Multidimensional continued fractions generalize classical continued fractions with the aim of providing periodic representations of algebraic irrationalities by means of integer sequences. We provide a characterization for periodicity of Jacobi–Perron algorithm by means of linear recurrence sequences. In particular, we prove that partial quotients of a multidimensional continued fraction are periodic if and only if numerators and denominators of convergents are linear recurrence sequences, generalizing similar results that hold for classical continued fractions.

Linear recurrence sequences and periodicity of multidimensional continued fractions / Murru, Nadir. - In: RAMANUJAN JOURNAL. - ISSN 1382-4090. - 44:(2017), pp. 115-124. [10.1007/s11139-016-9820-2]

Linear recurrence sequences and periodicity of multidimensional continued fractions

Murru, Nadir
2017-01-01

Abstract

Multidimensional continued fractions generalize classical continued fractions with the aim of providing periodic representations of algebraic irrationalities by means of integer sequences. We provide a characterization for periodicity of Jacobi–Perron algorithm by means of linear recurrence sequences. In particular, we prove that partial quotients of a multidimensional continued fraction are periodic if and only if numerators and denominators of convergents are linear recurrence sequences, generalizing similar results that hold for classical continued fractions.
2017
Murru, Nadir
Linear recurrence sequences and periodicity of multidimensional continued fractions / Murru, Nadir. - In: RAMANUJAN JOURNAL. - ISSN 1382-4090. - 44:(2017), pp. 115-124. [10.1007/s11139-016-9820-2]
File in questo prodotto:
File Dimensione Formato  
lrs-jac3.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 242.09 kB
Formato Adobe PDF
242.09 kB Adobe PDF Visualizza/Apri
Murru2017_Article_LinearRecurrenceSequencesAndPe.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 383.71 kB
Formato Adobe PDF
383.71 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/271664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact