q) :=
∑

i �q + Ni(q)� and the current TF associated to
its image: in particular we are using the conventions of [DLS15] in the case Q < p

2
(i.e. when N takes values in AQ(Rm+n)) and the conventions introduced in [DLHMS,
Definition 11.2] in the case Q = p

2 (i.e. when N takes values in AQ(Rm+n)). As in
[DLS16b, Section 3.3] we observe that, although the vector fields X = Xo and
X = Xi are not compactly supported, it is easy to see that δT (X) = δT (XT ) +
δT (X⊥) = δT (X⊥), where X = XT + X⊥ is the decomposition of X in the tangent
and normal components to TΣ.

Then, we have

|δTF (X)| ≤ |δTF (X)− δT (X)|+ |δT (X⊥)|
≤
ˆ

spt(T )\Im(F )

∣∣div �T X
∣∣ d‖T‖+

ˆ
Im(F )\spt(T )

∣∣∣div �TF
X
∣∣∣ d‖TF ‖

︸ ︷︷ ︸
Err4

+
∣∣∣∣
ˆ

div �T X⊥ d‖T‖
∣∣∣∣

︸ ︷︷ ︸
Err5

. (26.9)

In order to simplify the notation we set ϕr(x) := φ
(

d(x)
r

)
. Next, we apply [DLS15,

Theorem 4.2] in the case Q < p
2 (this corresponds exactly to what done in [DLS16b,

Section 3.3] and [DLHMS, Theorem 14.2] when Q = p
2 to conclude

δTF (Xo) =
ˆ

M

(
ϕr |DN |2 +

Q∑
i=1

Ni ⊗∇ϕr : DNi

)
+

3∑
j=1

Erro
j , (26.10)

where the errors Erro
j correspond to the terms Errj of [DLS15, Theorem 4.2] in case

Q < p
2 and to the analogous terms in [DLHMS, Theorem 14.2] when Q = p

2 . This
implies

Erro
1 = −Q

ˆ
M

ϕr〈HM, η ◦N〉, (26.11)

|Erro
2| ≤ C0

ˆ
M
|ϕr||A|2|N |2, (26.12)

|Erro
3| ≤ C0

ˆ
M

(|N ||A|+ |DN |2)(|ϕr||DN |2 + |Dϕr||DN ||N |) , (26.13)

where HM is the mean curvature vector of M. In particular we conclude

∣∣D(r)− r−1E(r)
∣∣ ≤

5∑
j=1

∣∣Erro
j

∣∣ , (26.14)
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where Erro
4 and Erro

5 denote the terms Err4 and Err5 of (26.9) when X = Xo.
We follow the same arguments with X = Xi, applying this time [DLS15, Theorem

4.3] for Q < p
2 and [DLHMS, Theorem 14.3] for Q = p

2 . In particular using the
formulas [DLS16b, (3.29)&(3.30)] for divMY and DMY we conclude

∣∣D′(r)− (m− 2)r−1D(r)− 2r−2G(r)
∣∣ ≤ C0D(r) +

5∑
j=1

∣∣Erri
j

∣∣ , (26.15)

where

Erri
1 = −Q

ˆ
M

(〈HM, η ◦N〉divMY + 〈DY HM, η ◦N〉) , (26.16)

|Erri
2| ≤ C0

ˆ
M
|A|2 (|DY ||N |2 + |Y ||N | |DN |) , (26.17)

|Erri
3| ≤ C0

ˆ
M

(
|Y ||A||DN |2(|N |+ |DN |)+ |DY |(|A| |N |2|DN |+ |DN |4)

)
,

(26.18)

and where Erri
4 and Erri

5 denote the terms Err4 and Err5 of (26.9) when X = Xi.

26.2 Error estimates. We next proceed as in [DLS16b, Section 4]. First of all,
since the structure and estimates on the size of the cubes of the Whitney decompo-
sition are exactly the same, we can define the regions of [DLS16b, Section 4.1] and
deduce the same conclusions of [DLS16b, Lemma 4.4]. Next, since our estimates in
Theorem 17.24 have the same structure of [DLS16a, Theorem 2.4], we conclude the
validity of all the estimates in [DLS16b, Section 4.2]. In turn we can repeat all the
arguments in [DLS16b, Section 4.3] to conclude the same estimates for the terms of
type Erro

1, Erri
1, Erro

2, Erri
2, Erro

3, Erri
3, Erro

4, Erri
4, Erro

5. Some more care is needed to
handle the term Erri

5. First of all we split the latter error into the terms I1 and I2

of [DLS16b, Page 596]. The term I1 is estimated in the same way. Fo r the term I2

we can use the same argument when Q < p
2 and hence F is AQ-valued. However, we

need a small modification in the case Q = p
2 , when F is AQ-valued.

As in [DLS16b, Page 597] we start by introducing an orthonormal frame ν1, . . . , νl

for TqΣ⊥ of class C2,ε0 (cf. [DLS15, Appendix A]) and set

hj
q(�λ) := −

m∑
k=1

〈Dvk
νj(q), vk〉

whenever v1 ∧ . . . ∧ vm = �λ is an m-vector of TqΣ, with v1, . . . , vm orthonormal.
Next, we recall the canonical decomposition ofM intoM+,M− andM0 induced

by F (see Section 2) and correspondingly, we decompose the image of F into

Im0(F ) := Im(F ) ∩ p−1(M0), (26.19)

Im+(F ) := Im(F ) ∩ p−1(M+), (26.20)

Im−(F ) := Im(F ) ∩ p−1(M−) . (26.21)
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If q ∈ Im(F ), as in [DLS16b, Page 597] we set

hj
p(q) := hj

p(q)(
�M(p(q))) and hp(q) =

l∑
j=1

hj
p(q) νj(p(q)).

If q ∈ Im0(F ) ∪ Im+(F ), as in [DLS16b, Page 597] we set

hj
q := hj

q(�TF (q)) and hq =
l∑

j=1

hj
q νj(q) .

We proceed however differently for q ∈ Im−(F ): in this case we set

hj
q := hj

q(−�TF (q)) and hq =
l∑

j=1

hj
q νj(q) .

Observe that, since for q ∈ Im−(F ) we have −�TF (q) = �TF −(q), in practice we can
follow precisely the same computations of [DLS16b, Page 597] in each of the regions
Im0(F ), Im+(F ) and Im−(F ), to conclude

〈Xi(q), hq〉 = 〈Xi(q), (hq − hp(q))〉 =
∑

j

〈Xi(p(q)), Dνj(p(q)) · ex−1
p(q)(q)〉hj

p(q)

+
∑

j

〈νj(q), Xi(q)〉
(
hj

q − hj
p(q)

)
+ O

(|q − p(q)|2)

=
∑

j

〈Xi(p(q)), Dνj(p(q)) · ex−1
p(q)(q)〉hj

p(q)

+ O
(
|�TF (q)− �M(p(q))|no|q − p(q)|+ |q − p(q)|2

)
. (26.22)

Observe that the only difference with [DLS16b, (4.17)] is that |�TF (q)− �M(p(q))|no

replaces |�TF (q) − �M(p(q))| in the last line of the above estimate. Next, for q ∈
spt(TF ), we can bound |q−p(q)| ≤ |N(q)| and |�TF (q)− �M(p(q))|no ≤ C|DN(p(q))|.
We therefore conclude the estimate

〈Xi(q), hq〉 =
∑

j

〈Xi(p(q)), Dνj(p(q))·ex−1
p(q)(q)〉hj

p(q)+O
(|N |2(p(q))+|DN |2(p(q))

)
.

Combining the latter inequality with [DLHMS, Theorem 13.1] we can bound

Ii
2 =

∣∣∣∣
ˆ

〈Xi, hq〉d‖TF ‖
∣∣∣∣ =
∣∣∣∣∣

Q∑
i=1

ˆ
M

〈Y, hFi〉JFi

∣∣∣∣∣
(26.22)

≤
∣∣∣∣∣
ˆ

M

l∑
j=1

Q∑
i=1

〈Y (x), Dνj(x) · ex−1
x (Fi(x))〉hj

xdHm(x)

∣∣∣∣∣+ C

ˆ
M

ϕr(|N |2 + |DN |2).

We can now proceed as in [DLS16b, Page 598] to conclude the same estimate for I2.
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27 Boundedness of the frequency function and reverse Sobolev

We next show the counterpart of [DLS16b, Theorem 5.1].

Theorem 27.1 (Boundedness of the frequency functions). Let T be as in Proposi-
tion 8.7. If the intervals of flattening are j0 <∞, then there is ρ > 0 such that

Hj0 > 0 on ]0, ρ[ and lim sup
r→0

Ij0(r) <∞ . (27.1)

If the intervals of flattening are infinitely many, then there is a number j0 ∈ N and
a geometric constant j1 ∈ N such that

Hj > 0 on ]
sj

tj
, 2−j13[ for all j ≥ j0 , sup

j≥j0

sup
r∈]

sj

tj
,2−j13[

Ij(r) <∞ , (27.2)

sup

{
min

{
Ij(r),

r2
´
Br
|DNj |2´

Br
|Nj |2

}
: j ≥ j0 and max

{
sj

tj
,

3
2j1

}
≤ r < 3

}
<∞

(27.3)

(in the latter inequality we understand Ij(r) =∞ when Hj(r) = 0).

Proof In the first case we can appeal to the same argument as in [DLS16b, Page
599]. In the second case we also proceed as in [DLS16b, Page 599] and partition the
extrema tj of the intervals of flattening into two subsets: the class (A) formed by
those tj such that tj = sj−1 and the complementary class (B). As in [DLS16b, Page
599] we can assume that j is large enough. In the first case we proceed as in [DLS16b,
Page 599] where we substitute [DLS16a, Proposition 3.7] with Proposition 17.32. In
case (B) by construction there is ηj ∈]0, 1[ such that Eno((ι0,tj

)�T,B6
√

m(1+ηj)) > ε2
3.

Up to extraction of a subsequence, we can assume that Tj = (ι0,tj
)�T converges to

a cone S: the convergence is strong enough to conclude that the excess of the cone
is the limit of the excesses of the sequence. Moreover (since S is a cone), the excess
Eno(S,Br) is independent of r. We then conclude

ε2
3 ≤ lim inf

j→∞,j∈(B)
Eno(Tj ,B3) .

We then argue as in [DLS16b, Page 601] using Lemma 27.2 below in place of
[DLS16b, Lemma 5.2].

Lemma 27.2 Assume the intervals of flattening are infinitely many and rj ∈] sj

tj
, 3[

is a subsequence (not relabeled) with limj ‖Nj‖L2(Brj
\Brj/2) = 0. If ε3 is sufficiently

small, then, Eno(Tj ,Brj
)→ 0.

Proof The argument is a modification of that of [DLS16b, Lemma 5.2], which we
include for the reader’s convenience. First of all note that, by Proposition 25.3,
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Eno(Tj ,Brj
) → 0 if rj → 0. Hence, passing to a subsequence, we can assume the

existence of a c > 0 such that

rj ≥ c and Eno(Tj ,B6
√

m) ≥ c. (27.4)

After the extraction of a further subsequence, we can assume the existence of r such
that ˆ

Br\B 3r
4

|Nj |2 → 0, (27.5)

and the existence of a mod(p) area-minimizing cone S such that (ι0,tj
)�T → S.

Recall that S is a representative mod(p). By (27.4), the cone S cannot be an integer
multiple of an m-dimensional plane.

We argue as in [DLS16b, Pages 601-602] and conclude that, if M is the limit of
a subsequence (not relabeled) of the Mj , then there are two radii 0 < s < t such
that spt(S)∩Bt(0) \Bs(0) ⊂M. In particular, by the Constancy Theorem mod(p)
we conclude that S Bt(0) \Bs(0) = Q0 �M∩Bt(0) \Bs(0)� mod(p) for an integer
Q0 with |Q0| ≤ p

2 . Since S is a cone and a representative mod(p) we can in fact infer
that S Bt(0) = Q0 �0� ×× �M∩ ∂Bt(0)� mod(p) (in fact it can be easily inferred
from the argument in [DLS16b, Pages 601-602] that Q0 = Q, although this is not
needed in our argument). Since �0� ×× �M∩ ∂Bt(0)� induces a stationary varifold
and M is the graph of a function with small C3,ε0 norm, we can applied Allard’s
Theorem to conclude that in fact �0�×× �M∩ ∂Bt(0)� is smooth. This implies that
the latter is in fact �π ∩Bt(0)� for some m-dimensional plane π, contradicting the
fact that S is not a flat cone.

Finally, Theorem 27.1 can be used as in [DLS16b, Section 5] to show [DLS16b,
Corollary 5.3], which we restate in our context for the reader’s convenience.

Corollary 27.3 (Reverse Sobolev) Let T be as in Proposition 8.7. Then, there
exists a constant C > 0 which depends on T but not on j such that, for every j
and for every r ∈] sj

tj
, 1], there is σ ∈]32r, 3r] such that

ˆ
Bσ(Φj(0))

|DNj |2 ≤ C

r2

ˆ
Bσ(Φj(0))

|Nj |2 . (27.6)

28 Final contradiction argument

In this section we complete the proof of Theorem 1.4 showing that, by Proposi-
tion 8.7, under the assumption that the theorem is false, we get a contradiction.
In particular fix T, Σ, Ω and rk as in Proposition 8.7. We have already remarked
that for each k there is an interval of flattening Ij(k) =]sj(k), tj(k)] containing rk. We
proceed as in [DLS16b, Section 6] and introduce the following new objects:

• We first apply Corollary 27.3 to r = rk

tj(k)
and set s̄k := tj(k)σk, so that s̄k

tj(k)
∈]

3
2

rk

tj(k)
, 3 rk

tj(k)
[.
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• We set r̄k := 2s̄k

3tj(k)
.

• We rescale our geometric objects, namely
(U1) The currents T̄k, the manifolds Σ̄k and the center manifolds M̄k are given

respectively by

T̄k = (ι0,r̄k
)�Tj(k) = ((ι0,r̄ktj(k))�T ) B6

√
m/r̄k

, (28.1)

Σ̄k = ι0,r̄k
(Σj(k)) = ι0,r̄ktj(k)(Σ), (28.2)

M̄k = ι0,r̄k
(Mj(k)) . (28.3)

(U2) In order to define the rescaled maps N̄k on M̄k we need to distinguish
two cases. When Q < p

2 , the map N̄k takes values in AQ(Rm+n) and is
defined by

N̄k(q) =
Q∑

i=1

�
r−1(Nj(k))i(rq)

�
.

In the case Q = p
2 , the map N̄k takes values in AQ(Rm+n) and is de-

fined analogously. The reader might either use the decomposition ofMj(k)

into (Mj(k))+, (Mj(k))− and (Mj(k))0 or, using the original notation in
[DLHMS, Definition 2.2],

N̄k(q) =

(
Q∑

i=1

�
r−1(Nj(k))i(rq)

�
, ε(rq)

)
,

where

Nj(k)(q̃) =

(
Q∑

i=1

�
(Nj(k))i(q̃)

�
, ε(q̃)

)

and ε(·) ∈ {−1, 1}.
Without loss of generality we can assume that T0Σ = R

m+n̄×{0}, thus the ambient
manifolds Σ̄k converge to R

m+n̄ × {0} locally in C3,ε0 . Observe in addition that
1
2 < rk

r̄ktj(k)
< 1 and hence it follows from Proposition 8.7(ii) that

Eno(T̄k,B 1
2
) ≤ CEno(T,Brk

)→ 0.

Indeed Proposition 8.7(ii) implies that T̄k converge to Q �π0� both in the sense of
varifolds and in the sense of currents mod(p). Finally, we recall that, by Proposi-
tion 8.7(iii)&(iii)s,

Hm−2+α
∞ (DQ(T̄k) ∩ B1) ≥ C0r

−(m−2+α)
k Hm−2+α

∞ (DQ(T ) ∩ Brk) ≥ η > 0 when Q <
p

2
,

(28.4)

Hm−1+α
∞ (DQ(T̄k) ∩ B1) ≥ C0r

−(m−1+α)
k Hm−1+α

∞ (DQ(T ) ∩ Brk) ≥ η > 0 when Q =
p

2
,

(28.5)
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where α is a positive number and C0 a geometric constant.
As in [DLS16b, Section 6] we claim the counterpart of [DLS16b, Lemma 6.1],

namely Lemma 28.1, which implies that M̄k converge locally to the flat m-plane π0.
We also introduce the exponential maps exk : B3 ⊂ R

m ' Tq̄k
M̄k → M̄k at q̄k =

Φj(k)(0)/r̄k ( here and in what follows we assume, w.l.o.g., to have applied a suitable
rotation to each T̄k so that the tangent plane Tq̄k

M̄k coincides with R
m × {0}). We

are finally ready to define the blow-up maps N b
k : B3 ⊂ R

m → AQ(Rm+n), when
Q < p

2 and N b
k : B3 ⊂ R

m → AQ(Rm+n), when Q = p
2 :

N b
k(x) := h−1

k N̄k(exk(x)) , (28.6)

where hk := ‖N̄k‖L2(B 3
2
).

Lemma 28.1 (Vanishing lemma). Let T̄k, r̄k,M̄k and Σ̄k be as above. We then have:

(i) min{mj(k)
0 , r̄k} → 0;

(ii) the rescaled center manifolds M̄k converge (up to subsequences) to π0 = R
m×

{0} in C3,κ/2(B4) and the maps exk converge in C2,κ/2 to the identity map
id : B3 → B3;

(iii) there exists a constant C > 0, depending only on T , such that, for every k,

1
h2

k

ˆ
B 3

2

|DN̄k|2 ≤ C

ˆ
B 3

2

|DN b
k|2 ≤ C. (28.7)

Proof The argument for (i) can be taken from [DLS16b, Proof of Lemma 6.1]. As for
part (ii) the argument given in [DLS16b, Section 6] for the convergence of the center
manifolds can be shortened considerably observing that it is a direct consequence of
Proposition 25.3(v) and the convergence of the currents T̄k. The C2,κ/2 convergence
of the exponential maps follow then immediately from [DLS16b, Proposition A.4].
Finally, (iii) is an obvious consequence of Corollary 27.3.

Having defined the blow-up maps, the final contradiction comes from the follow-
ing statements.

Theorem 28.2 (Final blow-up). Up to subsequences, the maps N b
k converge strongly

in L2(B 3
2
) to:

• a function N b∞ : B 3
2
→ AQ({0} × R

n̄ × {0}) when Q < p
2 ;

• a function N b∞ : B 3
2
→ AQ({0} × R

n̄ × {0}) when Q = p
2 .

Such limit is Dir-minimizing in Bt for every t ∈]54 , 3
2 [ and satisfies ‖N b∞‖L2(B 3

2
) = 1

and η ◦N b∞ ≡ 0.

Theorem 28.3 (Large singular set). Let N b∞ be the map of Theorem 28.2 and
define

Υ :=
{

x ∈ B̄1 : N b
∞(x) = Q �0�

}
.
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Then

Hm−2+α
∞ (Υ) ≥ η

2
if Q <

p

2
, (28.8)

Hm−1+α
∞ (Υ) ≥ η

2
if Q =

p

2
, (28.9)

where α and η are the positive constants in (28.4), resp. (28.5).

The two theorems would contradict [DLS11, Theorem 0.11] in case Q < p
2 since,

arguing as in [DLS16b, Section 6] we easily conclude that Υ is a subset of the
singularities of N b∞. In the case Q = p

2 we infer instead from [DLHMS, Proposition
10.3] that N∞

b = Q �η ◦N∞
b � on the whole B3/2, which in turn would imply N∞

b =
Q �0�. This however contradicts ‖N∞

b ‖L2(B3/2) = 1.

28.1 Proof of Theorem 28.2 Without loss of generality we may assume that
q̄k := r̄−1

k Φj(k)(0) coincide all with the origin. We then define a new map F̄k on the
geodesic ball B3/2 ⊂ M̄k distinguishing, as usual, the two cases Q < p

2 and Q = p
2 .

In the first case we follow the definition of [DLS16b, Section 7.1], namely we set

F̄k(x) :=
∑

i

�
x + (N̄k)i(x)

�
.

In the case Q = p
2 the map F̄k takes values in AQ(Rm+n) and it is induced by N̄k

in the sense explained at point (N) of [DLHMS, Assumption 11.1]. The argument
given in [DLS16b, Section 7.1] works in our case as well and implies the following
estimates (where γ is some positive exponent independent of k)

Lip(N̄k|B3/2) ≤ Chγ
k and ‖N̄k‖C0(B3/2) ≤ C(mj(k)

0 r̄k)γ , (28.10)

Mp((TF̄k
− T̄k) (p−1

k (B 3
2
)) ≤ Ch2+2γ

k , (28.11)

ˆ
B 3

2

|η ◦ N̄k| ≤ Ch2
k. (28.12)

From these estimates we conclude the strong L2 converge of (a subsequence of) N b
k to

a map N b∞ on B3/2 taking values, respectively, on AQ({0}×R
n̄×{0}) (when Q < p

2)
and AQ({0}×R

n̄×{0}) (when Q = p
2). Moreover it is obvious that ‖N b∞‖L2(B3/2) = 1

and that η ◦ N b∞ ≡ 0. Therefore we are only left with proving that N b∞ is Dir-
minimizing.

Proceeding as in the [DLS16b, Section 7] we assume, without loss of generality,
that the Dirichlet energy of N b∞ is nontrivial (otherwise there is nothing to prove).
Thus we can assume that that there exists c0 > 0 such that

c0h2
k ≤
ˆ

B 3
2

|DN̄k|2 . (28.13)
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We proceed as in [DLS16b, Section 7.2 & Section 7.3]: if there is a radius t ∈ ]54 , 3
2

[
and a function f on B 3

2
(taking values in AQ(Rn̄) when Q < p

2 , or in AQ(Rn̄) when
Q = p

2) such that

f |B 3
2
\Bt

= N b
∞|B 3

2
\Bt

and Dir(f, Bt) ≤ Dir(N b
∞, Bt)− 2 δ,

for some δ > 0, we then produce competitors Ñk for the maps N̄k satisfying

Ñk ≡ N̄k in B 3
2
\ Bt, Lip(Ñk) ≤ Chγ

k , |Ñk| ≤ C(mk
0 r̄k)γ ,ˆ

B 3
2

|η ◦ Ñk| ≤ Ch2
k and

ˆ
B 3

2

|DÑk|2 ≤
ˆ

B 3
2

|DN̄k|2 − δh2
k.

Indeed the construction of the maps in [DLS16b, Section 7.2 & Section 7.3] uses
the left composition of AQ-valued maps with classical maps in the sense of [DLS11,
Section 1.3.1], which in the AQ-valued case is substituted by the left composition as
defined in [DLHMS, Subsection 7.3].

Consider next the map F̃k given by F̃k(x) =
∑

i

�
x + (Ñk)i(x)

�
in the case Q < p

2

and by the corresponding
(∑

i

�
x + (Ñk)i(x)

�
, ε(x)

)
in the case Q = p

2 . The current

TF̃k
coincides with TF̄k

on p−1
k (B 3

2
\Bt). Define the function ϕk(q) = distM̄k

(0,pk(q))
and consider for each s ∈ ]t, 3

2

[
the slices 〈TF̃k

− T̄k, ϕk, s〉. By (28.11) we have

ˆ 3
2

t
Mp(〈TF̃k

− T̄k, ϕk, s〉) ≤ Ch2+γ
k .

Thus we can find for each k a radius σk ∈
]
t, 3

2

[
on which Mp(〈TF̃k

− T̄k, ϕk, σk〉) ≤
Ch2+γ

k . Recall from Lemma 6.1(i), ∂〈TF̃k
− T̄k, ϕk, σk〉 = 0 mod(p). By the isoperi-

metric inequality mod(p) (see [Fed69, (4.2.10)ν ]) there is an integer rectifiable current
Sk, which can be assumed to be representative mod(p), such that

∂Sk = 〈TF̃k
− T̄k, ϕk, σk〉 mod(p) , M(Sk) = Mp(Sk) ≤ Ch(2+γ)m/(m−1)

k

and spt(Sk) ⊂ Σ̄k.

Our competitor current is, then, given by

Zk := T̄k (p−1
k (M̄k \ Bσk

)) + Sk + TF̃k
(p−1

k (Bσk
)).

The computations given in [DLS16b, Section 7.4] would then imply that the p-mass
of Zk is strictly smaller than the mass of T̄k for k large enough, even though T̄k−Zk

is a cycle mod(p) supported in the ambient manifold Σ̄k, which is a contradiction to
T̄k being a mass minimizing current mod(p) in Σ̄k.
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28.2 Proof of Theorem 28.3. We argue by contradiction and assume that:

Hm−2+α
∞ (Υ) <

η

2
if Q <

p

2
, (28.14)

Hm−1+α
∞ (Υ) <

η

2
if Q =

p

2
. (28.15)

Since Υ is compact, we cover Υ with finitely many balls {Bσi
(xi)} in such a way

that
∑

i

ωm−2+α(4σi)m−2+α ≤ η

2
if Q <

p

2
, (28.16)

∑
i

ωm−1+α(4σi)m−1+α ≤ η

2
if Q =

p

2
. (28.17)

Choose a σ̄ > 0 so that the 5σ̄-neighborhood of Υ is covered by {Bσi
(xi)}. Denote

by Λk the set of multiplicity Q points of T̄k far away from the singular set Υ:

Λk := {q ∈ DQ(T̄k) ∩B1 : dist(q, Υ) > 4σ̄}.
Clearly,

Hm−2+α
∞ (Λk) ≥ η

2
when Q <

p

2
, (28.18)

Hm−1+α
∞ (Λk) ≥ η

2
when Q =

p

2
. (28.19)

As in [DLS16b, Section 6.2] we denote by V the neighborhood of Υ of size 2σ̄.
Agruing as in [DLS16b, Section 6.2, Step 1] we conclude the existence of a positive
constant ϑ such that, for every fixed parameter σ < σ̄, there is a k0(σ) such that
the following estimate holds for every k ≥ k0(σ). In the case Q < p

2 we have

−
ˆ

B2σ(x)
G(N̄k, Q

�
η ◦ N̄k

�
)2 ≥ ϑh2

k ∀ x ∈ Ξk := pM̄k
(Λk), (28.20)

whereas in the case Q = p
2 we have

−
ˆ

B2σ(x)
Gs(N̄k, Q

�
η ◦ N̄k

�
)2 ≥ ϑh2

k ∀ x ∈ Ξk := pM̄k
(Λk). (28.21)

Indeed the argument in [DLS16b, Section 6.2] uses only the Hölder continuity of
the Dir-minimizing map N b∞ (which is a consequence of [DLS11, Theorem 2.9] for
Q < p

2 and a consequence of [DLHMS, Theorem 8.1] when Q = p
2) and the strong

convergence proved in Theorem 28.2.
Next, following [DLS16b, Section 6.2, Step 2], for every q ∈ Λk we define z̄k(q) =

pπk
(q) (where πk is the reference plane for the center manifold related to Tj(k)) and

x̄k(q) := (z̄k(q), r̄−1
k ϕj(k)(r̄kz̄k(q))) .
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Observe that x̄k(q) ∈ M̄k. We next claim the existence of a suitably chosen geometric
constant 1 > c0 > 0 (in particular, independent of σ) such that, when k is large
enough, for each q ∈ Λk there is a radius �q ≤ 2σ with the following properties:

c0 ϑ

σα
h2

k ≤
1

�m−2+α
q

ˆ
B�q (x̄k(q))

|DN̄k|2, (28.22)

B�q
(x̄k(q)) ⊂ B4�q

(q) . (28.23)

The argument given in [DLS16b, Section 6.2, Step 2] can be routinously modified
in our case. In particular we define the points qk := r̄kq, zk := r̄kz̄k(q) and xk =
r̄kx̄k(q) = (zk, ϕj(k)(zk)) and discuss the three different possibilities depending on
whether zk belongs to a cube L ∈ W j(k) or to the contact set Γj(k).

The first case, zk ∈ L ∈ W
j(k)

h can be excluded with the same argument given
in [DLS16b, Section 6.2, Step 2], where we replace [DLS16a, Proposition 3.1] with
Proposition 17.26, because qk is a multiplicity Q point for the current Tj(k).

Following the argument in [DLS16b, Section 6.2, Step 2], when zk ∈ W
j(k)

n ∪W j(k)
e

we find a t(q) ≤ σ with the property that

−
ˆ

Bs̄t(q)(x̄k(q))
G�(N̄k, Q

�
η ◦ N̄k

�
)2 ≤ ϑ

4ωmt(q)m−2

ˆ
Bt(q)(x̄k(q))

|DN̄k|2 (28.24)

(where � = s for Q = p
2 and � = for Q < p

2) and

|q − x̄k(q)| < s̄ t(q). (28.25)

In the argument [DLS16b, Section 6.2] we take care of substituing [DLS16a, Propo-
sition 3.5], [DLS16b, Lemma 6.1] and [DLS16b, Proposition 3.6] respectively with
Proposition 17.30, Lemma 28.1 and Proposition 17.31.

In the case zk ∈ Γj(k) we find a t(q) < σ such that

−
ˆ

Bs̄t(q)(x̄k(q))
G�(N̄k, Q

�
η ◦ N̄k

�
)2 ≤ ϑ

4
h2

k , (28.26)

whereas we observe that (28.25) holds trivially because the left hand side vanishes.
By (28.25), for any �q ∈]st̄(q), 2σ] the inclusion (28.23) holds. The argument is

then closed by showing that (28.22) must hold for at least one �q ∈]s̄t(q), 2σ]. The
rest of the argument in [DLS16b, Section 6.2, Step 2] uses the Poincaré inequality
in the AQ-valued setting to show that, under the assumption that (28.22) fails for
every � ∈]s̄t(q), 2σ], (28.26) and (28.24) would be incompatible with (28.20). This
argument then settles the proof of the existence of �q satsifying (28.22)–(28.23) when
Q < p

2 . Since the analogous Poincaré inequality can be easily seen to hold in the
AQ-valued case, we easily conclude that the same argument applies when Q = p

2
exploiting the case � = s for (28.24) and (28.26) against (28.21).
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From (28.22) to (28.23) we can use the covering argument of [DLS16b, Step 3] to
conclude that the inequality (28.18) and (28.19) would force a large Dirichlet energy
of N̄k on B3/2, in particular

η

2
≤ C0

c0

σα

ϑh2
k

ˆ
B 3

2

|DN̄k|2 for Q <
p

2
, (28.27)

η

2
≤ C0

c0

σ1+α

ϑh2
k

ˆ
B 3

2

|DN̄k|2 for Q =
p

2
, (28.28)

where C0, c0 and ϑ are fixed (namely independent of σ). Therefore, σ can be chosen
very small, with the inequality being satisfied only for k ≥ k(σ). However, the
arbitrariness of σ and (28.7) would be incompatible with η > 0, thus leading to the
required contradiction.

Part 5. Rectifiability of the singular set and structure theorem

29 Rectifiability of the singular set: proof of Theorem 1.9

We start by introducing the term “area minimizing cones mod(p)” for area mini-
mizing currents mod(p) without boundary mod(p) which have a representative T0

which is a cone in the sense of Corollary 7.3(iii). Such cone will be called flat if
it is supported in some m-dimensional plane π ⊂ R

m+n. We recall that, by Corol-
lary 7.3, any flat area minimizing cone mod(p) is congruent mod(p) to Q �π�, where
π is an m-dimensional plane and Q is an integer with 0 ≤ Q ≤ p

2 . For odd p we then
conclude that |Q| ≤ p−1

2 .
Recall the definition of k-symmetric cones given in Definition 8.3. Following [NV],

we introduce next the following terminology, which introduces a suitable notion of
local almost symmetry for a given integral varifold V .

Definition 29.1 An m-dimensional integral varifold V is (k, ε)-symmetric in the
ball Bρ(x) if there is a k-symmetric cone C such that the varifold distance between
C B1(0) and ((ιx,ρ)�V ) B1(0) is smaller than ε.

Next, given a varifold V with bounded mean curvature in an open set U , for
every σ > 0 and ε > 0 we introduce the set

Sk,σ
ε (V ) := {x ∈ spt(V ) ∩ U : V is not (k + 1, ε)-symmetric in Br(x) for r ∈]0, σ]}

The following is then a direct corollary of Lemma 8.6.

Corollary 29.2 Assume that T is as in Theorem 1.4, and consider the varifold
v(T ) induced by T . If p is odd, then for every compact K with K ∩ sptp(∂T ) = ∅
there are constants ε = ε(m, n, p, K) > 0 and σ = σ(m, n, p, K) > 0 such that

Sing(T ) ∩K ⊂
p−1
2⋃

Q=2

SingQ(T ) ∪ Sm−1,σ
ε (v(T )) ∪ Sm−2(v(T )) .
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Proof Consider a point

q ∈ (Sing(T ) ∩K) \
⎛
⎝

p−1
2⋃

Q=2

SingQ(T ) ∪ Sm−2(v(T ))

⎞
⎠ .

We then know that at least one tangent cone in q is (m− 1)-symmetric but not flat.
Therefore we know from Lemma 8.6 that Θ(T, q) ≥ p

2 . We also know that v(T ) is a
varifold with bounded mean curvature (the L∞ bound depending only on the second
fundamental form of Σ) and that there is a σ0(K) > 0 such that dist(q, sptp(∂T )) ≥
σ0. In particular, by the monotonicity formula, there is a σ(K, Σ) > 0 such that

‖v(T )‖(Br(q)) ≥
(

p

2
− 1

4

)
ωmrm ∀r ∈]0, σ] . (29.1)

On the other hand, if v(T ) were (m, ε)-symmetric in Br(q), then there would be a
positive integer Q and an oriented m-dimensional plane �π� such that the varifold
distance between ((ιq,r)�v(T )) B1(0) and Qv(�π�) B1(0) is smaller than ε. By
the compactness Proposition 5.2 (observing that r−mM(T Br(x)) can be bounded
uniformly for x ∈ K), when ε is sufficiently small, Q �π� must be a representative of
an area minimizing current mod(p) and as such we must have Q ≤ p−1

2 . In particular,
if ε is sufficiently small, we would conclude

‖v(T )‖(Br(q)) ≤
(

p

2
− 3

8

)
ωmrm .

This is however not possible because of (29.1) and hence we deduce that q ∈
Sm−1,σ

ε (v(T )).

Proof of Theorem 1.9 Observe that, by Almgren’s stratification theorem, Sm−2(v(T ))
has Hausdorff dimension at most m− 2. Similarly,

p−1
2⋃

Q=2

SingQ(T )

has Hausdorff dimension at most m − 2 by Theorem 1.7. Since by [NV, Theorem
1.4], Sm−1,σ

ε (v(T )) ∩ K has finite Hm−1 measure and it is (m − 1)-rectifiable, the
claim follows from Corollary 29.2.

30 Structure theorem: proof of Corollary 1.10

In this section we prove Corollary 1.10. First of all observe that each connected com-
ponent Λi is necessarily a regular submanifold because, by definition, it is contained
in the set of regular interior points of T . Clearly Λi is locally orientable, and it is
simple to show that, since p is odd, there is in fact a smooth global orientation.
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Clearly T Λi = Qi �Λi� mod(p) for some integer multiplicity Qi ∈ [−p
2 , p

2 ] by the
constancy lemma mod(p). On the other hand we can reverse the orientation to as-
sume that Qi ∈ [1, p

2 ]. Point (b) is then obvious because T U =
∑

i Ti U mod(p)
and in fact

‖T‖ U =
∑

i

‖Ti‖ U . (30.1)

Now consider U as in part (a) of the statement and observe that, by the monotonicity
formula, there are constants M(U) and ρ(U) > 0, such that

‖T‖(Br(x)) ≤Mrm ∀x ∈ U and ∀r ∈]0, ρ(U)] .

Fix a Ti and note that, by (30.1),

‖Ti‖(Br(x)) ≤Mrm . (30.2)

Observe that

spt((∂Ti) U) ⊂ Sing(T ) ∩ U =: K ,

and that, by Theorem 1.9, the compact set K satisfies the bound

Hm−1(K) <∞ . (30.3)

We next claim that, by (30.2) and (30.3),

M((∂Ti) U) <∞ .

First of all fix σ = 1
k < ρ(U)

2 and choose a finite cover of K with balls {Bk
j }j with

radii rk
j satisfying 2 rk

j ≤ σ = 1
k such that

∑
j

ωm−1(rk
j )m−1 ≤ 2Hm−1

σ (K) ≤ 2Hm−1(K) .

For each ball Bk
j we choose a smooth cutoff function ϕk

j which vanishes identically
on Bk

j and it is identically equal to 1 on the complement of the concentric ball 2Bk
j

with twice the radius. We choose ϕk
j so that 0 ≤ ϕk

j ≤ 1 and ‖dϕk
j ‖0 ≤ C(rk

j )−1,
where C is a geometric constant. We then define

ϕk :=
∏
j

ϕk
j .

Recall that

M((∂Ti) U) = sup{∂Ti(ω) : ‖ω‖c ≤ 1 , ω ∈ Dk(U)} .

We therefore fix a smooth (m − 1)-form ω with compact support in U and we are
interested in bounding ∂Ti(ω) = Ti(dω). Observe that ϕk ↑ 1 ‖Ti‖-a.e. on U . Hence
we can write

Ti(dω) = lim
k→∞

Ti(ϕkdω) .
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On the other hand, since ϕkω is supported in an open set V ⊂⊂ U \K we conclude

Ti(d(ϕkω)) = ∂Ti(ϕkω) = 0 .

Hence we can estimate

|Ti(ϕkdω)| = |Ti(dϕk ∧ ω)| ≤
∑

j

∣∣∣∣∣∣
Ti

⎛
⎝∏

��=j

ϕk
� dϕk

j ∧ ω

⎞
⎠
∣∣∣∣∣∣

≤ C
∑

j

‖ω‖c ‖dϕk
j ‖0 ‖Ti‖(2Bk

j )
(30.2)

≤ CM‖ω‖c
∑

j

(rk
j )−1(2rk

j )m

≤ CM‖ω‖cHm−1(K) . (30.4)

Letting k ↑ ∞ we thus conclude

|Ti(dω)| ≤ CM‖ω‖cHm−1(K) .

This shows that (∂Ti) U has finite mass. Point (a) follows therefore from the
Federer-Fleming boundary rectifiability theorem.

In order to show (c), consider the set K ′ of points q ∈ K where

• K has an approximate tangent plane TqK;
• q is a Lebesgue point for all Θi’s with Θi(q) ∈ Z.

By a standard blow-up argument, it follows that, for every fixed q ∈ K ′, any limit
S of the currents (ιq,r)�(Ti) as r ↓ 0 is an area-minimizing current on R

m+n with
boundary either −Θi(q) �TqK� or +Θi(q) �TqK�. By the boundary monotonicity
formula,

‖S‖(B1(0)) ≥ |Θi(q)|
2

ωm .

We therefore conclude that

lim inf
r↓0

‖Ti‖(Br(q))
rm

≥ ωm
|Θi(q)|

2
.

Fix any natural number N . We then conclude from (30.2) that

M ≥ lim
r↓0

‖T‖(Br(q))
rm

≥
N∑

i=1

lim inf
r↓0

‖Ti‖(Br(q))
rm

≥
N∑

i=1

ωm
|Θi(q)|

2
.

In particular we conclude that
∞∑
i=1

|Θi(q)| ≤ 2M

ωm
∀q ∈ K ′ .

This shows that
∑

i

M((∂Ti) U) ≤ 2M

ωm
Hm−1(K) <∞ .

This completes the proof of (c) and of the structure theorem.
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Appendix A. Proof of Proposition 11.1

In order to reach a proof of Proposition 11.1, we will need some preliminary results.
First, for a given S ∈ R1(Rn), we say that S has the property (NC) (no cycles) if
there exists no 0 �= R ∈ R1(Rn) such that ∂R = 0 and

M(S) = M(R) + M(S −R).

We recall that Im(Rm+n) denotes the space of m-dimensional integral currents in
R

m+n.
Given S ∈ I1(Rn) satisfying the property (NC), we call a good decomposition of S
a writing

S =
N∑

j=1

θjSj ,

where θj ∈ N, each Sj is the integral current given by Sj = �γj� for γj a simple
Lipschitz curve of finite length, Sj �= Sk if j �= k and moreover

M(S) =
∑

j

θjM(Sj), M(∂S) =
∑

j

θjM(∂Sj). (A.1)

http://creativecommons.org/licenses/by/4.0/
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The existence of a good decomposition for a current S ∈ I1(Rn) satisfying the
property (NC) is a direct consequence of [Fed69, 4.2.25]. We say that a good de-
composition S =

∑N
j=1 θjSj has the property (NTC) (no topological cycles) if there

exists no function f : {1, . . . , N} → {−1, 0, 1}, f �≡ 0, such that

∂

⎛
⎝

N∑
j=1

f(j)Sj

⎞
⎠ = 0. (A.2)

Lemma A.1 For any S ∈ I1(Rn) with the property (NC) there exists S′ ∈ I1(Rn)
with the property (NC) and a good decomposition of S′ that satisfies ∂S′ = ∂S,
M(S′) ≤M(S), and that has the property (NTC).

Proof Let S ∈ I1(Rn), and assume without loss of generality that S �= 0. Among
all currents S′ ∈ I1(Rn) with the property (NC) and such that ∂S′ = ∂S and
M(S′) ≤ M(S), and among all possible good decompositions of S′ not satisfying
the property (NTC) fix a current S′ and a decomposition

S′ =
N∑

j=1

θ′
jS

′
j

such that the quantity N is minimal. Observe that necessarily N ≥ 1.
Let f : {1, . . . , N} → {−1, 0, 1} be a function such that (A.2) holds. Define:

j− ∈ argmin{θ′
j : f(j) = −1}

and

j+ ∈ argmin{θ′
j : f(j) = +1}.

Observe that since S′ has the property (NC), the sets {θ′
j : f(j) = −1} and

{θ′
j : f(j) = +1} are non-empty.

Now, consider the quantities

M− :=
∑

j : f(j)=−1

M(S′
j)

and

M+ :=
∑

j : f(j)=+1

M(S′
j).

Clearly, if M+ ≥M− then the current

S′
+ := S′ − θj+

∑
j

f(j)S′
j
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satisfies M(S′
+) ≤M(S′) ≤M(S). If instead M+ ≤M− then the current

S′
− := S′ + θj−

∑
j

f(j)S′
j

satisfies M(S′−) ≤ M(S′) ≤ M(S). In any of the two cases, ∂S′± = ∂S′ = ∂S, and
the obvious resulting decomposition of S′± has at most N − 1 indexes. Hence, by
minimality, the one of the two which does not increase the mass necessarily has the
property (NTC). This concludes the proof.

Lemma A.2 Let S ∈ I1(Rn) and 0 �= Z ∈ R0(Rn) be such that:

(H1) A−B = ∂S + pZ;
(H2) S has the property (NC) and there exists a good decomposition

S =
N∑

j=1

θjSj

with the property (NTC).

Then, there exists j0 ∈ {1, . . . , N} such that ∂Sj0 = �x� − �y� with x, y ∈ spt(Z)
and θj0 ≥ p

2 .

Proof Let S and Z be as above. Firstly, we claim that the set of indexes j ∈
{1, . . . , N} such that ∂Sj = �x�− �y� with x, y ∈ spt(Z) is non-empty. We write

Z =
M∑
�=1

�N��−
M∑

�=1

�P��,

where the N�’s (resp. the P�’s) are not necessarily distinct, so that

∂S =
Q∑

i=1

�Ai� + p

M∑
�=1

�P��−
(

Q∑
i=1

�Bi� + p

M∑
�=1

�N��

)
.

Consider any of the points P�. By (A.1), the multiplicity of ∂S in P� is at least p,
and furthermore, since Q ≤ p

2 , there exist j ∈ {1, . . . , N} and �′ ∈ {1, . . . , M} such
that ∂Sj = �P��− �N�′�, which proves our claim.
Next, assume by contradiction that for every j such that ∂Sj is supported on spt(Z)
one has θj < p

2 . Fix, for instance, the point P1. Arguing as above, after possibly
reordering the indexes (both in the family {Sj} and {N�}), we conclude that there
exist N1 and S1 such that ∂S1 = �P1� − �N1�. Moreover, by hypothesis, θ1 < p

2 .
This ensures that we can find P2 and S2 such that ∂S2 = �P2� − �N1�, and again
θ2 < p

2 . The procedure can be iterated as long as the new points P�+1 (resp. N�+1)
are distinct from the previous ones. Since the decomposition of S has the property
(NTC) by hypothesis (H2), this would imply that the procedure can be iterated
indefinitely, which gives the desired contradiction.
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Proof of Proposition 11.1 Let us first consider case (a), with σ = 1.
It suffices to prove that

F(A−B) ≤ Fp(A−B), (A.3)

because the other inequality is obvious.
Suppose by contradiction that

Fp(A−B) < F(A−B), (A.4)

and let S ∈ I1(Rn) and 0 �= Z ∈ R0(Rn) be such that

A−B = ∂S + pZ and M(S) < F(A−B).

We claim that there exist currents S1 ∈ I1(Rn) and Z1 ∈ R0(Rn) such that

A−B = ∂S1 + pZ1, M(S1) < F(A−B) and M(Z1) = M(Z)− 2. (A.5)

The conclusion trivially follows from the claim.
We proceed with the proof of (A.5). First observe that if S has a cycle R then the
current S′ := S − R satisfies A − B = ∂S′ + pZ and M(S′) = M(S) −M(R) <
F(A − B). Therefore, we can assume without loss of generality that S has the
property (NC). Next, applying Lemma A.1 we can also assume that S has a good
decomposition

S =
N∑

j=1

θjSj

which satisfies the property (NTC). Now, by Lemma A.2 there exists j0 ∈ {1, . . . , N}
such that ∂Sj0 = �x�− �y� with x, y ∈ spt(Z) and θj0 ≥ p

2 . Let S1 := S − pSj0 . We
have

∂S1 = ∂S − p�x� + p�y�,

and thus

A−B = ∂S1 + pZ1,

where Z1 := Z + �x�− �y�. The conclusion M(Z1) = M(Z)− 2 simply follows from
(A.1). Finally, we get

M(S1) ≤
∑
j �=j0

θjM(Sj) + |θj0 − p|M(Sj0) ≤
N∑

j=1

θjM(Sj)
(A.1)
= M(S) < F(A−B),

where the second inequality follows from θj0 ≥ p
2 .

Let us now consider instead case (b), when σ = −1 and Q = p
2 . We know from (11.3)

that

Fp(A + B) ≤ F(A + B) ,
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where F(A + B) is defined by (11.2). Assume by contradiction that Fp(A + B) <
F(A + B). That is, there exist S ∈ I1(Rn) and Z ∈ R0(Rn) such that

A + B = ∂S + pZ , and M(S) < F(A + B). (A.6)

Observe that it cannot be Z = 0. Also, by Lemma A.1 there is no loss of generality
in assuming that S admits a good decomposition

S =
N∑

j=1

θjSj

having the property (NTC). Now, if M(Z) = 1 then there exists z ∈ R
n such that

Z = �z�. In that case, if we set R := z ×× (A + B) then we have

∂R = A + B − p�z� = ∂S ,

and

F(A + B) ≤M(R) = F(A−Q�z�) + F(B −Q�z�)

=
Q∑

i=1

(|Ai − z|+ |Bi − z|) ≤M(S) ,

thus contradicting (A.6).
On the other hand, if M(Z) ≥ 2 (and thus in fact M(Z) ≥ 3) then there exists
j0 ∈ {1, . . . , N} such that ∂Sj0 = �x�−�y� with x, y ∈ spt(Z) and θj0 ≥ p

2 . Hence,
setting S1 := S − pSj0 we have

A + B = ∂S1 + pZ1 ,

with Z1 := Z + �x� − �y�, M(Z1) = M(Z) − 2 and M(S1) ≤ M(S). In order to
complete the proof, it suffices to iterate this argument producing currents Sk, Zk

until M(Zk) = 1.
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