
Linear recurrence sequences and periodicity of
multidimensional continued fractions

Nadir Murru
Department of Mathematics

University of Turin
10123 Turin, Italy

E-mail: nadir.murru@unito.it

Abstract

Multidimensional continued fractions generalize classical contin-
ued fractions with the aim of providing periodic representations of al-
gebraic irrationalities by means of integer sequences. However, there
does not exist any algorithm that provides a periodic multidimen-
sional continued fraction when algebraic irrationalities are given as
inputs. In this paper, we provide a characterization for periodicity
of Jacobi–Perron algorithm by means of linear recurrence sequences.
In particular, we prove that partial quotients of a multidimensional
continued fraction are periodic if and only if numerators and denom-
inators of convergents are linear recurrence sequences, generalizing
similar results that hold for classical continued fractions.

1 Introduction

Ternary continued fractions generalize classical continued fractions and can

be used to represent pair of real numbers. In particular, a pair of real num-
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bers (α0, β0) is represented by two sequences (an)∞n=0 and (bn)∞n=0 as follows:

(1.1) α0 = a0 +

b1 +
1

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

a1 +

b2 +
1

a3 +

.. .

. . .

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

and β0 = b0 +
1

a1 +

b2 +
1

a3 +

.. .

. . .

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

.

Partial quotients ai and bi can be evaluated by means of the Jacobi algo-

rithm: 

an = [αn]

bn = [βn]

αn+1 =
1

βn − [βn]

βn+1 =
αn − an
βn − bn

, n = 0, 1, 2, ...

Ternary continued fractions and previous algorithm were introduced by Ja-

cobi [J] in order to answer to a question posed by Hermite. Indeed, Hermite

asked for finding a way to give a periodic representation for cubic irra-

tionalities, simlarly to the case of quadratic irrationalities and continued

fractions [Her]. This is still a fascinating open problem in number theory,

since periodicity of the Jacobi algorithm has been never proved when in-

puts are cubic irrationals. For this reason, ternary continued fractions have

been widely studied during the years. Convergence and properties of ternary

continued fractions were studied by Daus and Lehmer in several classical

works as [D1], [D2], [Leh]. More recently, ternary continued fractions and

Jacobi algorithm have been studied for approaching the Hermite problem.

In particular several authors tried to modify the Jacobi algorithm in order

to obtain a periodic algorithm when cubic irrationalities are given as inputs,

[W], [T], [S].

Perron [P] generalized the Jacobi approach to higher dimensions, repre-

senting a m–tuple of real numbers α
(1)
0 , ..., α

(m)
0 by means of a multidimen-
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sional continued fraction defined by m sequences of integers (a
(1)
n )∞n=0, ...,

(a
(m)
n )∞n=0. Partial quotients a

(1)
n , ..., a

(m)
n can be evaluated by means of

(1.2)



a
(i)
n = [α

(i)
n ], i = 1, ...,m

α
(1)
n+1 =

1

α
(m)
n − a(m)

n

α
(i)
n+1 =

α
(i−1)
n − a(i−1)n

α
(m)
n − a(m)

n

i = 2, ...,m

, n = 0, 1, 2, ...

Multidimensional continued fractions have been introduced with the aim

of finding a periodic representation for all algebraic irrationalities. However

previous algorithm (and modifications) has never been proved periodic when

algebraic irrationals of order m are given as inputs. Further results and

modifications of the Jacobi–Perron algorithm can be found in [B2], [R],

[Hen].

In this paper we show properties that could open new ways for approach-

ing the Hermite problem and proving the periodicity of the Jacobi–Perron

algorithm. These properties connect periodicity of partial quotients with lin-

ear recurrence sequences. In particular we will prove that sequences (a
(i)
n )∞n=0,

for i = 1, ...,m, are periodic if and only if sequences of numerators and de-

nominators of convergents of multidimensional continued fractions are re-

currence sequences with constant coefficients, generalizing a similar result

provided by Lenstra and Shallit for classical continued fractions [Len]. In

section 2, we give some preliminary properties and notation about multidi-

mensional continued fractions. Section 3 shows the main result and Section

4 describes further developments of the present work.

2 Multidimensional continued fractions

In the following, we write the multidimensional continued fraction derived

by equations (1.2) as follows:

(2.1) (α
(1)
0 , ..., α

(m)
0 ) = [{a(1)0 , a

(1)
1 , a

(1)
2 , ...}, ..., {a(m)

0 , a
(m)
1 , a

(m)
2 , ...}].

This multidimensional continued fraction generalizes the structure of ternary

continued fraction (1.1) by means of the following relations
α
(i−1)
n = a

(i−1)
n +

α
(i)
n+1

α
(1)
n+1

, i = 2, ...,m

α
(m)
n = a

(m)
n +

1

α
(1)
n+1

, n = 0, 1, 2, ...,
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which can be derived by equations (1.2). Let us observe that a multidi-

mensional continued fraction is finite if and only if α
(1)
0 , ..., α

(m)
0 are rational

numbers, similarly to classical continued fractions. In the following, we focus

on α
(1)
0 , ..., α

(m)
0 irrational numbers.

We can introduce the notion of convergents, like for classical continued

fractions. In this case, we have m sequences of convergents

(
A

(i)
n

A
(m+1)
n

)∞
n=0

,

for i = 1, ...,m, defined by

(2.2)

(
A

(1)
n

A
(m+1)
n

, ...,
A

(m)
n

A
(m+1)
n

)
= [{a(1)0 , ..., a(1)n }, ..., {a

(m)
0 , ..., a(m)

n }], ∀n ≥ 0

and we have

lim
n→∞

A
(i)
n

A
(m+1)
n

= α
(i)
0 , i = 1, ...,m.

In [B1], the reader can find useful properties regarding convergents of multi-

dimensional continued fractions (in this paper we have used a little different

notation). In particular, we highlight the following properties.

Proposition 2.1. Numerators and denominators of convergents of multidi-

mensional continued fraction (2.1) satisfy the following recurrences of order

m+ 1 with non–constant coefficients:

(2.3) A(i)
n =

m∑
j=1

a(j)n A
(i)
n−j + A

(i)
n−m−1, i = 1, ...,m+ 1, ∀n ≥ 1

with initial conditions
A

(i)
0 = a

(i)
0 , A

(m+1)
0 = 1,

A
(i)
−i = 1, A

(m+1)
−i = 0,

A
(i)
−j = 0, j = 1, ...,m, j 6= i

i = 1, ...,m.

Proposition 2.2. Given the multidimensional continued fraction (2.1), we

have

n∏
j=0



a
(1)
j 1 0 0 ... 0

a
(2)
j 0 1 0 ... 0
...

...
. . . . . . . . .

...

a
(m−1)
j 0 0 ... 1 0

a
(m)
j 0 0 0 ... 1
1 0 0 0 ... 0


=


A

(1)
n A

(1)
n−1 ... A

(1)
n−m

A
(2)
n A

(2)
n−1 ... A

(2)
n−m

...
... ...

...

A
(m+1)
n A

(m+1)
n−1 ... A

(m+1)
n−m



m
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(
A

(1)
n

A
(m+1)
n

, ...,
A

(m)
n

A
(m+1)
n

)
= [{a(1)0 , ..., a(1)n }, ..., {a

(m)
0 , ..., a(m)

n }],

for n = 0, 1, 2, ....

Remark 2.3. Matrices in the previous proposition are (m + 1) × (m + 1)

matrices.

Remark 2.4. In the following, when there is no possibility of confusion,

we only write (an) instead of (an)∞n=0.

3 Main result

In this section, we prove that periodicity of Jacobi–Perron algorithm is

strictly related to linear recurrence sequences. We see that a multidimen-

sional continued fraction is periodic if and only if numerators and denom-

inators of convergents are linear recurrence sequences. In other words, we

prove that sequences (a
(i)
n ), for i = 1, ...,m, are periodic if and only if se-

quences (A
(i)
n ), for i = 1, ...,m+1, satisfy a recurrence relation with constant

coefficients. Proofs follow ideas used in [Len], but here the situation is com-

plicated by the presence of several sequences of partial quotients.

Theorem 3.1. If sequences of partial quotients of (2.1) are periodic, then

sequences of numerators and denominators of its convergents are linear re-

currence sequences.

Proof. Let us consider the periodic multidimensional continued fraction

[{a(1)0 , ..., a
(1)
p1−1, b

(1)
0 , ..., b

(1)
q1−1}, ..., {a

(m)
0 , ..., a

(m)
pm−1, b

(m)
0 , ..., b

(m)
qm−1}].

We introduce the following quantities:

u = lcm(q1, ..., qm), vi = max(p1, ..., pm)− pi, i = 1, ...,m.

We define u matrices

Mi =
∏

0≤j<u



b
(1)
i+j+v1

1 0 0 ... 0

b
(2)
i+j+v2

0 1 0 ... 0
...

...
. . . . . . . . .

...

b
(m−1)
i+j+vm−1

0 0 ... 1 0

b
(m)
i+j+vm

0 0 0 ... 1
1 0 0 0 ... 0


, ∀i ∈ Zu.
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We can easily observe that det(Mi) = (−1)(m−1)u, furthermore tr(Mk
i ) =

tr(Mk
j ) for all i, j ∈ Zu, ∀k ∈ N. Indeed, given any i, j ∈ Zu, it is always

possible to find two matrices P , Q such that Mi = PQ and Mj = QP , and

consequently tr(Mi) = tr(Mj). Similar observation holds for powers of ma-

trices Mi. Therefore, all matrices Mi have same invariants and characteristic

polynomial

xm −
m−1∑
i=1

hix
i − (−1)(m−1)u,

where hi are invariants of these matrices.

By proposition 2.2 follows that
A

(1)
n+u A

(1)
n+u−1 ... A

(1)
n+u−m

A
(2)
n+u A

(2)
n+u−1 ... A

(2)
n+u−m

...
... ...

...

A
(m+1)
n+u A

(m+1)
n+u−1 ... A

(m+1)
n+u−m

 =


A

(1)
n A

(1)
n−1 ... A

(1)
n−m

A
(2)
n A

(2)
n−1 ... A

(2)
n−m

...
... ...

...

A
(m+1)
n A

(m+1)
n−1 ... A

(m+1)
n−m

Mn−u

for all n ≥ max(p1, ..., pm). Now, we can write

Mm
n−u −

m−1∑
i=1

hiM
i
n−u − (−1)(m−1)uI = O

where I is the identity matrix and O is the zero matrix. Hence, multiplying

(on the left) both sides of previous equation by
A

(1)
n A

(1)
n−1 ... A

(1)
n−m

A
(2)
n A

(2)
n−1 ... A

(2)
n−m

...
... ...

...

A
(m+1)
n A

(m+1)
n−1 ... A

(m+1)
n−m


we obtain
A

(1)
n+mu A

(1)
n+mu−1 ... A

(1)
n+mu−m

A
(2)
n+mu A

(2)
n+mu−1 ... A

(2)
n+mu−m

...
... ...

...

A
(m+1)
n+mu A

(m+1)
n+mu−1 ... A

(m+1)
n+mu−m

−
m−1∑
i=1

hi


A

(1)
n+iu A

(1)
n+iu−1 ... A

(1)
n+iu−m

A
(2)
n+iu A

(2)
n+iu−1 ... A

(2)
n+iu−m

...
... ...

...

A
(m+1)
n+iu A

(m+1)
n+iu−1 ... A

(m+1)
n+iu−m

+

−(−1)(m−1)u


A

(1)
n A

(1)
n−1 ... A

(1)
n−m

A
(2)
n A

(2)
n−1 ... A

(2)
n−m

...
... ...

...

A
(m+1)
n A

(m+1)
n−1 ... A

(m+1)
n−m

 = O.

Thus, we have, e.g.,

A
(1)
n+mu −

m−1∑
i=1

hiA
(1)
n+iu − (−1)m−1A(1)

n = 0
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and similar relations for sequences (A
(i)
n ), for i = 2, ...,m+ 1, i.e., sequences

(A
(i)
n ) are all linear recurrence sequences.

We need some lemmas for proving the vice versa. Next lemma is known

as the Hadamard quotient theorem and it is due to Van der Poorten [V].

Lemma 3.2. Let
∑∞

i=0 aix
i and

∑∞
i=0 bix

i be formal series representing ra-

tional functions in C[x], if
ai

bi
is an integer for all i ≥ 0, then

∑∞
i=0

ai

bi
xi is

a formal series representing a rational function.

Remark 3.3. We recall that the generating function of a linear recurrence

sequence is a rational function.

We also need some results about sums and products of linear recurrence

sequences. The reader can find an interesting overview on this topic in [C].

In the next lemma, we summarize some results.

Lemma 3.4. If (an) and (bn) are linear recurrence sequences with char-

acteristic polynomials p(x) and q(x), then (an + bn) and (an · bn) are also

linear recurrence sequences whose characteristic polynomials are p(x) · q(x)

and p(x) � q(x), respectively, where p(x) � q(x) is the characteristic poly-

nomial of the matrix obtained by the Kronecker product between companion

matrices of p(x) and q(x).

The following lemma has been also used in [Len].

Lemma 3.5. Let (an) and (bn) be linear recurrence sequences such that

characteristic polynomial of (bn) divides characteristic polynomial (of degree

e) of (an). Then, there exists constants k and n0 such that

max(|an|, |an−1|, ..., |an−e+2|, |an−e+1|) > k|bn|,

for any n ≥ n0.

Finally, we prove the following lemma.

Lemma 3.6. With the above notation, we have

A(i)
n ≥

n∏
j=1

a
(1)
j , i = 1, ...,m+ 1

for n ≥ 1.
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Proof. The thesis can easily proved by induction. Let us observe that, by

equations (1.2), we have a
(i)
n > 0, for i = 1, ...,m and n ≥ 1. The basis is

straightforward:

A
(m+1)
1 = a

(1)
1 , A

(m+1)
2 = a

(1)
2 a

(1)
1 + a

(2)
2 .

For the inductive step, we have

A(m+1)
n =

m∑
j=1

a(j)n A
(m+1)
n−j +A

(m+1)
n−m−1 ≥ a(1)n

n−1∏
j=1

a
(1)
j +

m∑
j=2

a(j)n A
(m+1)
n−j +A

(m+1)
n−m−1.

Since A
(m+1)
i , for i = 1, 2, ..., are concordant, the thesis follows. Similar

considerations hold for sequences (A
(i)
n ), for i = 1, ...,m.

Theorem 3.7. Let

(
A

(i)
n

A
(m+1)
n

)
be the sequences of convergents, for i =

1, ...,m, of the multidimensional continued fraction (2.1). If (A
(i)
n ), for i =

1, ...,m+ 1, are linear recurrence sequences, then (a
(i)
n ), for i = 1, ...,m, are

periodic sequences.

Proof. For n sufficiently large A
(i)
n 6= 0, for i = 1, ...,m+1, and by equations

(2.3), with a little bit of calculation, it is possible to obtain

a(m)
n =

Fn

Gn

,

where Fn and Gn are sums and products of some A
(i)
n−j, for certain values

of i and j. Since (A
(i)
n ) are all linear recurrence sequences, by lemma 3.4,

(Fn) and (Gn) are linear recurrence sequences. Moreover, (Fn) and (Gn)

satisfy hypothesis of lemma 3.2 and consequently (a
(m)
n ) is a linear recurrence

sequence. Similarly, we can prove that (a
(i)
n ), for i = 1, ...,m − 1 are linear

recurrence sequences.

Now, we prove that sequence (a
(1)
n ) is bounded. Let us suppose that

characteristic polynomial of the linear recurrence sequence (a
(1)
n ) has degree

e. By the Binet formula we can write

(3.1) a(1)n =
e∑

i=1

pi(n)αn
i , n = 0, 1, 2, ...

where αi’s are roots of the characteristic polynomial and pi(n) polynomi-

als of degree ti in n, for i = 1, ..., e. By lemma 3.6 we have A
(m+1)
qe ≥∏

1≤j≤qe a
(1)
j , for q ≥ 1. Moreover, for a given index i, sequences (a

(1)
n ) and

(ntiαn
i ) satisfy hypothesis of lemma 3.5.
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Hence by lemma 3.5, fixed 1 ≤ h ≤ m, we havem sequences a
(1)
(h−1)e+1, ..., a

(1)
he ,

such that the maximum element is greater than k(he)ti |αe
i |h. Said k′ a con-

stant greater than the product of all other elements, we have

A(m+1)
qe > k′km(m!)tiemti |αe

i |m(m+1)/2.

A similar inequality was find in [Len] for denominators of convergents of

classical continued fractions.

Since (A
(m+1)
n ) is a linear recurrence sequence, it can not grow too rapidly.

Indeed, it is well–known that logA
(m+1)
n = O(n) and consequently |αi| < 1

or |αi| = 1 and ti = 0. Thus, by equation (3.1), we have that (a
(1)
n ) is

bounded. Since (a
(1)
n ) is a bounded linear recurrence sequence of integers, we

have proved that (a
(1)
n ) is periodic. Finally, by equations (1.2) we have that

if (a
(1)
n ) is periodic then sequences (a

(i)
n ), for i = 2, ...,m, are periodic.

4 Future developments

We have found a characterization of periodicity for the Jacobi–Perron algo-

rithm by means of linear recurrence sequences. This result could be exploited

for approaching the Hermite problem by new ways.

In [M], the author found a periodic representation for any cubic irrational

using a ternary continued fraction with rational partial quotients, whose

convergents have numerators and denominators that are linear recurrence

sequences. However, this representation depends on the knowledge of the

minimal polynomial of the involved cubic irrational and consequently none

algorithm can be found for generating such a representation. In particular,

given the cubic irrational α, whose minimal polynomial is x3−px2− qx− r,
we have

(4.1) [{z,
2z + p2 + q

pq + r
,
(pq + r)tr(N)

det(N)
, tr(N),

tr(N)

pq + r
},

{p,−
z2 + qz + p2z − pr

pq + r
,−

I1(N)

det(N)
,−

(pq + r)I1(N)

det(N)
,−

I1(N)

pq + r
}] = (

r

α
, α)

where I1 is the second invariant of a 3× 3 matrix. Moreover,

N =

z r pr
0 q + z pq + r
1 p p2 + q + z


for a given integer z.



10 N. Murru

Let us define

(4.2) [{a0, a1, ...}, {b0, b1, ...}] = (
r

α
, α)

the ternary continued fraction whose partial quotients are derived by the Ja-

cobi algorithm. Since ternary continued fractions (4.1) and (4.2) are equal,

it could be interesting to compare convergents of (4.1) with convergents of

(4.2) with the aim of proving that numerators and denominators of conver-

gents of (4.2) are linear recurrence sequences too.
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