We investigate the long-wavelength dispersion of longitudinal and transverse optical phonon modes in polar two-dimensional materials, multilayers, and their heterostructures. Using analytical models and density-functional perturbation theory in a two-dimensional framework, we show that at variance with the three-dimensional case these modes are degenerate at the zone center but the macroscopic electric field associated with the longitudinal-optical modes gives rise to a finite slope at the zone center in their corresponding phonon dispersions. This slope increases linearly with the number of layers and it is determined solely by the Born effective charges of the material and the dielectric properties of the surrounding media. Screening from the environment can greatly reduce the slope splitting between the longitudinal and transverse optical modes and can be seen in the experimentally relevant case of boron nitride-graphene heterostructures. As the phonon momentum increases, the intrinsic screening properties of the two-dimensional material dictate the transition to a momentum-independent splitting similar to that of three-dimensional materials. These considerations are essential to understand electrical transport and optical coupling in two-dimensional systems.

Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials / Sohier, T.; Gibertini, M.; Calandra, M.; Mauri, F.; Marzari, N.. - In: NANO LETTERS. - ISSN 1530-6992. - 17:6(2017), pp. 3758-3763. [10.1021/acs.nanolett.7b01090]

Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials

Calandra M.;
2017-01-01

Abstract

We investigate the long-wavelength dispersion of longitudinal and transverse optical phonon modes in polar two-dimensional materials, multilayers, and their heterostructures. Using analytical models and density-functional perturbation theory in a two-dimensional framework, we show that at variance with the three-dimensional case these modes are degenerate at the zone center but the macroscopic electric field associated with the longitudinal-optical modes gives rise to a finite slope at the zone center in their corresponding phonon dispersions. This slope increases linearly with the number of layers and it is determined solely by the Born effective charges of the material and the dielectric properties of the surrounding media. Screening from the environment can greatly reduce the slope splitting between the longitudinal and transverse optical modes and can be seen in the experimentally relevant case of boron nitride-graphene heterostructures. As the phonon momentum increases, the intrinsic screening properties of the two-dimensional material dictate the transition to a momentum-independent splitting similar to that of three-dimensional materials. These considerations are essential to understand electrical transport and optical coupling in two-dimensional systems.
2017
6
Sohier, T.; Gibertini, M.; Calandra, M.; Mauri, F.; Marzari, N.
Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials / Sohier, T.; Gibertini, M.; Calandra, M.; Mauri, F.; Marzari, N.. - In: NANO LETTERS. - ISSN 1530-6992. - 17:6(2017), pp. 3758-3763. [10.1021/acs.nanolett.7b01090]
File in questo prodotto:
File Dimensione Formato  
acs.nanolett.7b01090.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 596.92 kB
Formato Adobe PDF
596.92 kB Adobe PDF   Visualizza/Apri
nano_ArXiv.pdf

Open Access dal 19/05/2018

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 492.04 kB
Formato Adobe PDF
492.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/259853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 126
social impact