Given a family of locally Lipschitz vector fields X(x)=(X1(x),…,Xm(x)) on Rn, m≤n, we study functionals depending on X. We prove an integral representation for local functionals with respect to X and a result of Γ-compactness for a class of integral functionals depending on X. © 2020 Elsevier Masson SAS. All rights reserved.

Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness / Maione, Alberto; Pinamonti, Andrea; Serra Cassano, Francesco. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 139:(2020), pp. 109-142. [10.1016/j.matpur.2020.05.003]

Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness

Maione, Alberto;Pinamonti, Andrea;Serra Cassano, Francesco
2020-01-01

Abstract

Given a family of locally Lipschitz vector fields X(x)=(X1(x),…,Xm(x)) on Rn, m≤n, we study functionals depending on X. We prove an integral representation for local functionals with respect to X and a result of Γ-compactness for a class of integral functionals depending on X. © 2020 Elsevier Masson SAS. All rights reserved.
2020
Maione, Alberto; Pinamonti, Andrea; Serra Cassano, Francesco
Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness / Maione, Alberto; Pinamonti, Andrea; Serra Cassano, Francesco. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 139:(2020), pp. 109-142. [10.1016/j.matpur.2020.05.003]
File in questo prodotto:
File Dimensione Formato  
Gamma-convergence_vector_fields_2020.pdf

Open Access dal 01/08/2022

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 415.78 kB
Formato Adobe PDF
415.78 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021782420300775-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 617.67 kB
Formato Adobe PDF
617.67 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/266904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact