In this note we prove an abstract version of a recent quantitative stratification principle introduced by Cheeger and Naber (2013) [6,7]. Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract principle is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts. © 2015 Elsevier Inc. All rights reserved.
Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result / Focardi, M.; Marchese, A.; Spadaro, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 268:11(2015), pp. 3290-3325. [10.1016/j.jfa.2015.02.011]
Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result
Marchese A.;Spadaro E.
2015-01-01
Abstract
In this note we prove an abstract version of a recent quantitative stratification principle introduced by Cheeger and Naber (2013) [6,7]. Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract principle is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts. © 2015 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Q-revised-elsevier.pdf
Open Access dal 02/06/2017
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
406.54 kB
Formato
Adobe PDF
|
406.54 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022123615000634-main.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
610.62 kB
Formato
Adobe PDF
|
610.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione