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Abstract

We establish a theory of Q-valued functions minimizing a suitable generaliza-
tion of the Dirichlet integral. In a second paper the theory will be used to ap-
proximate efficiently area minimizing currents mod.p/ when p D 2Q, and to
establish a first general partial regularity theorem for every p in any dimension
and codimension. © 2020 The Authors. Communications on Pure and Applied
Mathematics published by Wiley Periodicals LLC.
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1 Introduction
The aim of this work and its companion paper [4] is to give a proof of the

following partial regularity theorem (for the definition of area minimizing currents
mod.p/ and the relevant terminology and notation we refer to [4]):

THEOREM 1.1. Assume p 2 N n f0; 1g and a0 > 0, � � R
mCn is a complete

C 3;a0 submanifold without boundary of dimension m C xn, � � R
mCn is open,

and T is an m-dimensional integer rectifiable current supported in � that is area
minimizing mod.p/ in � \ �. Then, the interior singular set Sing.T / of T has
Hausdorff dimension at most m � 1. If p in addition is odd, then the singular set
is countably .m � 1/-rectifiable.

The above result provides an affirmative answer in full generality to a question of
B. White; see [16, problem 4.20]. Prior to our work, some of the conclusions above
were only known in some special cases. More precisely, in general codimension
xn > 1:

(a) For m D 1 it is elementary that Sing.T / is discrete (and empty when
p D 2).

(b) In general, Allard’s interior regularity theory for stationary varifolds, cf.
[1], implies that Sing.T / is a closed meager set in .sptp.T /\�/nsptp.@T /;

(c) For p D 2 Sing.T / has Hausdorff dimension at most m � 2 by Federer’s
classical work [11]; moreover, the same reference shows that such set is
in fact discrete when m D 2; for m > 2 its .m � 2/-rectifiability was
first proved in [15], and the recent work [13] implies in addition that it has
locally finite Hm�2 measure.

In the case of codimension xn D 1 it was additionally known that:
(d) When p D 2, the singular set has .m � 2/-dimensional Hausdorff mea-

sure zero even in the case of minimizers of general uniformly elliptic in-
tegrands; see [14]. For the area functional, using [13], one can conclude
additionally that it is .m � 3/-rectifiable and has locally finite Hm�3 mea-
sure.

(e) When p D 3 andm D 2, [19] gives a complete description of the singular-
ities, which consist of C 1;� arcs where three regular sheets meet at equal
angles.

(f) When p is odd, [21] shows that the singular set has vanishing Hm-Hausdorff
measure for minimizers of a uniformly elliptic integrand, and that it has
Hausdorff dimension at most m � 1 for minimizers of the area functional.



AREA MINIMIZING CURRENTS MOD 2Q 85

(g) When p D 4, [20] shows that minimizers of uniformly elliptic integrands
are represented by immersed manifolds outside of a closed set of zero
Hm�2 measure.

Our proof of Theorem 1.1 follows the blueprint of Almgren’s partial regularity
theory for area minimizing currents as worked out in the papers [5–9]. First of all,
thanks to the general stratification theorem of the singular set, for every � > 0 we
know that at Hm�1C�-a.e. x 2 sptp.T /nsptp.@T / there is at least one tangent cone
that is flat, namely an integer multiple of an m-dimensional plane. If we call such
points “flat”, the main dimension estimate in Theorem 1.1 is achieved by showing
that, for every � > 0, Hm�1C�-a.e. flat point x is in fact regular. Every flat point x
where the density of T is 1 is indeed regular by Allard’s celebrated theorem. The
problem arises when the multiplicity is higher than 1, because there are examples
of singular flat points. For area minimizing integral currents such examples exist
only in codimension xn � 2, whereas for area minimizing currents mod.p/ such
examples can be found also in codimension xn D 1 if p is even and larger than 2;
see, for instance, Example 1.2 below.

An essential step in Almgren’s theory is the approximation of the area mini-
mizing currents, in regions where they are sufficienly close to an integer multiple
of a plane, with multivalued functions that almost minimize an appropriate gener-
alization of the Dirichlet energy. We will call “linear theory” the corresponding
existence and regularity theory for those objects. In the case of integral currents a
typical example where multivalued functions are needed is in the approximation of
the current J�K induced by the holomorphic curve

� D f.´; w/ 2 C2 W ´2 D w3g
in a neighborhood of the origin (which is indeed a singular flat point of multi-
plicity 2). One way of understanding multiple-valued functions that take a fixed
number Q of values is to model them as maps into the space of atomic measures
with positive integral coefficients and total mass Q. For instance, slicing the cur-
rent � with (real) two-dimensional planes orthogonal to f.´; 0/ W ´ 2 Cg, for each
´ 2 Cnf0gwe find an integral 0-dimensional current that is the sum of two positive
atoms: X

w3D´2

J.´; w/K :

Such maps can be efficiently used to approximate area minimizing currents T
mod.p/ in a neighborhood of a flat point x when

� either p is odd,
� or p is even and the density Q of T is strictly smaller than p

2
.

When studying area minimizing currents mod.p/ for an even modulus p D 2Q in
a neighborhood of a flat point of density Q, the “classical” multivalued functions
are no longer the appropriate maps, as it is witnessed by the following example,
taken from [20].
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Example 1.2. Consider an open subset � � R
2 and two smooth functions f; g W

� ! R that solve the minimal surfaces equation in �. Assume in addition that
the set ff D gg contains a curve  that divides � into two regions �C and ��.
Two explicit f and g are easy to find. The reader could take � to be a suitable
ball B centered at the origin, f � 0, and let g be the function that describes
Enneper’s minimal surface in a neighborhood of 0. The set ff D gg is then given
by f.x; y/ W x D �yg \ B , and  can be taken to be the segment fx D yg \ B
while �C and �� would then be B \ fx > yg and B \ fx < yg, respectively.

We then define the following integral current T . Its support is the union of the
graphs of f and g. However, while the portions of such graphs lying over�C will
be taken with the standard orientation induced by �, the portions lying over ��

will be taken with the opposite orientation. In � � R, the boundary of T is 4JK.
Moreover, by the structure theorem [20], the current is area minimizing mod.4/,
because the graphs of f and g are both area minimizing currents mod.2/ (this
could be proved using, for instance, the maximum principle).

The origin is a flat point of multiplicity Q D 2 for the current T above. By a
simple rescaling procedure a good approximation of T in a neighborhood of the
origin is given by the graphs of the second-order Taylor polynomials of f and g
at the origin. These are harmonic polynomials. For the specific case described
above where f D 0 and the graph of g is Enneper’s surface, such functions are
f0.x; y/ D 0 and g0.x; y/ D 3.x2 � y2/. This gives an obvious set-theoretic
approximation of the support of the current T . In the approach that we outline
in the rest of the paper, we will give to this set a structure of “special 2-valued
function” h, where we consider the value h.x; y/ to be the sum of the two positive
atoms Jf0.x; y/KCJg0.x; y/K on�C D B\fx > yg and the sum of two negative
atoms �Jf0.x; y/K � Jg0.x; y/K on �� D B \ fx < yg. Such a choice is natural
in view of the fact that the slices of the current T with lines orthogonal to the plane
f.x; y; 0/ W x; y 2 Rg are given by Jf .x; y/K C Jg.x; y/K for .x; y/ 2 �C and
�Jf .x; y/K � Jg.x; y/K for .x; y/ 2 ��.

Motivated by the above example, roughly speaking “special 2-valued functions”
will be maps from � into the space of atomic measures with mass 2 satisfying the
following requirements (cf. Definition 2.2 and Definition 2.7):

� The value of the map at any point in � is always either the sum of two
positive atoms or the sum of two negative atoms.

� The domain � is subdivided by each map into three regions, the “posi-
tive region” where the values are two positive disinct atoms, the “negative
region” where the values are two distinct negative atoms and the “inter-
face”, or the “collapsed region”, where the values are atoms counted with
multiplicity 2: whether with a plus or minus sign, this will be of no rel-
evance, because we will identify �2J´K and 2J´K (which are equivalent
0-dimensional currents mod.4/).
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Roughly speaking, if the special 2-valued map is continuous, then the collapsed
region disconnects the “positive” and the “negative” ones.

A natural Dirichlet energy, which comes out of Taylor-expanding the area func-
tional on the original current, is the sum of the Dirichlet energies of the various
sheets: with such definition, the special 2-valued function h considered above is
a minimizer of the Dirichlet energy, namely any competitor that coincides with it
outside a compact set K b B has at least the same energy. This could be proved
in an elementary way in our specific example, but it is also a general fact.

The reader might wonder why we introduce such complicated objects, rather
than simply considering the union of the two graphs of f0 and g0 as a classical
2-valued function (namely, always taking positive atomic measures as values) as in
[5]). The point is that with the latter choice, the resulting 2-valued function would
not be a minimizer of the Dirichlet energy. A better competitor could be easily
constructed by considering the following functions xf and xg: both are harmonic in
B1.0/ and their values on @B1.0/ are, respectively:

xf .x; y/ D
(
3.x2 � y2/ if jxj � jyj;
0 if jxj � jyj;

xg.x; y/ D
(
0 if jxj � jyj
3.x2 � y2/ if jxj � jyj

The example above also shows that the regularity theory for Dirichlet-minimizing
special Q-valued functions must necessarily allow for a larger set of singulari-
ties than its classical counterpart: indeed, for the special 2-valued map h con-
structed above any reasonable definition of the singular set Sing.h/ must be such
that fx D �yg \ B � Sing.h/, thus implying, in particular, that the standard re-
sult dimH.Sing.u// � m � 2 valid for a classical Q-valued map u defined on an
m-dimensional domain and minimizing the Dirichlet energy (or even natural per-
turbations of the Dirichlet energy; see, e.g., [18]) cannot hold true in our context.

Before proceeding with our analysis, let us remark that, in the paper [2], F. Alm-
gren seems to initiate the investigation of a class of objects that are conceptually
analogous to our special multiple valued functions. More precisely, Almgren’s
“multifunctions mod.p/” are defined as mappings taking values in the space of
0-dimensional integral polyhedral chains mod.p/. The theory outlined in [2] may
have some points in common with the content of Sections 2 and 4 of the present
work, as well as section 10 of [4]. The Dirichlet energy and the corresponding reg-
ularity theory, on the other hand, are not mentioned in [2], which rather seems to fo-
cus on describing the geometric properties of a class of piecewise affine multifunc-
tions, which have the property to induce, via push-forward, dimension-preserving
homomorphisms of the space of polyhedral chains. Since Almgren did not pursue
this line of research in any later works, we don’t know whether his ultimate goal
was to seek a regularity theory for minimizing currents mod.p/ along the lines of
his big regularity paper [3].
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1.1 Plan of the Paper
The first part of the paper aims at establishing the optimal partial regularity result

for special Q-valued functions minimizing the Dirichlet energy. After providing
the precise definition of the space AQ.R

n/ of specialQ-points inRn and introduc-
ing the corresponding Sobolev spaces of AQ.R

n/-valued maps, we show that any
Dir-minimizing special Q-valued function u is Hölder continuous with respect to
the natural metric space structure of AQ.R

n/, and then that the (suitably defined)
set Sing.u/ of singular points of u is a closed subset of the m-dimensional domain
of u having Hausdorff dimension dimH.Sing.u// � m� 1. We will then conclude
the paper with some results concerning the geometry of (the currents associated
to) the graphs of special multiple-valued functions, which will be crucial for the
analysis to be carried out in [4].

2 Definition of AAAQ.R
n/ and Metric Properties

For the classical Q-valued maps in Rn, denoted AQ.R
n/, we follow the ter-

minology, notation, and definitions of [5]. We first introduce the disjoint union
AQ.R

n/ t AQ.R
n/, which we identify with AQ.R

n/ � f�1; 1g. Hence, an ele-
ment in AQ.R

n/ t AQ.R
n/ will be denoted by .S; "/, where S is an element of

the space AQ.R
n/ of atomic measures with positive integer coefficients and mass

Q (namely S DPQ
iD1JPiK for Pi 2 Rn) and " equals either 1 or �1.

Moreover, it is convenient to introduce the following notation. Recall that G. � ; �/
denotes the distance function in AQ.R

n/.

DEFINITION 2.1. If S DP
iJSiK 2 AQ.R

n/ and v 2 Rn, then jS j2 WD G.S;QJ0K/2
and

S � v WD
X
i

JSi C vK; S 	 v WD S � .�v/ D
X
i

JSi � vK:

Note that, using �.S/ WD 1
Q

P
i Si , we get

jS j2 D jS 	 �.S/j2 CQj�.S/j2;(2.1)

G.A;B/2 D G.A	 �.A/; B 	 �.B//2 CQj�.A/ � �.B/j2:(2.2)

DEFINITION 2.2. We denote by AQ.R
n/ the quotient space

AQ.R
n/ WD AQ.R

n/ tAQ.R
n/= �

where � is the equivalence relation given by

.S;�1/ � .T; 1/ � 9p 2 Rn with S D QJpK D T;(2.3)

.S; 1/ � .T; 1/ � S D T;(2.4)

.S;�1/ � .T;�1/ � S D T:(2.5)
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We endow AQ.R
n/ with the metric

(2.6) Gs..S; �/; .T; �//2

D
(
G.S; T /2 if � D �;

jS 	 �.S/j2 C jT 	 �.T /j2 CQj�.S/ � �.T /j2 if � ¤ �:

Remark 2.3. We can consider Gs as a pseudometric in AQ.R
n/ tAQ.R

n/. Then
AQ.R

n/ results from quotienting the corresponding pseudometric space to a met-
ric space. It is hence straightforward to check that the quotient space topology coin-
cides with the metric topology generated by Gs . Furthermore, for each � 2 f�1; 1g
the injection i� W AQ.R

n/ 3 S 7! .S; �/ 2 AQ.R
n/ is an isometry.

Given the identification of .QJpK; 1/ with .QJpK;�1/, in the sequel we will
often use the simplified notation QJpK to denote both points in AQ.R

n/.
Since working with the above definition of AQ.R

n/ is sometimes inconvenient,
we will next provide a useful characterization. We start by introducing the con-
vention that, if .X; d/ and .Y; �/ are two metric spaces, then, unless otherwise
specified, we endow the product space X � Y with the product metric

d � �..x; y/; .v; w// WD
q
d.x; v/2 C �.y;w/2 :

DEFINITION 2.4. We denote by

�
�

AQ.R
n/ the space fT 2 AQ.R

n/W�.T / D 0g � AQ.R
n/ endowed with

the metric G;

�
�

AQ.R
n/ the space f.T; S/ 2

�
AQ.R

n/ �
�

AQ.R
n/WminfjT j; jS jg D 0g

endowed with the metric G � G.

Remark 2.5. Observe that
�

AQ.R
n/ D

� �
AQ.R

n/�fQJ0Kg
�
[
�
fQJ0Kg�

�
AQ.R

n/
�
�

�
AQ.R

n/�
�

AQ.R
n/:

PROPOSITION 2.6. Consider the metric spaces .
�

AQ.R
n/;G � G/ and .Rn; d /

where
d.x; y/ D

p
Qjx � yj:

Endow the product
�

AQ.R
n/�Rn with the corresponding product metric .G�G/�

d . Then the map � W AQ.R
n/!

�
AQ.R

n/ �Rn given by

�.T; "/ WD
(
.T 	 �.T /;QJ0K;�.T // if " D 1;

.QJ0K; T 	 �.T /;�.T // if " D �1;
is an isometry with inverse

��1.A;B; p/ D
(
.A� p; 1/ if jBj D 0;

.B � p;�1/ otherwise:
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In view of the previous proposition the metric G�G will be denoted by Gs when

restricted to
�

AQ.R
n/.

PROOF. It is clear that the maps � and ��1 are well-defined, and it is also obvious
that � � ��1 and ��1 � � are the identity maps of the appropriate spaces.

Next, if we endow
�

AQ.R
n/ � Rn with the product metric G � d , by (2.2) it is

obvious that the map AQ.R
n/ 3 A 7! .A	 �.A/;�.A// 2

�
AQ.R

n/ � Rn is an

isometry with inverse .A; v/ 7! A� v. In particular this shows that, for any fixed

" 2 f�1; 1g, the following holds:

..G � G/ � d/.�.T; "/; �.S; "// D Gs..T; "/; .S; "//:

On the other hand, the identity ..G�G/�d/.�.T; 1/; �.S;�1// D Gs..T; 1/; .S;�1//
is obvious from the definition of Gs . □

For further use, it is very convenient to introduce the following notations:

DEFINITION 2.7. Let u W E ! AQ.R
n/ be a Borel map, and consider the map

.v; w; ´/ D � � u. We then define:

� � u WD ´;(2.7)

uC WD v � ´;(2.8)
u� WD w � ´;(2.9)

EC WD fjvj > 0g;(2.10)

E� WD fjwj > 0g;(2.11)

E0 WD fjvj D jwj D 0g:(2.12)

Note in particular that EC, E�, and E0 are pairwise disjoint and their union is E:
EC; E� and E0 will be called the canonical decomposition of E induced by the
map u. These sets are those loosely described as positive, negative, and collapsed
regions in the example discussed in the introduction.

Similarly, consider a point P D .R; S; ´/ 2
�

AQ.R
n/ � Rn and a vector ´0 2

R
n. We denote by P�´0, resp. P	´0, the points .R; S; ´C´0/ and .R; S; ´�´0/.
The following is thus an obvious corollary of Proposition 2.6.

COROLLARY 2.8. Let u W E ! AQ.R
n/ be Lipschitz. Then EC; E� � E are

relatively open and E0 � E is relatively closed. Moreover, � � u; uC and u� are
all Lipschitz and their Lipschitz constants are at most Lip.u/. More generally, if u
is merely continuous, then � � u; uC and u� are also continuous and their moduli
of continuity are at most that of u.
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Recall that any Lipschitz map F W Rxn ! R
n induces a natural map F W

AQ.R
xn/! AQ.R

n/ via

F
�X

i

JTiK
�
WD

X
i

JF.Ti /K;

and hence a natural map F W AQ.R
xn/! AQ.R

n/ by

F..T; �// WD .F.T /; �/ D
�X

i

JF.Ti /K; �
�

if T DP
iJTiK:

In terms of the identification above we have�
� � F � ��1�..R; S; ´// D(

.F.R� ´/	 �.F.R� ´//;QJ0K;�.F.R� ´/// if S D QJ0K;

.QJ0K; F .S � ´/	 �.F.S � ´//;�.F.S � ´/// if R D QJ0K:

3 Sobolev Spaces, Differentiability, and Dirichlet Energy
The embedding � allows to provide a straightforward definition of the Sobolev

spaces W 1;p.�;AQ.R
n// using the theory developed in [5]. Similarly, we shall

define the Dirichlet energy and its density.

DEFINITION 3.1. Let � be an open subset of a C 1 manifold. We say that the
function u W � ! AQ.R

n/ belongs to the Sobolev space W 1;p.�;AQ.R
n// if

each of the maps v;w; ´ given by �.u/ D .v; w; ´/ belongs to the respective W 1;p

space.
If u 2 W 1;2, we then define jDuj2 WD jDvj2 C jDwj2 C QjD´j2 and the

corresponding Dirichlet energy

Dir.u;�/ WD
ˆ
�

jDuj2 D Dir.v;�/C Dir.w;�/CQ Dir.´;�/:

Observe the validity of the identity (which holds as well for the “classical” Q-
valued W 1;p spaces)

(3.1) Dir.u;�/ D Dir.u	 � � u;�/CQ Dir.� � u;�/:
Using the definition above, one concludes obviously the analogues of the fol-

lowing:
� the Lipschitz extension theorem, cf. [5, theorem 1.7];
� the trace theorem, cf. [5, prop. 2.10];
� the Sobolev embedding theorem, cf. [5, prop. 2.11];
� The Poincaré inequality, cf. [5, prop. 2.12]; and
� the Campanato-Morrey estimate of [5, prop. 2.14].

From now on we will use all the results above referring to the corresponding state-
ments in [5].
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Next, it is useful to gain a local description of jDuj in terms of the differentials
of the maps uC, u�, and ��u. In particular, this will allow us to apply the calculus
tools of [5] making several computations straightforward.

PROPOSITION 3.2. Assume u 2 W 1;2.�;AQ.R
n//. The maps uC; u�, and � � u

are approximately differentiable at a.e. point x 2 �. In particular, if we denote
by DuC D P

iJDu
C
i K, Du� D P

iJDu
�
i K, and D.� � u/ their approximate

differentials (using the conventions of [5, secs. 1.3 and 2.2.1]), then we have

(3.2) jDuj2.x/ D

8�<
�:
jDuCj2.x/ DP

i jDuCi j2 for a.e. x 2 �C [�0;

jDu�j2.x/ DP
i jDu�i j2 for a.e. x 2 �� [�0;

QjD.� � u/j2.x/ for a.e. x 2 �0:

PROOF. Let �.u/ D .v; w; ´/. From the very definition we know that � � u D ´

belongs to W 1;2.�;Rn/. Next observe that, if a 2 W 1;2.�;AQ.R
n// and b 2

W 1;2.�;Rn/, then a� b 2 W 1;2.�;AQ.R
n//, as one can easily check from [5,

def. 0.5]. Hence, uC; u� belong to W 1;2.�;AQ.R
n//. Thus, the approximate

differentiability a.e. of � � u, uC and u� follows from [5, cor. 2.7].
The approximate differentiability of v;w and the fact that they are identically

QJ0K on�0 implies easily that indeed jDvj D jDwj D 0 a.e. on�0. This shows,
therefore, the third case of (3.2). We now come to the other two cases and, by
symmetry, we focus on the first one. Clearly, on�C[�0 we have jDwj D 0, and
thus by definition

jDuj2 D jDvj2 CQjD.� � u/j2:
On the other hand, on �C [�0 we also have that � � u D � � uC and that

v D
X
i

JuCi � � � uCK D uC 	 � � uC:

Now, at every point of approximate differentiability x we readily check from [5,
defs. 1.9 and 2.6] that D.� � uC/.x/ D 1

Q

P
i Du

C
i .x/ and that Dvi .x/ D

DuCi .x/ �D.� � uC/.x/. Recalling [5, prop. 2.17] we have thus

jDuCj2.x/ D
X
i

jDuCi .x/j2 D
X
i

jDvi j2 CQjD.� � uC/.x/j2

D jDvj2.x/CQjD.� � u/.x/j2:
The latter identity completes the proof. □

4 Currents mod.2Q/ and AAAQ.R
n/-Valued Maps

In this section we link the notion of special Q-valued maps to that of currents
modulo 2Q. This will not only be very useful in the proof of Theorem 1.1 given in
[4], but it also highlights the intuition behind the definition of AQ.R

n/ as described
in the introduction. Consider a k-dimensional rectifiable set E � R

m with finite
Hk measure and a proper Lipschitz map u W E ! AQ.R

n/ (i.e., � � u, uC and
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u� are proper; see [7, def. 1.2] for the definition of proper AQ.R
n/-valued maps).

We can use Definition 2.7, Corollary 2.8 and the theory presented in [7] to define a
suitable notion of “graph” of u and correspondingly associate a rectifiable current
to it.

DEFINITION 4.1. Let E � Rm be countably k-rectifiable with finite Hk measure
and let u W E ! AQ.R

n/ be Lipschitz and proper. Using the terminology of [7]
we denote by

(i) Gr.u/ the set

Gr.u/ WD .Gr.uC/\.EC�Rn//[.Gr.u�/\.E��Rn//[.Gr.��u/\.E0�Rn//I
(ii) Gu the integer rectifiable k-dimensional current

Gu WD GuC EC �Rn �Gu� E� �Rn CQG��u E0 �Rn:

Remark 4.2. Even though [7] only defines multivalued push-forwards and graphs
over a Lipschitz k-dimensional submanifold, the theory can be easily extended to
treat the case when the domain of the map is a countably k-rectifiable set; see [17]
for details.

It is also not difficult to see that, if E is closed, then spt.Gu/ � Gr.u/. In fact,
under some additional assumptions, for instance when E is a compact Lipschitz
submanifold, we can easily conclude that spt.Gu/ D Gr.u/.

LEMMA 4.3. Let � � Rm be a bounded Lipschitz domain and u W S�! AQ.R
n/

a Lipschitz map. Then, for p D 2Q,
(i) @Gu D Guj@� mod.p/;

(ii) Gu is a representative mod.p/ (in fact, for every measurable E � �0, the
current .Gu � 2QG��u/ E �Rn is also a representative mod.p/).

Moreover, there are positive geometric constants c.m; n;Q/ and C.m; n;Q/ such
that, if E � � is Borel measurable and Lip.u/ � c, then

(4.1)
��kGuk.E �Rn/ �QjEj � 1

2
Dir.u;E/

�� � C ˆ
E

jDuj4:

PROOF. Recall that, by [10], an integer rectifiable current T is a representative
mod.p/ if and only if its density is at most p

2
at kT k-a.e. point. Since this is

obviously the case for the current .Gu � 2QG��u/ E �Rn for every measurable
subset E � �0, the second point is trivial. Observe that

GuC D GuC �C �Rn CQG��u .�0 [��/ �Rn;

Gu� D Gu� �� �Rn CQG��u .�0 [�C/ �Rn:

Therefore we conclude

Gu D GuC �Gu� CQG��u � 2QG��u �� �Rn:

In particular,
Gu D GuC �Gu� CQG��u mod.p/:
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Furthermore, by applying the boundary operator mod.p/ to the above equation, we
see that

@Gu D @GuC � @Gu� CQ@G��u mod.p/ :

We can now use the relation @Gf D Gf j@� valid for single-valued and multivalued
Lipschitz graphs (cf. [7]) to conclude

@Gu D GuCj@�
�Gu�j@� CQG��uj@� mod.p/:

Now, using the same argument above, we get as well that

GuCj@�
�Gu�j@� CQG��uj@� � 2QG��uj@� .@�/� �Rn D Guj@� ;

hence concluding the proof of the first point.
We now come to (4.1). First of all, by the obvious additivity in the set E of

the various quantities involved in the inequality, it suffices to show it for subsets
E of, respectively, �C, ��, and �0. For subsets of �0 the inequality is the
standard Taylor expansion of the area functional for Lipschitz graphs. Next, recall
that, by [7, cor. 3.3], the inequality in (4.1) holds for GuC and Gu� (in fact, note
that [7, cor. 3.3] is stated for Lipschitz open domains E, rather than for Borel sets
E; however, since for any Borel set we can find a sequence Ek � E of Lipschitz
open domains with jEknEj ! 0, it is straightforward to infer the validity of [7, cor.
3.3] for a general Borel E). If we take E � �C, from [7, cor. 3.3] and Proposition
3.2 we then immediately conclude��kGuk.E �Rn/ �QjEj � 1

2
Dir.u;E/

�� D ��kGuCk.E �Rn/ �QjEj � 1
2

Dir.uC; E/
��

� C
ˆ
E

jDuCj4 D C

ˆ
E

jDuj4:

The case E � �� can be proved in a similar fashion since

k�Gu�k.E �Rn/ D kGu�k.E �Rn/: □

5 Bi-Lipschitz Embeddings and Retractions, Lipschitz Extensions
In this section we show that, as is the case for AQ.R

n/, there is a suitable bi-
Lipschitz embedding of AQ.R

n/ into a sufficiently large Euclidean space and a
corresponding retraction map of the ambient onto the embedding.

THEOREM 5.1. For every Q and n there are xN.n;Q/ and constants C.n;Q/;
�0.n;Q/ > 0 with the following properties:

(i) There is an injective map � W AQ.R
n/! R

xN such that
(a) Lip.�/;Lip.��1/ � C , where ��1 denotes the inverse of � on Q WD

�.AQ.R
n//;

(b) Dir.u;M/ D ´M jD.� � u/j2 for every Lipschitz submanifold M of
any Euclidean space and for every u 2 W 1;2.M;AQ.R

n//;
(c) j�.P /j D jP j for every P 2 AQ.R

n/.
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(ii) There is a map % W R xN ! Q with Lip.%/ � C and %.x/ D x for every
x 2 Q .

(iii) For every positive � < �0 there is a map %?
�
W R xN ! Q such that j%?

�
.P /�

P j � C�8�nQ for every P 2 Q and such that the following estimate holds
for every u 2 W 1;2.M;R

xN /:ˆ
M

jD.%?� � u/j2 �
�
1C C�8

�nQ�1�ˆ
fdist.u;Q /��nQC1g

jDuj2

C C

ˆ
fdist.u;Q />�nQC1g

jDuj2:
(5.1)

Remark 5.2. Observe that, in the proof given below, if we identify AQ.R
n/ with

�
AQ.R

n/ �Rn; then:
� the map � takes the form �.P; v/ D .�0.P /; v/ for a suitable �0 W

�
AQ.R

n/! R
xN�n;

� the map % takes the form .w; v/ 7! .%0.w/; v/ for a %0 W R xN�n !
�0.

�
AQ.R

n//;
� the map %?

�
takes the form .w; v/ 7! .%?

0;�
.w/; v/ for a %?

0;�
W R xN�n !

�0.
�

AQ.R
n//.

Clearly the maps �0, %0, and %?
0;�

enjoy all the properties and estimates claimed in

Theorem 5.1 with
�

AQ.R
n/ replacing AQ.R

n/ and R xN�n replacing R xN .

PROOF. In the whole proof we identify AQ.R
n/ with�

.
�

AQ.R
n/�fQJ0Kg/[ .fQJ0Kg�

�
AQ.R

n//
��Rn � AQ.R

n/�AQ.R
n/�Rn:

Proof of (i). Consider the restriction of the map �BW of [5, cor. 2.2] to
�

AQ.R
n/,

which takes values in RN for some N D N.Q; n/, and denote by id W Rn ! R
n

the identity map. We then see that (a) and (b) for � D �BW � �BW � id follow

directly from [5, cor. 2.2] and the fact that Gs D G�G�d with d as in Proposition

2.6. For point (c) we need the fact that j�BW .P /j D jP j for every P 2 AQ.R
n/:

although this is not claimed in the statement of [5, cor. 2.2], it follows easily from

[5, eq. (2.1)] and the fact that

(5.2) �BW

�X
i

J�PiK
�
D ��BW

�X
i

JPiK
�
;

which in turn is an obvious outcome of the definition of �BW given in [5, sec.
2.1.3].
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Proof of (ii). We would like to define the map % as � � � � id, where � is the
map of [5, theorem 2.1]. Note that the � of [5, theorem 2.1] can be taken to be
�BW , as it is obvious from the discussion in [5, sec. 2.1]). In order to simplify the
notation, from now on we drop the subscript BW .

The first issue is that � is a retraction of RN 56 onto Q D �.AQ.R
n// rather

than onto �.
�

AQ.R
n//. In order to deal with it, take r W AQ.R

n/ !
�

AQ.R
n/ as

r.P / WD P 	 �.P / and substitute � with �0 WD � � r � ��1 � �. The second

issue is that �0 � �0 is a retraction of RN � RN onto �.
�

AQ.R
n// � �.

�
AQ.R

n//,

so that our next goal is to find a retraction of �.
�

AQ.R
n// � �.

�
AQ.R

n// onto

�.
�

AQ.R
n// � f0g [ f0g � �.

�
AQ.R

n//. We first define R W RN � RN ! R
N �

R
N as

R.x; y/ WD

8���<
���:

�
x � jyj

jxj
x; 0

�
if jxj > jyj;�

0; y � jxj
jyj
y
�

if jyj > jxj;
.0; 0/ if jyj D jxj.

Clearly R maps RN � RN onto RN � f0g [ f0g � RN , and it is the identity on
R
N �f0g[f0g�RN . It can be checked in an elementary way thatR is Lipschitz. A

quick method the following: First observe that R is obviously locally Lipschitz on
.RN �RN / n f.0; 0/g. By Rademacher’s theorem we can compute its differential,
which we can do separately on the two relevant open regions fjxj > jyjg and
fjyj > jxjg. On the first region the differential is

DR D
�
A B

0 0

�

where

A D
�
1 � jyj

jxj
�

IdC jyj
jxj3x 
 x;

B D � 1

jxjjyjx 
 y:

Using the fact that jyj < jxj, we easily estimate the operator norm of the differ-
ential by kDRko �

p
2, and similarly in the region fjyj > jxjg. We have just

concluded that the map R is locally Lipschitz with constant
p
2 on the open set

fjyj ¤ jxjg. Since it is continuous and constant on the closed set fjyj D jxjg, it is
elementary to see that it is globally Lipschitz with constant

p
2.
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Observe that, by (5.2), R maps �.
�

AQ.R
n// � �.

�
AQ.R

n// into �.
�

AQ.R
n// �

�.
�

AQ.R
n//, and hence into

.�.
�

AQ.R
n// � �.

�
AQ.R

n/// \ .RN � f0g [ f0g �RN / D
�.

�
AQ.R

n// � f0g [ f0g � �.
�

AQ.R
n//:

We can thus finally define our map % as % D .R � .�0 � �0// � id.

Proof of (iii). We first consider the map �?
�

of [6, prop. 7.2]. As above, a first

candidate for the map %?
�

would be �?
�
� �?

�
� id. Again we start replacing �?

�
with

�0
�
WD � � r � ��1 � �?

�
. Fix P 2 �.

�
AQ.R

n//. Recall that, by [6, prop. 7.2],

j�?
�
.P / � P j � C�8�nQ . Next,

j�0�.P / � P j
� CG.r.��1.�?� .P //; �

�1.P //

� C
�
G.��1.�?� .P //; �

�1.P //C
p
Qj�.��1.�?� .P //j

�
D C

�
G.��1.�?� .P //; �

�1.P //C
p
Qj�.��1.�?� .P // � �.��1.P //j

�
� 2CG.��1.�?� .P //; �

�1.P // � 2C 2j�?� .P / � P j:

We thus conclude the estimate

(5.3) j�0�.P / � P j � C�8
�nQ 8P 2 �.

�
AQ.R

n//:

Furthermore, recall the elementary observation that Dir.f 	 .� � f // � Dir.f /,
valid for every f 2 W 1;2.�;AQ.R

n//. In particular, combining it with [6,
prop. 7.2] and with part (i) of the theorem, we achieve

(5.4)

ˆ
M

jD.�0� � f /j2 �
�
1C C�8

�nQ�1
�ˆ

fdist.f;�.
�

AQ.Rn///��nQC1g
jDf j2

C C

ˆ
fdist.f;�.

�
AQ.Rn///>�nQC1g

jDf j2

for every f 2 W 1;2.M;Rn/.
Our map %?

�
will be defined as .R� � .�0� � �0

�
// � id, where

R� W RN �RN ! .RN � f0g [ f0g �RN /
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is an appropriate “almost retraction” map that we will construct as follows. First
introduce the function �� W �0;1�! �0;1� as

��.s/ D

8�<
�:
0 if s 2 �0; ��;
.1 � �/�1.s � �/ if s 2 ��; 1�;
1 otherwise.

We then define

R�.x; y/ D
(
.��.jxj/ xjxj ; 0/ if jyj � �2;
.0; ��.jyj/ yjyj/ if jxj � �2.

It is easy to see that R� is well-defined, since on the intersection fmaxfjyj; jxjg �
�2g the map is identically 0. Moreover:

� the restriction of R� to fjyj � �2g takes values into RN � f0g and has
Lipschitz constant bounded by 1C C�;

� the restriction of R� to fjxj � �2g takes values into f0g �RN and has also
Lipschitz constant bounded by 1C C�.

The global Lipschitz constant of R� is controlled independently of � and, finally,
we can extend it to the whole RN � RN by first choosing a Lipschitz extension
taking values in RN �RN and then composing it with the retraction map R of the
proof of (ii).

We will now show that %?
�
WD .R� � .�0� � �0

�
// � id has the desired properties.

First observe that, if a point P D .p; q; v/ 2 R2NC1 belongs to Q , then either

p D 0 or q D 0. Without loss of generality, assume that the second alternative

holds. Then R�.p; 0/ D .p0; 0/ with jp � p0j � C� and moreover p0 is a positive

multiple of p, which by (5.2) implies that p0 2 �.
�

AQ.R
n//. We therefore find that

j%?� .P / � P j D j�0�.p0/ � pj � j�0�.p0/ � p0j C jp0 � pj � C�8�nQ�1 C C�:

We next come to (5.1). Without loss of generality observe that we can prove the
estimate for a generic Lipschitz map u D .v; w; ´/ on a bounded domain. Consider
next the set E WD fdist.u;Q / � �nQC1g. Let u D .v; w; ´/ and let .v0; w0/ D
R�.v; w/. If ´ 2 E, we then have two cases:

� w0.´/ D 0 and dist.v0.´/; �.
�

AQ.R
n/// � dist.u.´/;Q / � �nQC1;

� v0.´/ D 0 and dist.w0.´/; �.
�

AQ.R
n/// � dist.u.´/;Q / � �nQC1.

In the first case we have %?
�
� u.x/ D .�0

�
.v0.x//; 0; ´.x//, whereas in the second

case we have %?
�
� u.x/ D .0;�0

�
.w0.x//; ´.x//. Using (5.4) we then can easily
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estimate ˆ
M

jD.%?� � u/j2 �
�
1C C�8

�nQ�1�ˆ
E

jD.R� � .v; w//j2

C C

ˆ
MnE

jD.R� � .v; w//j2 C
ˆ
M

jD´j2:
(5.5)

Observe also that .v; w/.E/ is contained in f.x; y/ W minfjxj; jyjg � �nQC1 �
�2g. On this set we easily compute jDR� j � 1 C C�. Moreover, recall that
kDR�k1 � C for some constant C independent of �. Thus we can writeˆ

M

jD.%?� � u/j2 �
�
1C C�8

�nQ�1�ˆ
E

.jDvj2 C jDwj2/

C C

ˆ
MnE

.jDvj2 C jDwj2/C
ˆ
M

jD´j2:
(5.6)

Considering that jDuj2 D jDvj2C jDwj2C jD´j2, we then conclude the desired
estimate (5.1). □

We conclude this section by remarking that a simple corollary of the parts (i) and
(ii) of the above theorem is the following analogue of [5, theorem 1.7], recorded
here Corollary 5.3. In turn using the corollary, a simple inspection of the proof of
the Lipschitz approximation theorem in [5, prop. 2.5] shows that the same result is
valid for Sobolev maps with values in AQ.R

n/.

COROLLARY 5.3. Let B � R
m and f W B ! AQ.R

n/ be Lipschitz. Then there
exists an extension xf W Rm ! AQ.R

n/ of f , with Lip. xf / � C.m;Q/Lip.f /.
Moreover, if f is bounded, then

(5.7) sup
x2Rm

j xf .x/j � sup
x2B

jf .x/j;

and for any q 2 Rn it holds that

(5.8) sup
x2Rm

Gs. xf .x/;QJqK/ � C.m;Q/ sup
x2B

Gs.f .x/;QJqK/:

PROOF. In order to get the Lipschitz extension, it suffices to first extend � � f
and then compose the extension with ��1�%. Next, assume thatM WD supx2B jf .x/j <
1. Observe that AQ.R

n/ is a cone, namely for every � 2 �0;1� we can define
�.T; "/ D .

P
iJ�TiK; "/. We therefore introduce the projection of AQ.R

n/ onto
fS 2 AQ.R

n/ W jS j �M g by keeping S fixed if jS j �M and mapping it to M
jS j
S

if jS j > M . Such a projection is 1-Lipschitz, and it suffices to compose it with
any Lipschitz extension of f to obtain a new extension having no larger Lipschitz
constant and satisfying the bound (5.7).

Next, we prove (5.8). First, let us define the oscillation of f by

(5.9) osc.f / WD inf
q2Rn

sup
x2B

Gs.f .x/;QJqK/;
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and observe that since f is bounded the infimum in (5.9) is achieved. Let us then
call q0 2 Rn a value that realizes the oscillation, so that

R WD osc.f / D sup
x2B

Gs.f .x/;QJq0K/:

Of course, if R D 0, then f is identically equal to QJq0K on B , and thus (5.8) is
trivially true for the natural extension xf .x/ D QJq0K for every x 2 Rm. Thus, we
can assume R > 0. We also set L WD Lip.f /. Then, we introduce the map

(5.10) zf W .B � f0g/ [
�
R
m �

�
R

L

��
� RmC1 ! AQ.R

n/;

which extends f , and which takes value zf .´/ WD QJq0K at every point ´ D
.x;R=L/ with x 2 Rm. Since for any given .x; 0/ 2 B � f0g and ´ 2 Rm � fR

L
g

we have

Gs. zf ..x; 0//; zf .´// D Gs.f .x/;QJq0K/ � R D L

�
R

L

�
� L j.x; 0/ � ´j;

it is clear that Lip. zf / D Lip.f / D L. We can now use the argument in the first
part of the proof to extend zf to a function F WRmC1 ! AQ.R

n/, and then define
xf .x/ WD F..x; 0// for all x 2 Rm. It is clear that xf is an extension of f , and that

both Lip. xf / � C.m;Q/Lip.f / and (5.7) hold. We claim that this extension xf
also satisfies (5.8). To this aim, let q 2 Rn, and set

(5.11) �q WD Gs.QJqK;QJq0K/ D
p
Q jq � q0j:

We shall distinguish two cases. Set C D C.m;Q/ the constant above, and
assume first that

(5.12) �q � .C C 1/R:

Then, for any x 2 Rm it holds that

Gs. xf .x/;QJqK/ � �q CR � .C C 2/R � .C C 2/ sup
x2B

Gs.f .x/;QJqK/;

where in the last inequality we have used the definition of R. This proves the
validity of (5.8) when (5.12) holds. Let us then suppose that (5.12) fails, so that

(5.13) .C C 1/R < �q:

By the triangle inequality we have, for every x 2 B:

(5.14) Gs.f .x/;QJqK/ � �q �R � C

C C 1
�q � �q

2
:

On the other hand, for any y 2 Rm it holds that

(5.15) Gs. xf .y/;QJq0K/ D Gs.F..y; 0//; F.y;R=L// � CR;
so that if we combine (5.14) and (5.15), we obtain

(5.16) Gs. xf .y/;QJqK/ � �q C CR
(5.13)� 2 �q � 4Gs.f .x/;QJqK/
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for every x 2 B , for every y 2 R
m. This is stronger than (5.8), and thus it

concludes the proof. □

Finally, we record here another simple consequence of the existence of the em-
beddings and of the retraction (for which, again, an intrinsic proof in the spirit
of [5, sec. 4.3.1] is also possible).

LEMMA 5.4 (Luckhaus lemma). There is a constant C.m; n;Q/ with the following

property. Let f; g 2 W 1;2.Sm�1;AQ.R
n// (resp. f; g 2 W 1;2.Sm�1;

�
AQ.R

n//,
and let � < 1

2
be a given positive number. Then there is a u 2 W 1;2.B1 n

B1��;AQ.R
n// (resp. u 2 W 1;2.B1 n B1��;

�
AQ.R

n//) such that

u@B1 D f and uj@B1�� D g
�

�
1��

�
;(5.17)

Dir.u/ � C��Dir.f;Sm�1/C Dir.g;Sm�1/
�C C��1

ˆ
Sm�1

Gs.f; g/2:(5.18)

If f; g are, in addition, Lipschitz continuous, then the interpolating function u can
be chosen such that

(5.19) Lip.u/ � C.Lip.f /C Lip.g//C C��1kGs.f; g/k1:
PROOF. Consider the case AQ.R

n/. The map u can be explicitly defined via

u.x/ D .��1 � %/
� jxj � .1 � �/

�
�

�
f

�
x

jxj
��

C 1 � jxj
�

�

�
g

�
x

jxj
���

:

In the case
�

AQ.R
n/ we use the maps �0 and %0 of Remark 5.2 in place of �

and %. □

Another useful tool will be the following approximation lemma. It is the AQ.R
n/

version of [6, lemma 4.5].

LEMMA 5.5. Let f be a map in W 1;2.Br ;AQ.R
n// where Br � R

m. Then for
every " there exists an approximating map f" 2 W 1;2.Br ;AQ.R

n// such that

(a) f" is Lipschitz continuous;
(b) the following estimate holds:

(5.20)
ˆ
Br

Gs.f; f"/2C
ˆ
Br

.jDf j� jDf"j/2C
ˆ
Br

jD.��f /�D.��f"/j2 � ":

If f j@Br 2 W 1;2.@Br ;AQ.R
n//, then f" can be chosen to satisfy also

(5.21)
ˆ
@Br

G.f; f"/2 C
ˆ
@Br

.jDf j � jDf"j/2 � ":

The proof is the very same as that given in [6, lemma 4.5] only using the Lips-
chitz extension theorem for AQ.R

n/.
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6 Existence and Compactness of Dir-Minimizers
The following existence theorem is a simple consequence of the fact that we can

identify AQ.R
n/ (resp.

�
AQ.R

n/) with a closed subset of AQ.R
n/ � AQ.R

n/ �
R
n (resp. AQ.R

n/ � AQ.R
n/), and that the Dirichlet energy of an AQ.R

n/-
valued map is the sum of the Dirichlet energies of the corresponding factors (with
the Dirichlet energy of the center of mass weighted by Q); see Definition 3.1.
Therefore we leave the proof to the reader.

THEOREM 6.1. Assume that � � R
m is a bounded Lipschitz set and let f 2

W 1;2.�;AQ.R
n// (resp. f 2 W 1;2.�;

�
AQ.R

n//. Then there is a map g 2
W 1;2.�;AQ.R

n// (resp. g 2 W 1;2.�;
�

AQ.R
n//) such that .g � f /j@� D 0 (in

the sense of the trace theorem [5, prop. 2.10]) and that minimizes the Dirichlet
energy over all maps with the same trace property.

Note that if f .x/ D . zf .x/; 1/ for a.e. x 2 �, then g.x/ D .zg.x/; 1/ for a.e. x
and zg is minimizing in W 1;2.�;AQ.R

n//.

DEFINITION 6.2. A map g as in Theorem 6.1 will be called a Dir-minimizer (or
Dir-minimizing) in �.

Moreover, the following is another obvious consequence of the “factorization”

of AQ.R
n/ into

�
AQ.R

n/ �Rn, in particular of (3.1).

PROPOSITION 6.3. A map u 2 W 1;2.�;AQ.R
n// is Dir-minimizing in � if and

only if both u 	 � � u and � � u are Dir-minimizing in �. Moreover, u 	 � � u
is a Dir-minimizer in W 1;2.�;

�
AQ.R

n// if and only if it is a Dir-minimizer in
AQ.R

n/.

We close this section by the following compactness property of Dir-minimizers

PROPOSITION 6.4. Let fgkg � W 1;2.Br ;AQ.R
n// be a sequence of maps that

are Dir-minimizing in Br and that converge weakly to some g. Then, for every
s < r , the sequence converges strongly in W 1;2.Bs;AQ.R

n// and moreover the
limiting g is Dir-minimizing in Bs . If lim sup Dir.gkj@Br / < 1, then the same
conclusion holds in Br .

PROOF. First of all, using Fatou’s lemma we getˆ r

s

lim inf
k!1

Dir.gkj@B� /d� <1;

and thus we can reduce the first statement to the second. We assume therefore,
without loss of generality, that r D 1 and

(6.1) sup
k

Dir.gkj@B1/ <1:
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Observe next that, by weak convergence and trace theorems in the Sobolev spaces,
we know:

lim
k!1

ˆ
B1

Gs.gk; g/2 D 0;(6.2)

lim
k!1

ˆ
@B1

Gs.gk; g/2 D 0;(6.3)

lim inf
k!1

Dir.gk; B1/ � Dir.g; B1/;(6.4)

lim inf
k!1

Dir.gkj@B1 ;Sm�1/ � Dir.gj@B1 ;Sm�1/:(6.5)

Given any � 2 �0; 1
2
�, we can thus apply the Luckhaus lemma 5.4 to find a sequence

of maps hk on B1 n B1�� such that

� hk.x/ D gk.x/ for every x 2 @B1 and hk.x/ D g. x
1��

/ for any x 2
@B1��;

� the following estimate holds:

lim sup
k!1

Dir.hk; B1 n xB1��/ � C�K;(6.6)

where C is a geometric constant depending on m, n, Q, and

K D lim sup
k

Dir.gkj@B1 ;Sm�1/:

Assume now by contradiction that either g is not Dir-minimizing or that

Dir.g; B1/ < lim sup
k!1

Dir.gk; B1/:

For a subsequence of fgkg, not relabeled, we then have that there is a map yg with
ygj@B1 D gj@B1 and

(6.7) lim
k!1

.Dir.gk; B1/ � Dir.yg;B1// D L > 0:

Consider then the function

ygk.x/ D
(
hk.x/ if 1 � � < jxj < 1;
yg� x

1��

�
if jxj � 1 � �.

Since Dir.ygk; B1��/ D .1��/m�2 Dir.yg;B1/ � Dir.yg;B1/, combining (6.7) and
(6.6) we achieve

lim inf
k!1

.Dir.gk; B1/ � Dir.ygk; B1/ � L � CK�:

In particular, the right-hand side of the last inequality can be made positive by
choosing � appropriately small. Since, however, ygkj@B1 D gkj@B1 , for k large
enough we would contradict the minimality of gk . □
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7 First Variations
7.1 Notation for AQ.R

n/-Calculus
In this section we derive some key identities for Dir-minimizers u defined over a

bounded domain �, which come from computing first variations of the functional.
We distinguish two types of variations: inner variations and outer variations. Given
the decomposition of � as in Definition 2.7 in each of the domains �C, ��, and
�0, we can regard u as an AQ.R

n/-valued function, coinciding respectively with
uC, u�, andQJ� � uK. By Proposition 3.2, in each of these domains the respective
map is approximately differentiable, and we can use the chain rules of [5, prop.
2.8]. When we deal with integrals over the whole domain we would then have
rather cumbersome formulas where we break the integral in the respective do-
mains �C, ��, and �0, in spite of the fact that such formulas would nonetheless
be rather straightforward. In order to simplify our notation we will then use the
convention that

P
iJui .x/K, resp.

P
iJDui .x/K, will denote the multivalued mapsP

iJu
C
i .x/K,

P
iJu

�
i .x/K, and QJ� � u.x/K (resp.

P
iJDu

C
i .x/K,

P
iJDu

�
i .x/K,

and QJD.� � u/.x/K) depending on whether x belongs to �C, ��, or �0.

7.2 Inner Variations
Inner variations are generated by composing u with one-parameter families of

diffeomorphisms �t of � that are the identity on @�. More specifically, we con-
sider a vector field ' 2 C1

c .�;Rm/, we let �t .x/ D x C t'.x/, and we ob-
serve that, whenever jt j is sufficiently small, u � �t is well-defined, u � �t 2
W 1;2.�;AQ.R

n//, and u � �t j@� D uj@�. We therefore conclude that, if u is
Dir-minimizing, then Dir.u ��t / � Dir.u/ for all sufficiently small t , and thus

(7.1) 0 D d

dt

����
tD0

Dir.u ��t /:

Using the discussion above we can break the domain � into the pieces �C,
��, and �0 where we use the chain rules of [5, prop. 2.8] to prove the following
proposition (which corresponds to the first part of [5, prop. 3.1]). Note that, since
�t is a diffeomorphism, the partition of the domain � induced by the map u ��t

is given by f��1t .�C/; �
�1
t .��/; �

�1
t .�0/g.

PROPOSITION 7.1. Let � be a bounded open set and u 2 W 1;2.�;AQ.R
n// a

Dir-minimizer. Then for every ' 2 C1
c .�;Rm/ we have

(7.2)
ˆ
�

�
2
X
i

hDui W Dui �D'i � jDuj2 div'
�
D 0;

where hA W Bi denotes the Hilbert-Schmidt scalar product between n�m matrices
(i.e., hA W Bi DP

i;j AijBij ).
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7.3 Outer Variations
Next consider a map  2 C1.� � Rn;Rn/ such that  .x; u/ D 0 in a neigh-

borhood of @� �Rn and that satisfies the growth conditions

(7.3) jDu j � C <1 and j .x; u/j C jDx .x; u/j � C.1C juj/
for some constant C . For each fixed x, consider the map

AQ.R
n/ 3 P D

X
i

JPiK 7! �.x; P / D
X
i

JPi C  .x; Pi /K:

Observe that if we consider the obvious induced map on AQ.R
n/ tAQ.R

n/, the
latter commutes with the equivalence relation defining AQ.R

n/ and thus induces a
corresponding map on AQ.R

n/ through .P; "/! �.x; .P; "// WD .�.x; P /; "/.
Hence if u takes values in AQ.R

n/, then we have a well-defined map x 7!
�.x; u.x//, which we will denote by �.x; u/ D u C  .x; u/ and which in a
neighborhood of @� agrees with u. We wish to show that x 7! �.x; u/ 2
W 1;2.�;AQ.R

n// when u 2 W 1;2.�;AQ.R
n// (and � is bounded). A pos-

sible procedure is the following:
� When u is Lipschitz, we observe that�.x; u/ is also Lipschitz. Using Defi-

nition 2.7 consider the sets�C,��, and�0 and observe that .�.x; u//C.x/ D
�.x; uC.x// and .�.x; u//�.x/ D �.x; u�.x//. In particular,

Dir.�.x; u// D
ˆ
�C

jD�.x; uC.x//j2 C
ˆ
��

jD�.x; u�.x//j2

CQ

ˆ
�0

jD�.x;� � u.x//j2:
(7.4)

� Using the chain rules of [5, prop. 1.12] we see then easily that there is a
constant yC (depending only on m; n;Q and C in (7.3)) such that, if u is
Lipschitz, then

Dir.�.x; u// � yC.j�j C kukL2 C Dir.u//:

� Using the analogue of [5, prop. 2.5], for a general map u 2 W 1;2 we find
a sequence of Lipschitz maps uk converging to u in L2 and with equi-
bounded Dirichlet energy. The corresponding maps x 7! �.x; uk/ con-
verge then to �.x; u/ and have equibounded Dirichlet energy. We then
conclude that �.x; u/ 2 W 1;2. Next, considering [5, eq. (2.9)], we can
also observe that the convergence is in fact strong in W 1;2 and thus (7.4)
holds for a general W 1;2 map.

We are now ready to define outer variations. Consider indeed a smooth  that is
supported in�0�Rn for some�0

b � and has the same properties and growth con-
ditions as above and let �t .x; u/ WD uC t  .x; u/. Then, if u is a Dir-minimizer,
Dir.�t .x; u// � Dir.u/ and we thus can write

(7.5) 0 D d

dt

����
tD0

Dir.�t .x; u//:
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Arguing as in the previous paragraph, we then conclude the following analogue of
the second part of [5, prop. 3.1].

PROPOSITION 7.2. Let u 2 W 1;2.�;AQ.R
n// be a Dir-minimizer and assume

 2 C1.��Rn;Rn/ is a vector field that vanishes identically in a neighborhood
of @� � Rn and satisfies the growth conditions (7.3) for some constant C . Then
we have

(7.6)
ˆ X

i

.hDui W Dx .x; ui /i C hDui W Du .x; ui / �Dui i/ D 0:

7.4 Key Identities
Arguing as in [5, sec. 3.1.2], we test the identities (7.2) and (7.6) with ' and  

of the following special form: '.x/ D �.jxj/x and  .x; u/ D �.jxj/u. If we let �
converge to the indicator function of the interval �0; r�, we then reach the following
key identities.

PROPOSITION 7.3. Let� � Rm be a bounded open set and let u 2 W 1;2.�;AQ.R
n//

be a Dir-minimizer. Then for a.e. r 2 �0; dist.x; @�/� the following equalities hold:

.m � 2/
ˆ
Br .x/

jDuj2 D r

ˆ
@Br .x/

jDuj2 � 2r
ˆ
@Br .x/

j@�uj2;(7.7)
ˆ
Br .x/

jDuj2 D
ˆ
@Br .x/

X
i

h@�ui ; ui i;(7.8)

where � denotes the outer unit normal to @Br.x/ and
P

iJ@�uiK is the multivalued
map y 7!P

iJDui .u/ � �.y/K.

The proof of the proposition follows from the very same computations of [5, sec.
3.1.2].

8 Hölder Regularity of Dir-Minimizers
In this section we show that Dir-minimizers are Hölder continuous. In particular,

we will prove the following:

THEOREM 8.1. There are constants �0.m; n;Q/ > 0 and C.m; n;Q/ with the
following property. Assume u 2 W 1;2.B2r.x/;AQ.R

n// is a Dir-minimizer. Then
u 2 C 0;�0

loc .B2r.x//. Indeed, we have the estimates

�u��0;Br .x/ � Cr1�m=2��0.Dir.u; B2r.x//
1
2(8.1)

�2�m�2�0 Dir.u; B�.x// � .2r/2�m�2�0 Dir.u; B2r.x// 8 0 < � < 2r:(8.2)

The estimate (8.2) gives a corresponding estimate for ��u and then (8.2) implies
(8.1) through the classical theory of Campanato spaces; cf. [12, prop. 3.7 & Theo-
rem 2.9]. We therefore focus our attention on (8.2), which is a direct consequence
of the following proposition.
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PROPOSITION 8.2. There is a constant �0.m; n;Q/ > 0 such that the following
inequality holds for every u 2 W 1;2.B1.x/;AQ.R

n//:

(8.3) Dir.u; B1/ � 1

m � 2C 2�0
Dir.uj@B1 ; @B1/:

Indeed, let u be as in Theorem 8.1 and set

I.�/ WD Dir.u; B�.x//;

J.�/ WD Dir.uj@B�.x/; @B�.x//:
Notice that

I.�/ D
ˆ �

0

ˆ
@B� .x/

jDuj2 d� �
ˆ �

0

J.�/ d�:

Moreover, by rescaling and translating, (8.3) gives

I.�/ � �

m � 2C 2�0
J.�/:

We thus conclude easily that .r2�m�2�0I.r//0 � 0, which obviously implies (8.2).
We split the proof of Proposition 8.2 into two cases depending on the dimension

of the domain, namely m D 2 and m > 2. In the case m D 2 it suffices to prove
the existence of a constant C such that, if zu 2 W 1;2.@B1;AQ.R

n//, then we can
find an extension u of zu to B1 satisfying the inequality

Dir.u; B1/ � C Dir.zu;S1/:
The latter property is a classical fact for usual harmonic extensions of maps with
values in the Euclidean space: in that case the constant C can be taken to be 1. For
the AQ.R

n/ case we consider � � zu, and we then let h be its harmonic extension
to B1. Setting u WD ��1 � % � h, the inequality is then an easy consequence of the
estimate for the harmonic extension and the Lipschitz regularity of ��1 and %. The
case m � 3 is harder and we need one important auxiliary result.

8.1 0-Homogeneous Minimizers
The following lemma shows that 0-homogeneous minimizers are necessarily

constant.

LEMMA 8.3. Let m � 3 and let u 2 W 1;2.B1;AQ.R
n// be a Dir-minimizer with

the additional property that

(8.4) Dir.u; B1/ � 1

m � 2 Dir.uj@B1 ;Sm�1/:
Then u is constant.

PROOF. Observe that

(8.5) Dir.uj@B1 ;Sm�1/ D
ˆ
@B1

�jDuj2 � j@�uj2�;
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where � denotes the outer unit normal to @B1. Using (7.7), (8.4), and (8.5), we
conclude ˆ

@B1

j@�uj2 � 0;
namely that @�u vanishes identically on @B1. However, then (7.8) implies that
Dir.u; B1/ D 0, which clearly gives the constancy of the function u. □

8.2 Proof of Proposition 8.2 for m � 3

Consider first that, given the classical inequality for Euclidean-valued harmonic
functions, we can assume without loss of generality that the function u takes values

in
�

AQ.R
n/. In this case both Dir.u; B1/ and Dir.uj@B1 ; @B1/ can be split as

Dir.u; B1/ D Dir.uC; B1/C Dir.u�; B1/;

Dir.uj@B1 ; @B1/ D Dir.uCj@B1 ; @B1/C Dir.u�j@B1 ; @B1/:
Assume now that the proposition is false and find a sequence of Dir-minimizers

fukg � W 1;2.B1;
�

AQ.R
n// such that

Dir.uk; B1/ �
1

m � 2C .k C 1/�1
Dir.ukj@B1 ; @B1/:

After normalizing the maps we can assume that

Dir.uk; B1/ D 1:

We consider further the numbers

�k WD minfjfjuC
k
j D 0gj; jfju�k j D 0gjg

and, up to subsequences, we distinguish two cases: lim infk!1 �k > 0 and
limk!1 �k D 0.

Case 1. In this case we have the existence of a constant � > 0 such that
jfjuC

k
j D 0gj � � and jfju�

k
j D 0gj � � for every k. Since jDjvjj � jDvj

for any Q-valued map, we conclude from a classical variant of the Poincaré in-
equality that supk.kjuCk jkL2 C kju�

k
jkL2/ <1. Up to subsequences we can then

assume that uk converges weakly in W 1;2 to some u and Proposition 6.4 would
imply that:

� u is Dir-minimizing;
� Dir.u; B1/ D limk!1 Dir.uk; B1/ D 1.

On the other hand, the semicontinuity of the Dirichlet energy would also imply that

Dir.uj@B1 ; @B1/ � lim inf
k!1

Dir.ukj@B1 ; @B1/ � m � 2:

So, according to Lemma 8.3, u would have to be constant, which clearly is in
contradiction with Dir.u; B1/ D 1.
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Case 2. In this case, again up to extraction of a subsequence, we can assume that
limk!1 jfjuC

k
j D 0gj D 0. In turn, this implies that limk!1 jfju�

k
j > 0gj D 0. In

particular, since kDju�
k
jkL2.B1/ � 1, we get limk!1 kju�

k
jkL2.B1/ D 0. In turn

this implies as well that ju�
k
j��
@B1

is bounded in H 1=2 and converges weakly to 0
distributionally. Thus

lim
k!1

ˆ
@B1

ju�k j2 D 0:

Consider now the map wk W @B1 3 x ! .uC
k
.x/; 1/ 2 AQ.R

n/ (where we have
“eliminated the negative part” of uk) and observe that

lim
k!1

ˆ
@B1

Gs.wk; uk/2 D 0:

In particular, for � > 0 small (to be chosen later) use the Luckhaus lemma 5.4 to
construct a function hk W B1 n B1�� ! AQ.R

n/ with the properties that
� hkj@B1 D ukj@B1 .
� hk.x/ D wk..1 � �/�1x/ for every x 2 @B1��.
� The following estimate holds with a constant C independent of �:

lim sup
k!1

Dir.hk; B1 n B1��/ � C�:

Now, we use [5, prop. 3.10] to find a map ´k 2 W 1;2.B1��;AQ.R
n// with the

property that

Dir.´k; B1��/ �
1 � �

m � 2C 
Dir.uC

k
j@B1�� ; @B1��/

� .1 � �/m�2.m � 2C .k C 1/�1/

m � 2C 
;

where  D .m; n;Q/ > 0. Clearly the map

yuk.x/ D
(
hk.x/ if 1 � jxj � 1 � �;
.´k.x/; 1/ 2 AQ.R

n/ if jxj � 1 � �;
is in W 1;2.B1;AQ.R

n// and has the same trace as uk on @B1. By minimality

1 D lim
k!1

Dir.uk; B1/ � lim sup
k

Dir.yuk; B1/ �
.1 � �/m�2.m � 2/

m � 2C 
C C�:

Observe that � can be chosen arbitrarily small. On the other hand,

lim
�!0

�
.1 � �/m�2.m � 2/

m � 2C 
C C�

�
D m � 2
m � 2C 

< 1;

which gives a contradiction, thus completing the proof of Proposition 8.2, and, in
turn, of Theorem 8.1.
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9 Monotonicity of the Frequency Function
As in the case of “classical” Q-valued functions, we introduce a suitable fre-

quency function for maps taking values in AQ.R
n/.

DEFINITION 9.1. Consider a map u 2 W 1;2.�;AQ.R
n// and let � � Rm be an

open set. For every x 2 � and every r 2 �0; dist.x; @�/� we define

Dx;u.r/ WD Dir.u; Br.x//; Hx;u.r/ WD
ˆ
@Br .x/

G.u;QJ0K/2:

Moreover, if Hx;u.r/ > 0, we define the frequency function

Ix;u.r/ WD rDx;u.r/

Hx;u.r/
:

If the point x and the function u are clear from the context, we will drop the sub-
scripts from the corresponding quantities. In our context the celebrated monotonic-
ity theorem of Almgren for the frequency function remains valid. More precisely,
we have the following theorem.

THEOREM 9.2. Let � be a bounded open set and u 2 W 1;2.�;AQ.R
n// a Dir-

minimizing map. Fix a point x 2 � and let � WD dist.x; @�/. Then either uC �
u� � QJ0K on B�.x/ or Hx;u.r/ > 0 for every r 2 �0; �� and in particular
Ix;u.r/ is well-defined. Moreover, in the latter case:

(a) The function r 7! Ix;u.r/ is monotone nondecreasing and therefore

I0 WD lim
r!0

Ix;u.r/

exists and is finite.
(b) I0 D 0 if and only if maxfjuC.x/j; ju�.x/jg > 0.
(c) There is a positive constant c0.m; n;Q/ such that, if u.x/ D QJ0K, then

I0 � c0.m; n;Q/.
(d) The function r 7! Ix;u.r/ is constant if and only if ujBr .x/ is I0-homogeneous;

i.e., for each y 2 Sm�1 one of the following alternatives holds:

u.ry/ D .uC.ry/; 1/ and uC.ry/ D
X
i

q
rI0uCi .y/

y 8r 2 �0; ��;

u.ry/ D .u�.ry/;�1/ and u�.ry/ D
X
i

q
rI0u�i .y/

y 8r 2 �0; ��;

u.ry/ D �
Q

q
rI0� � uC.y/y; 1� D �

Q
q
rI0� � u�.y/y;�1� 8r 2 �0; ��:

The theorem follows from some important identities, which we summarize in
the following proposition.

PROPOSITION 9.3. Let �; x; � and u be as in Theorem 9.2. Then the maps r 7!
H.r/;D.r/ are both absolutely continuous and the following identities hold for
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a.e. r 2 �0; ��:
D0.r/ D m � 2

r
D.r/C 2

ˆ
@Br .x/

j@�uj2;(9.1)

H 0.r/ D m � 1
r

H.r/C 2D.r/:(9.2)

Moreover, there is a constant C0.m; n;Q/ such that, if u.x/ D QJ0K, then

(9.3) H.r/ � C0rD.r/ 8r 2 �0; ��:
PROOF. Without loss of generality we can assume x D 0. The absolute conti-

nuity of the map r 7! D.r/ is an obvious consequence of the absolute continuity
of integrals. Passing in polar coordinates, we easily see that

D0.r/ D
ˆ
@Br

jDuj2

for a.e. r 2 �0; ��. The identity (9.1) is then an obvious consequence of (7.7).
Next consider a classical Sobolev f and let us writeˆ

@Br

f 2 D rm�1
ˆ
@B1

f 2.rx/dx

Differentiating in r , we get the distributional identity

d

dr

ˆ
@Br

f 2 D m � 1
r

ˆ
@Br

f 2 C
ˆ
@Br

hrf 2.x/; r�1xidx;

which easily shows the absolute continuity of the function. We apply the latter
identity with f D juj and use the chain rule formulas analogous to [5, sec. 1.3.1]
to then derive

H 0.r/ D m � 1
r

H.r/C 2

ˆ
@Br

X
i

h@�ui ; ui i:

The identity (9.2) is then a consequence of (7.8).
Finally, in order to show (9.3) observe first that we can assume, without loss of

generality, r D 1. We then use the interior Hölder regularity Theorem 8.1 to deriveˆ
@B1

ju.sx/j2 dx � C Dir.u; B1/ for all s 2 �0; 1
2
�:

Next differentiating the function s 7! ´
@B1

ju.sx/j2 dx and integrating in s 2�
1
2
; 1
�

we easily conclude

M WD max
s2�1=2;1�

ˆ
@B1

ju.sx/j2 � C
ˆ 1

1=2

ˆ
@Bs

jujjDuj ds C C Dir.u; B1/:

In particular we derive

M � CM 1
2 .Dir.u; B1//

1
2 C C Dir.u; B1/ � M

2
C C Dir.u; B1/;
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from which M � C Dir.u; B1/ D D.1/ easily follows. Since H.1/ � M , this
gives the desired bound. □

PROOF OF THEOREM 9.2. Without loss of generality we can assume x D 0 and
� D 1. First of all, if H.1/ D 0, then clearly the map identically equal to QJ0K in
B1 is a competitor; hence by minimality it has to be D.1/ D 0 and thus u � QJ0K
in B1. Hence, let us consider the case H.1/ > 0. By Proposition 9.3, H will be
positive in a neighborhood of 1 and thus we can consider the smallest r0 < 1 for
which H > 0 on �r0; 1�. On such an interval we can differentiate in r and, using
the identities (9.1), (9.2), and (7.8) compute

(9.4) I 0.r/ D 2 r

H.r/2

�ˆ
@Br

j@�uj2
ˆ
@Br

juj2 �
�ˆ

@Br

X
i

h@�ui ; ui i
�2�

� 0:

In particular, we conclude that I is monotone on �r0; 1� and so

H.r/ � r

I.1/
D.r/:

Now, if it were r0 > 0, then we would have H.r0/ D 0 and, by (9.2),

H 0.r/ � m � 1C I.1/

r
H.r/ for a.e. r 2�r0; 1�.

But then the usual Gronwall’s lemma would imply that H vanishes on �r0; 1�,
which is a contradiction.

We have thus proved the first claim of the theorem, namely that H > 0 in �0; 1�
under the assumption that u is nontrivial in B1. Moreover (9.4) shows (a). Item (c)
is now an obvious consequence of (9.3), which in turn shows that I0 D 0 implies
u.0/ ¤ QJ0K. Now, if u.0/ ¤ QJ0K, namely ju.0/j > 0, then by Theorem 8.1 we
have that

lim
r!0

H.r/

rm�1
D Hm�1.@B1/ ju.0/j2 > 0:

On the other hand, by Theorem 8.1, we have D.r/ � rm�2C2�0D.1/. Combining
these two facts we then discover that limr!0 I.r/ D 0.

We finally come to (d). If u is I0-homogeneous, then the usual chain rules
imply that @�ui .x/ D I0jxj�1ui .x/ for a.e. x, and so we conclude that I 0 is
identically 0. On the other hand, if I 0 � 0, recalling that H.r/ > 0, we conclude
the existence of a function �.r/ such that then @�ui .x/ D �.r/ui .x/ holds for a.e.
r and a.e. x 2 @Br . On the other hand, this would imply

I0 D I.r/
(7.8)D r

´
@Br

P
i h@�ui ; ui i

H.r/
D r�.r/:

Hence we have
@�ui .x/ D I0

jxjui .x/ for a.e. x 2 B1.

In particular, the same identity holds for uC a.e. on BC1 , for u� a.e. on B�1 , and for
the classical function ��u everywhere. Since however uC D QJ� � uK onB1nBC1 ,
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and u�.x/ D QJ� � uK on B1 n B�1 , we conclude that the same identity actually
holds a.e. on B1 for all the three functions uC, u�, and � � u. In particular, by the
argument given in [5, sec. 3.4.2], we conclude that all of them are I0-homogeneous.
This in turn implies (d) and completes the proof. □

10 Blowup and Estimate of the Singular Set
DEFINITION 10.1. Given a Dir-minimizer u 2 W 1;2.�;AQ.R

n//, we say that a
point x 2 � is regular if there is a neighborhood U of x such that

(a) u coincides with .uC; 1/ in U and x is a regular point for the Dir-minimizer
uC 2 W 1;2.U;AQ.R

n//;
(b) u coincides with .u�;�1/ inU and x is a regular point for the Dir-minimizer

u� 2 W 1;2.U;AQ.R
n//.

The set of regular points will be denoted by Reg.u/, whereas its complement, the
set of singular points, will be denoted by Sing.u/.

Note that (a) and (b) are not mutually exclusive: they can both hold, in which
case both uC and u� coincide with QJ� � uK in U .

THEOREM 10.2. Let� � Rm be a bounded open set, and let u 2 W 1;2.�;AQ.R
n//

be a Dir-minimizer. Then the Hausdorff dimension of Sing.u/ is at most m � 1.

First of all, observe that, by continuity, both �C and �� are open sets. More-
over, in the respective sets uC and u� are minimizers taking values in AQ.R

n/.
Since Sing.u/ \�� D Sing.u�j��/, we easily conclude from [5, theorem 0.11]
that the dimension of Sing.u/ \ .�C [��/ is at most m � 2. It remains to study
Sing.u/ \�0. On the other hand, since u D QJ� � uK on �0, it follows immedi-
ately that Reg.u/\�0 consists of the interior of�0. Thus the theorem will follow
immediately from the following:

PROPOSITION 10.3. Consider a connected bounded open set � � R
m and let

u 2 W 1;2.�;AQ.R
n// be a Dir-minimizer. If the dimension of �0 is strictly

larger than m � 1, then �0 D �.

PROOF. The proof is entirely analogous to the one of [5, prop. 3.22], and we just
sketch it here for the reader’s convenience. First of all, we observe that without
loss of generality we can assume � � u � 0. In this case the statement of the
proposition then becomes that either Dir.u/ D 0 or the Hausdorff dimension of
�0 is at most m � 1. We argue by contradiction and assume that Dir.u/ > 0 and
Hm�1C�
1 .�0/ > 0 for some � > 0.
We then fix a point x 2 � where

(10.1) lim sup
r#0

Hm�1C�
1 .�0 \ Br.x//

rm�1C�
> 0;

which for measure-theoretic reasons occurs at Hm�1C�-a.e. x 2 �0. For any
x 2 � we define �.x/ WD dist.x; @�/. We then claim that for at least one x where
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(10.1) holds, we must have Dir.u; B�.x/.x// > 0. Otherwise Dir.u; B�.x/.x// D 0

for every x 2 �0 by a simple density argument. This would imply that�0 is open.
Since it is also obviously closed and � is connected, we conclude that �0 D �,
which is a contradiction to Dir.u;�/ > 0.

Fix then a point x where (10.1) holds and Dir.u; B�.x/.x// > 0. We take ad-
vantage of Theorem 9.2 in order to consider I0 D limr#0 Ix;u.r/, and we define
the rescaled functions

y 7! ur.y/;

where u�r .y/ D
P

iJr
�I0u�i .ry C x/K. Using the compactness of Dir-minimizers

and the monotonicity of the frequency function, we conclude that, up to sub-
sequences, rescaled maps converge (locally strongly in W 1;2.Rm;AQ.R

n//) to
tangent functions defined on Rm that are locally Dir-minimizers, take values in
AQ.R

n/, and are nontrivial. In turn, for an appropriate chosen subsequence, (10.1)
is used with Theorem 8.1 and with the upper semicontinuity of the Hm�1C�

1 mea-
sure to conclude that at least one such tangent function v has the property that
Hm�1C�.fjvj D 0g \ B1/ > 0.

Observe that v is I0 homogeneous. We can repeat the procedure and find a
tangent function to v at some y with all the properties above. Such a function
turns out to be independent of the variable y. Repeating the construction m times,
we end up with a function w that has positive Dirichlet energy, is a local energy
minimizer, is constant, and for which the set fjwj D 0g is nonempty. This is clearly
a contradiction. □

11 Currents Associated to Normal Graphs
on an Oriented Submanifold

The remaining sections of this work are aimed at obtaining several additional
results concerning the geometry of (the integer rectifiable currents associated to)
graphs of AQ.R

n/-valued functions, which will play a pivotal role in the approxi-
mation procedure of area minimizing currents modulo p D 2Q at points of density
Q carried out in [4].

From now on, we will often work under the following assumptions.

ASSUMPTION 11.1. We consider:
(M) an open submanifold M � R

mCn of class C 3 and dimension m, with
Hm.M/ < 1, which is the graph of a function 'W� � R

m ! R
n with

k'kC3 � c. We will let A andH denote the second fundamental form and
the mean curvature vector of M as a submanifold of RmCn, respectively;

(U) a regular tubular neighborhood U of M in RmCn, defined as

U D
n
x C v W x 2M; v 2 T?x M with jvj � c0

o
;

where the constant c0 is so small that a unique nearest point projection
pWU !M is well-defined and of class C 2;
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(N) a proper Lipschitz mapN W M! AQ.R
mCn/ satisfyingNC

i .x/,N
�
i .x/,

� �N.x/ 2 T?x M 8i and 8x 2M; the map N induces an

F W M! AQ.R
mCn/

by setting

F.x/ D
(�P

iJx CN�
i .x/K;�1

�
on M�;�P

iJx CNC
i .x/K;C1

�
on MC [M0:

Observe that F� and � � F are proper maps, and they are Lipschitz-continuous
by Corollary 2.8. Let JMK be the multiplicity one m-dimensional current associ-
ated to M with the orientation induced by its graph structure. Then, recalling [7],
we have a natural way of pushing forward JMK through the multivalued map F�:
the corresponding notation is TF� (in order to distinguish it from the classical
“push-forward” via one-valued functions).

DEFINITION 11.2. We introduce the notation TF for the integer rectifiable current
that is naturally induced by F and is a representative mod.p/. More precisely, we
set

(11.1) TF D TFC p�1.MC/ � TF� p�1.M�/CQ.� � F /]JM0K

and we introduce the notation

TCF WD TFC p�1.MC/;(11.2)

T�F WD �TF� p�1.M�/;(11.3)

T0
F WD Q.� � F /]JM0K:(11.4)

Remark 11.3. Observe that kT0
F k.U n p�1.M0// D 0. In particular, since the sets

p�1.MC/, p�1.M�/, and p�1.M0/ are pairwise disjoint, for every BorelE � U
we have

(11.5) kTF k.E/ D kT0
F k.E/C kT�F k.E/C kTCF k.E/:

12 Compatible Triples

Suppose .gC; g�; g/ is a triple of Lipschitz-continuous functions with g� W
U ! AQ.R

n/ and g W U ! R
n with the additional property that they satisfy the

following:

DEFINITION 12.1 (Compatibility conditions).

(a) For any x 2 U , either sep.gC.x// D 0 or sep.g�.x// D 0.
(b) g.x/ D � � gC.x/ whenever sep.gC.x// D 0 and g.x/ D � � g�.x/

whenever sep.g�.x// D 0.
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Here we have used the notation introduced in [5], according to which sep.T / D
minfjti � tj jW ti ¤ tj ; T D PQ

lD1
JtlKg with the convention that min¿ D 0. Also

note that if
�
gC; g�; g

�
satisfies the compatibility conditions, and if for some x 2

U it holds sep.gC.x// D 0 D sep.g�.x//, then necessarily gC.x/ D g�.x/ D
QJvK for some v 2 Rn, and g.x/ D v.

To such a triple we can associate a Lipschitz map into AQ.R
n/ by means of the

following transformation. We first define

jW .gC; g�; g/ 7! .v; w; ´/ D j.gC; g�; g/

WD .gC 	 � � gC; g� 	 � � g�;� � gC C � � g� � g/:
Then we map j.gC; g�; g/ into f WD ��1.j.gC; g�; g//; the AQ.R

n/-valued map
f can be explicitly given as

f .x/ D
(
.gC.x/; 1/ if sep.g�.x// D 0;

.g�.x/;�1/ otherwise.

Consistently with the notation of the previous sections, since � is an isometry, we
identify f and .v; w; ´/ D j.gC; g�; g/ and use interchangeably both symbols,
depending on which is most convenient at the moment. One readily checks that f
is a Lipschitz map from U into AQ.R

n/.
Note that moreover j.f C; f �;� � f / D f . We thus have a right inverse of

the map j. However, there is not a 1-to-1 correspondence between AQ.R
n/-valued

maps f and triples .gC; g�; g/ satisfying (a) and (b). We therefore introduce the
following terminology.

DEFINITION 12.2. The triple .f C; f �;��f / will be called the canonical decom-
position of the map f .

Next note that the following lemma is a very simple consequence of the above
definitions.

LEMMA 12.3. For any f W U ! AQ.R
n/ the following holds:

(i) First of all we have the estimates

maxfLip.f �/;Lip.� � f /g � Lip.f /I(12.1)

and

(12.2) Lip.f / � Lip.gC/C Lip.g�/:

for any .gC; g�; g/ such that j.gC; g�; g/ D f .
(ii) The canonical decomposition of the domain U of f can be determined

using any triple .gC; g�; g/ such that j.gC; g�; g/ D f . More precisely,

U� D fsep.g�/ > 0g(12.3)

U0 D U n .UC [ U�/ D fsep.gC/ D sep.g�/ D 0g:(12.4)
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(iii) The following identities hold whenever j.gC; g�; g/ D f :X
i

JDgCi K D
X
i

JDfiK a.e. on UC [ U0;(12.5)

X
i

JDg�i K D
X
i

JDfiK a.e. on U� [ U0;(12.6)

(12.7) jDf j D

8�<
�:
jDgCj a.e. on UC;
jDg�j a.e. on U�;p
QjDgj a.e. on U0:

13 Taylor Expansion of Area and Excess
We start with a series of theorems that are focused on Taylor expansions of the

mass of TF and important variants. The first one, which corresponds to [7, theorem
3.2], is the following.

THEOREM 13.1 (Expansion of M.TF /). If M, N , and F are as in Assumption
11.1 and xc is smaller than a geometric constant, then

(13.1)

M.TF / D QHm.M/ �Q
ˆ
M
hH;� �N i C 1

2

ˆ
M
jDN j2

C
ˆ
M

X
i

�
P2.x;Ni /C P3.x;Ni ;DNi /CR4.x;DNi /

�
;

where P2, P3, and R4 are C 1 functions with the following properties:
(i) v 7! P2.x; v/ is a quadratic form on the normal bundle of M satisfying

(13.2) jP2.x; v/j � C jA.x/j2jvj2 8x 2M; 8v ? TxMI
(ii) P3.x; v;D/ D

P
i Li .x; v/Qi .x;D/, where v 7! Li .x; v/ are linear

forms on the normal bundle of M and D 7! Qi .x;D/ are quadratic
forms on the space of .mC n/ � .mC n/-matrices satisfying

jLi .x; v/j � C jA.x/jjvj 8x 2M;8v ? TxM;

jQi .x;D/j � C jDj2 8x 2M;8D 2 R.mCn/�.mCn/I
(iii) jR4.x;D/j D jDj3L.x;D/ for some function L with Lip.L/ � C that

satisfies L.x; 0/ D 0 for every x 2 M and is independent of x when
A � 0.

Moreover, for any Borel function h W RmCn ! R,����
ˆ
h dkTF k �

ˆ
M

X
i

h � Fi
����

� C
ˆ
M

�X
i

jAjjh � Fi jjNi j C khk1.jDN j2 C jAj2jN j2/
�
;

(13.3)
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and, if h.q/ D g.p.q// for some g, we have

(13.4)

����
ˆ
h dkTF k �

ˆ
M
.Q �QhH;� �N i C 1

2
jDN j2/ g

����
� C

ˆ
M

�jAj2jN j2 C jDN j4�jgj:
PROOF. Observe that the first part of the statement is a simple consequence

of (13.4). The latter one can be easily reduced to [7, theorem 3.2] using (11.5).
Indeed, if we introduce gC WD g1MC , g� WD g1M� , and g0 WD g1M0

and
the corresponding h�.p/ D g�.p.p//, it suffices to prove (13.4) for each pair
.h�; g�/. In such cases, however, (13.4) can be concluded from [7, theorem 3.2]
(more specifically [7, eq. (3.4)]) applied to each TF� .

By an analogous argument, in order to conclude (13.3), it is sufficient to prove it
for hC WD h1p�1.MC/

, h� WD h1p�1.M�/
, and h0 WD h1p�1.M0/

. As above, each
such case can be inferred from [7, theorem 3.2] (more specifically [7, eq. (3.3)])
applied to the corresponding TF� . □

An important corollary of the theorem above is the following.

COROLLARY 13.2 (Expansion of M.Gf /). Assume � � R
m is an open set with

bounded measure and f W �! AQ.R
n/ a Lipschitz map with Lip.f / � xc. Then,

(13.5) M.Gf / D Qj�j C 1

2

ˆ
�

jDf j2 C
ˆ
�

X
i

xR4.Dfi /;

where xR4 2 C 1 satisfies j xR4.D/j D jDj3 xL.D/ for xL with Lip.xL/ � C and
xL.0/ D 0.

PROOF. The statement follows from Theorem 13.1 applied to the case in which
M is flat: since A D 0 (and thus H D 0), the linear and third-order terms in the
expansion (13.1) vanish. □

We next come to two further Taylor expansions.

PROPOSITION 13.3 (Expansion of a curvilinear excess). There exists a dimen-
sional constant C > 0 such that, if M, F , and N are as in Assumption 11.1 with
xc small enough, then

(13.6)

����
ˆ
jETF .x/ � EM.p.x//j2no dkTF k.x/ �

ˆ
M
jDN j2

����
� C

ˆ
M
.jAj2jN j2 C jDN j4/;

where ETF and EM are the unitm-vectors orienting TF and TM, respectively, and
j � jno is the nonoriented distance defined by

(13.7) jETF � EM.p.x//jno WD minfjETF � EM.p.x//j; jETF C EM.p.x//jg:
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PROOF. Proceeding as in the argument leading to Theorem 13.1, we can re-
duce the statement to corresponding ones where TF is replaced by TF� and M is
replaced by M� or M0, after observing that

jETF .x/ � EM.p.x//j2no D jETF�.x/ � EM.p.x//j2 at kTF k-a.e. x:

Each of these statements can then be concluded from [7, prop. 3.4]: note in-
deed that, although [7, prop. 3.4] is “global”, a local version (where, given any
Borel E � M, in the right-hand side of [7, eq. (3.13)] TF is substituted by
TF p�1.E/ and in the left-hand side M is substituted by E) follows directly
from the proof given there. □

The final Taylor expansion that we treat in this section is the one of a suitable
cylindrical excess. In the following theorem, given a disc Bs � Rm we will let Cs

denote the cylinder Cs WD Bs �Rn � Rm �Rn ' R
mCn.

THEOREM 13.4 (Expansion of a cylindrical excess). There exist dimensional con-
stants C; c > 0 with the following property. Let f W Rm ! AQ.R

n/ be a Lipschitz
map with Lip .f / � c. For any 0 < s, set L WD fflBs D.� � f / and denote by E� the
m-dimensional simple unit vector orienting the graph of the linear map y 7! L �y.
Then, we have

(13.8)
����
ˆ

Cs

�� EGf � E�
��2
no dkGf k �

ˆ
Bs

Gs.Df;QJLK/2
���� � C

ˆ
Bs

jDf j4:

PROOF. Denote by E the quantity

E D
ˆ

Cs

�� EGf � E�
��2
no dkGf k:

Observe that, if we set U WD Bs and introduce the triples .f C; f �;� � f / and
.UC; U�; U0/, we easily conclude that

E D
ˆ
UC�Rn

j EGfC � E� j2 dkGfCk C
ˆ
U��Rn

j EGf � � E� j2 dkGf �k

CQ

ˆ
U0�Rn

j EG��f � E� j2 dkG��f k:
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We next can apply the same computations of the proof of [7, theorem 3.5] to
arrive at

E D
ˆ
UC

jDf Cj2 CQ jUCj jLj2 � 2
ˆ
UC

X
i

Df C
i W L

C
ˆ
U�

jDf �j2 CQ jU�j jLj2 � 2
ˆ
U�

X
i

Df �
i W L

CQ

ˆ
U0

jD� � f j2 CQ jU0j jLj2 � 2Q
ˆ
U0

D� � f W L

CO

�ˆ
Bs

jDf j4
�
:

This easily gives

E D
ˆ
UC

G.Df C;QJLK/2 C
ˆ
U�

G.Df �;QJLK/2

CQ

ˆ
U0

jD� � f � Lj2 CO

�ˆ
Bs

jDf j4
�
:

Using (12.5) we then conclude (13.8). □

14 Taylor Expansion of First Variations
In this section we consider Taylor expansions of the first variations.
We begin with the expansion for the first variation of graphs. In the following

theorem, Lipc.� �Rn;Rd / denotes the space of functions � 2 Lip.� �Rn;Rd /

for which there exists �0
b � such that f .x; y/ D 0 when x � �0.

THEOREM 14.1 (Expansion of �Gf .�/). Let � � Rm be a bounded open set and
f W � ! AQ.R

n/ a map with Lip.f / � xc. Consider a function � 2 Lipc.� �
R
n;Rn/ and the corresponding vector field � 2 Lipc.� � Rn;RmCn/ given by

�.x; y/ D .0; �.x; y//. Then,�����Gf .�/ �
ˆ
�

X
i

�
Dx�.x; fi /CDy�.x; fi / �Dfi

� W Dfi ����
� C

ˆ
�

jD�jjDf j3:
(14.1)

The next two theorems deal with general TF as in Assumption 11.1. We restrict
our attention to “outer and inner variations”. Outer variations result from deforma-
tions of the normal bundle of M that are the identity on M and map each fibre into
itself, whereas inner variations result from composing the map F with isotopies of
M.
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THEOREM 14.2 (Expansion of outer variations). Let M, U, p, and F be as in As-
sumption 11.1 with xc sufficiently small. If ' 2 Lipc.M/ andX.q/ WD '.p.q//.q�
p.q//, then

(14.2)

�TF .X/ D
ˆ
M

�
'jDN j2 C

X
i

.Ni 
D'/ W DNi

�

�Q
ˆ
M
'hH;� �N i� �� �

Err1

C
3X

iD2

Erri

where

(14.3) jErr2j � C
ˆ
M
j'jjAj2jN j2;

(14.4)
jErr3j � C

ˆ
M

�
j'j�jDN j2jN jjAj C jDN j4�
C jD'j�jDN j3jN j C jDN jjN j2jAj��:

Let Y be a Lipschitz vector field on TM with compact support, and define X
on U setting X.q/ D Y.p.q//. Let f�"g"2���;�� be any isotopy with �0 D id and
d
d"

��
"D0

�" D Y and define the following isotopy of U:

�".q/ D �".p.q//C .q � p.q//:

Clearly X D d
d"

��
"D0

�".

THEOREM 14.3 (Expansion of inner variations). Let M, U, and F be as in As-
sumption 11.1 with xc sufficiently small. If X is as above, then

(14.5)

�TF .X/ D
ˆ
M

� jDN j2
2

divM Y �
X
i

DNi W .DNi �DMY /

�

C
3X

iD1

Erri ;

where

Err1 D �Q
ˆ
M

�hH;� �N i divM Y C hDYH;� �N i
�
;(14.6)

jErr2j � C
ˆ
M
jAj2�jDY jjN j2 C jY jjN jjDN j�;(14.7)

jErr3j � C
ˆ
M

�jY jjAjjDN j2.jN j C jDN j/(14.8)

C jDY j.jAjjN j2jDN j C jDN j4/�:
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The three theorems can all be proved by appealing to the computations in [7,
sec. 4]. First of all, by a standard approximation procedure we can assume that
the test vector fields are in fact smooth. Next consider the case of Theorem 14.2.
Using the triple FC; F� and � � F , and taking into account the fact that the cur-
rents TFC p�1.MC/, TF� p�1.M�/, and T��F p�1.M0/ are supported on
disjoint sets, we can compute

(14.9)
�TF .X/ D �TFC p�1.MC/.X/C �TF� p�1.M�/.X/

CQ�T��F p�1.M0/.X/:

We can then appeal to [7, theorem 4.2] to get the corresponding Taylor expansions
of the three pieces separately and use (12.5), (12.6), and (12.7) to conclude the
desired formulas. The proof of Theorem 14.1 is entirely analogous, using [7, theo-
rem 4.1]. In both cases there is only one thing to notice: although in the statements
of [7, theorems 4.1 and 4.2] the domain is assumed to be an open set (and the map
' in [7, theorem 4.2] is assumed to have compact support), it can be easily seen
that the proof given in [7] is not using any specific property of the domain of the
map except for its Borel measurability (and the assumption on the support of the
map ' in [7, theorem 4.2] is also redundant).

Reducing Theorem 14.3 to the case of [7, theorem 4.3] is however different,
since in the final part of the proof one integration by parts is used to treat the linear
error term and thus the assumption that the domain is open and that the vector
field Y has compact support is crucial. In this case we proceed instead as follows.
First of all we decompose the first variation of TF as in (14.9) and we denote by
NC, N�, and � �N the triple corresponding to the AQ.R

n/-valued map “normal
part” N . For each of the three summands in (14.9), we then follow the proof
of [7, theorem 4.3] until [7, eq. (4.13)]. Taking �TFC as an example, we get the
expansion

�TFC p�1.MC/.X/

D
ˆ
MC

� jDNCj2
2

divM Y �
X
i

DNC
i W .DNC

i �DMY /

�
C JC2 C ErrC2 C ErrC3 ;

(14.10)
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where

JC2 D Q

ˆ
MC

X
j

�hA.ej ;rej Y /;� �NCi(14.11)

C hA.ej ; Y /;Dej � �NCi�
ErrC2 �

ˆ
MC

jAj2�jDY jjNCj2 C jY jjNCj jDNCj�;(14.12)

ErrC3 �
ˆ
M

�jY jjAjjDNCj2.jNCj C jDNCj/(14.13)

C jDY j�jAjjNCj2jDN j C jDNCj4��:
We next sum to (14.10) the corresponding expansions for the other two summands
in the decomposition of �TF .X/ (namely

�TF� p�1.M�/.X/ and Q�T��F p�1.M0/.X//:

Using then (12.5), (12.6), and (12.7), we easily reach

(14.14)
�TF .X/ D

ˆ
M

� jDN j2
2

divMY �
X
i

DNi W .DNi �DMY /

�
C J2 C Err2 C Err3;

where Err2 and Err3 satisfy the estimates claimed in Theorem 14.3 and

J2 D Q

ˆ
M

X
j

�hA.ej ;rej Y /;� �N i C hA.ej ; Y /;Dej � �N i
�
:(14.15)

Note that at this stage the term J2 corresponds to the term J2 of [7, eq. (4.17)].
Thus we can follow the remaining part of the proof of [7, theorem 4.3] where an
integration by parts transforms J2 into the term Err1 of the expansion (14.5).

15 Reparametrization Theorem on Normal Bundles
In this section we state and prove the analogues of the results in [7, sec. 5] in the

context of AQ.R
n/-valued maps.

THEOREM 15.1 (AQ.R
n/ parametrizations). Let Q;m; n 2 N and s < r <

1. Then, there are constants c0; C > 0 (depending on Q;m; n and r
s
) with the

following property. Let ', M, and U be as in Assumption 11.1 with � D Bs and
let f W Br ! AQ.R

n/ be such that

(15.1) k'kC2 C Lip.f / � c0 and k'kC0 C kf kC0 � c0r:
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Set �.x/ WD .x;'.x//. Then, there are maps F and N as in Assumption 11.1(N)
such that TF D Gf U and

Lip.N / � C �kD2'kC0kN kC0 C kD'kC0 C Lip.f /
�
;(15.2)

1

2
p
Q
jN.�.x//j � Gs.f .x/;QJ'.x/K/

� 2
p
Q jN.�.x//j 8x 2 Bs;

(15.3)

j� �N.�.x//j � C j� � f .x/ � '.x/j
C C Lip.f /jD'.x/jjN.�.x//j 8x 2 Bs:(15.4)

Finally, assume x 2 Bs and .x;��f .x// D �Cv for some � 2M and v ? T�M.
Then,

(15.5) Gs.N.�/;QJvK/ � 2
p
Q Gs.f .x/;QJ� � f .x/K/:

For reference, we state the following immediate corollary of Theorem 15.1, cor-
responding to the case of a linear '. In the statement we shall adopt the following
notation: if � is an m-dimensional linear subspace (briefly, an m-plane) in RmCn,
x 2 RmCn, and r > 0, then we set Br.x; �/ WD Br.x/\ .x C �/, where Br.x/ is
the open ball centered at x with radius r in RmCn, and we will only write Br.�/ if
x is the origin. Furthermore, we shall use the symbol AQ.�/ to denote the space
of special Q-points in the plane � .

PROPOSITION 15.2 (Q-valued graphical reparametrization). LetQ;m; n 2 N and
s < r < 1. There exist positive constants c; C (depending only on Q;m; n and
r
s
) with the following property. Let �0 and � be m-planes with j� � �0j � c and
f W Br.�0/! AQ.�

?
0 / with Lip.f / � c and jf j � cr . Then, there is a Lipschitz

map g W Bs.�/ ! AQ.�
?/ with Gg D Gf Cs.�/ and such that the following

estimates hold on Bs.�/:

kgkC0 � Cr j� � �0j C Ckf kC0 ;(15.6)

Lip.g/ � C j� � �0j C C Lip.f /:(15.7)

Again Theorem 15.1 will be reduced to the corresponding [7, theorem 5.1]. First
of all we introduce the triple .f C; f �;� � f / and, setting U WD Br , consider UC,
U�, and U0. For each of the maps f C, f �, and � � f we apply [7, theorem
5.1] and find the corresponding “parametrizations”, which we denote GC; G�; g

so that

TGC D GfC U;(15.8)
TG� D Gf � U;(15.9)

Tg D G��f U:(15.10)

We now wish to show two things, which we summarize in the following.
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LEMMA 15.3. The triple .GC; G�; g/ satisfies the compatibility conditions of Def-
inition 12.1, and the map F D j.GC; G�; g/ satisfies TF D Gf U. In fact, the
following stronger conclusion holds:

TGC p�1.MC/ D TFC p�1.MC/ D GfC U \ .UC �Rn/;(15.11)

TG� p�1.M�/ D TF� p�1.M�/ D Gf � U \ .U� �Rn/;(15.12)

Tg p�1.M0/ D T��F p�1.M0/ D G��f U \ .U0 �Rn/:(15.13)

Before coming to the proof of the lemma, we observe that, by virtue of [7,
theorem 5.1 and lemma 5.4] it implies Theorem 15.1 and the following “geometric
algorithm” to find the values of F ; see also [17].

LEMMA 15.4 (Geometric reparametrization). The values of F in Theorem 15.1 can
be determined at any point p 2M as follows. Let ~ be the orthogonal complement
of TpM. Then pC ~ intersects Gr.� � f / at a unique point q and if x WD p�0.q/,
then

(i) p 2M0 if and only if x 2 U0,
(ii) p 2MC if and only if x 2 UC,

(iii) p 2M� if and only if x 2 U�.
Furthermore:

(iv) If p 2M0, then F.p/ D QJ.x;� � f .x//K D Q JqK.
(v) If p 2 MC, then spt.F.p// D Gr.f C/ \ .p C ~/ and the multiplicity of

every point q in the value F.x/ equals the multiplicity of the point p?�0.q/
in f C.p�0.q//.

(vi) If p 2 M�, then spt.F.p// D Gr.f �/ \ .p C ~/ and the multiplicity of
every point q in the value F.x/ equals the multiplicity of the point p?�0.q/
in f �.p�0.q//.

PROOF OF LEMMA 15.3. The lemma is an obvious consequence of the geomet-
ric algorithm given in [7, lemma 5.4] to determine GC, G�, and � � G. Consider
indeed a point p 2 M where sep.GC.p// D 0 and let q D � � GC.p/. If ~ D
.TpM/?, [7, lemma 5.4] implies immediately that p C ~ intersects Gr.f C/ only
in the point q and that, having set x WD p�0.q/ and v WD p?�0.q/, f

C.x/ D QJvK,
so v D � � f .x/. This means that p C ~ intersects the graph of � � f at the
point q, which in turn, again by [7, lemma 5.4], must be precisely the value of g
at p. We have thus proved that, if sep.GC.p// D 0, then GC.p/ D QJg.p/K.
The same argument also shows that, if sep.G�.p// D 0, thenG�.p/ D QJg.p/K,
thus proving condition (b) in Definition 12.1.

Next, we show the validity of condition (a), namely

minfsep.GC.p//; sep.G�.p//g D 0 for every p 2M:

Fix p 2M, and set again ~ WD .TpM/?. By [7, lemma 5.4],

.p C ~/ \ Gr.� � f / D fqg:
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If we set x WD p�0.q/, then x 2 UC or x 2 U� or x 2 U0. If x 2 UC, then there
is v 2 Rn such that f �.x/ D QJvK, so that sep.f �.x// D 0 and � � f .x/ D
v. Thus, .p C ~/ \ Gr.f �/ D fqg, G�.p/ D Q JqK, and sep.G�.p// D 0.
Analogously, one can prove that if x 2 U� then sep.GC.p// D 0, and that if
x 2 U0 then sep.GC.p// D 0 D sep.G�.p//. Since fUC; U�; U0g is a partition
of U , at each point p 2 M we necessarily have that either sep.GC.p// D 0 or
sep.G�.p// D 0, as we wanted.

Note that not only does the argument above imply that .GC; G�; g/ satisfies
the compatibility conditions of Definition 12.1 and hence allows getting a well-
defined F , but it also implies immediately the conclusions (i), (ii), and (iii) of
Lemma 15.4. Knowing the latter, the conclusions (iv), (v), and (vi) of Lemma 15.4
are again an obvious corollary of [7]. In turn, they easily imply (15.11), (15.12),
and (15.13). Finally, these three identities easily imply TF D Gf U. □

16 L1 Estimate on the Separation over Tilting Planes
We conclude with the analogue of [8, lemma 5.6].

LEMMA 16.1. Fix m, n, l , and Q. There are geometric constants c0; C0 with the
following property. Consider two triples of planes .�; ~;$/ and .x�; x~; x$/, where

� � and x� are m-dimensional;
� ~ and x~ are xn-dimensional and orthogonal, respectively, to � and x� ;
� $ and x$ are l-dimensional and orthogonal, respectively, to � � ~ and
x� � x~.

Assume An WD j�� x�jCj~� x~j � c0 and let� W ��~ ! $ , x� W x�� x~ ! x$ be
two maps whose graphs coincide and such that j x�.0/j � c0r and kD x�kC0 � c0.
Let u W B8r.0; x�/! AQ.x~/ be a map with Lip.u/ � c0 and kukC0 � c0r and set
f .x/ WDP

iJ.ui .x/; x�.x; ui .x///K and f.x/ WD .� � u.x/; x�.x;� � u.x///. Then
there are

� a map yu W B4r.0; �/! AQ.~/ such that the map

yf .x/ WD
X
i

J.yui .x/;�.x; yui .x///K

satisfies G yf
D Gf C4r.0; �/

� and a map yf W B4r.0; �/! ~ �$ defined by Gyf D Gf C4r.0; �/.

Finally, if g.x/ WD .� � yu.x/;�.x;� � yu.x///, then

kyf � gkL1 � C0.kf kC0 C rAn/
�

Dir.f /C rm
�kD x�k2

C0 C An2
��
:(16.1)

PROOF. We start introducing the maps f � and u�. We then apply the reparam-
etrization theorem to determine maps g� and v� that satisfy

Gg� D Gf� C4r.0; �/ and Gv� D Gu� C4r.0; �/:
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Recall that � � f C D � � f � D � � f and � � uC D � � u� D � � u. By Lemma
15.3 and Lemma 15.4, we can next decompose U D B4r.0; �/ into disjoint sets
UC, U� and U0 by setting U� D fx 2 U W sep.v�.x// ¤ 0g. Then, we define:

(a) yu.x/ WD vC.x/ for x 2 UC [ U0, so that

yf .x/ D gC.x/ D .vC.x/;�.x; vC.x/// for x 2 UC [ U0I
(b) yu.x/ WD v�.x/ for x 2 U�, so that

yf .x/ D g�.x/ D .v�.x/;�.x; v�.x/// for x 2 U�I
(c) yf .x/ D f �.x/ D f C.x/ D QJg.x/K D QJyf.x/K for x 2 U0.

Hence, if we introduce

gC WD .� � vC; �.�;� � vC//; g� WD .� � v�; �.�;� � v�//;
we easily conclude that

(16.2) kyf � gkL1.B4r .0;�// D kyf � gCkL1.UC/ C kyf � g�kL1.U�/:
Now we apply [8, lemma 5.6] to each f � in order to infer

(16.3) kyf � g�kL1 � C0
�kf �kC0 C rAn

��
Dir.f �/C rm

�kD x�k2
C0 C An2

��
:

Considering Lemma 12.3 we have kf �kC0 � kf kC0 and Dir.f �/ � Dir.f /.
Hence (16.1) is an obvious consequence of (16.2) and (16.3). □
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