Given a family of locally Lipschitz vector fields X(x)=(X1(x),…,Xm(x)) on Rn, m≤n, we study functionals depending on X. We prove an integral representation for local functionals with respect to X and a result of Γ-compactness for a class of integral functionals depending on X. © 2020 Elsevier Masson SAS. All rights reserved.
Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness / Maione, Alberto; Pinamonti, Andrea; Serra Cassano, Francesco. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 139:(2020), pp. 109-142. [10.1016/j.matpur.2020.05.003]
Γ-convergence for functionals depending on vector fields. I. Integral representation and compactness
Maione, Alberto;Pinamonti, Andrea;Serra Cassano, Francesco
2020-01-01
Abstract
Given a family of locally Lipschitz vector fields X(x)=(X1(x),…,Xm(x)) on Rn, m≤n, we study functionals depending on X. We prove an integral representation for local functionals with respect to X and a result of Γ-compactness for a class of integral functionals depending on X. © 2020 Elsevier Masson SAS. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Gamma-convergence_vector_fields_2020.pdf
Open Access dal 01/08/2022
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
415.78 kB
Formato
Adobe PDF
|
415.78 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021782420300775-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
617.67 kB
Formato
Adobe PDF
|
617.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione