We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.
Area minimizing currents mod 2Q: linear regularity theory / De Lellis, Camillo; Hirsch, Jonas; Marchese, Andrea; Stuvard, Salvatore. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 2022, 75:1(2022), pp. 83-127. [10.1002/cpa.21964]
Area minimizing currents mod 2Q: linear regularity theory
Marchese, Andrea;
2022-01-01
Abstract
We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DLHMS_linear_final.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
574.06 kB
Formato
Adobe PDF
|
574.06 kB | Adobe PDF | Visualizza/Apri |
Comm Pure Appl Math - 2020 - De Lellis - Area‐Minimizing Currents mod 2Q Linear Regularity Theory.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
400.57 kB
Formato
Adobe PDF
|
400.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione