In this note we prove an abstract version of a recent quantitative stratification principle introduced by Cheeger and Naber (2013) [6,7]. Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract principle is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts. © 2015 Elsevier Inc. All rights reserved.

Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result / Focardi, M.; Marchese, A.; Spadaro, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 268:11(2015), pp. 3290-3325. [10.1016/j.jfa.2015.02.011]

Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result

Marchese A.;Spadaro E.
2015-01-01

Abstract

In this note we prove an abstract version of a recent quantitative stratification principle introduced by Cheeger and Naber (2013) [6,7]. Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract principle is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts. © 2015 Elsevier Inc. All rights reserved.
2015
11
Focardi, M.; Marchese, A.; Spadaro, E.
Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result / Focardi, M.; Marchese, A.; Spadaro, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 268:11(2015), pp. 3290-3325. [10.1016/j.jfa.2015.02.011]
File in questo prodotto:
File Dimensione Formato  
Q-revised-elsevier.pdf

Open Access dal 02/06/2017

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 406.54 kB
Formato Adobe PDF
406.54 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022123615000634-main.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 610.62 kB
Formato Adobe PDF
610.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/265939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact