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We investigate the long-wavelength dispersion of longitudinal and transverse optical phonon modes
in polar two-dimensional materials, multilayers, and their heterostructures. Using analytical mod-
els and density-functional perturbation theory in a two-dimensional framework, we show that, at
variance with the three-dimensional case, these modes are degenerate at the zone center but the
macroscopic electric field associated with the longitudinal-optical modes gives rise to a finite slope
at the zone center in their corresponding phonon dispersions. This slope increases linearly with the
number of layers and it is determined solely by the Born effective charges of the material and the
dielectric properties of the surrounding media. Screening from the environment can greatly reduce
the slope splitting between the longitudinal and transverse optical modes and can be seen in the
experimentally relevant case of boron nitride-graphene heterostructures. As the phonon momentum
increases, the intrinsic screening properties of the two-dimensional material dictate the transition
to a momentum-independent splitting similar to that of three-dimensional materials. These con-
siderations are essential to understand electrical transport and optical coupling in two-dimensional
systems.

PACS numbers: 63.22.-m, 73.63.-b, 77.22.Ej

Van der Waals heterostructures1 will assuredly play
a key role in future electronic and optoelectronic
devices2–5. Many of the potential candidates to build
those next-generation devices are polar two-dimensional
(2D) materials, including transition-metal dichalco-
genides (TMDs) and hexagonal boron nitride (h-BN). A
significant consequence of polarity in these materials is
the generation of long-ranged electric fields by the polar-
ization density associated with their longitudinal optical
(LO) phonon modes. These fields strongly influence the
transport properties of the monolayers as well as their
heterostructures, via the Fröhlich electron-phonon inter-
action6–8. Importantly, they lead to additional dipole-
dipole interaction terms affecting the dispersion charac-
teristics of optical phonons. This leads to a splitting be-
tween the LO and transverse optical (TO) modes, driven
by the long-ranged Coulomb interactions and electronic
screening. Here, we show in detail how this LO-TO split-
ting is drastically affected by dimensionality. In 3D, it
is well understood how this splitting is independent of
the norm of the phonon momentum and how it lifts the
degeneracy of the LO and TO phonon modes in the long
wavelength limit. We show here that in 2D, the splitting
depends on the norm of the phonon momentum, vanishes
at the zone center and leads to a discontinuity in the
derivative of the LO phonon dispersion. First-principles
computations of this phenomenon are delicate indepen-
dently of dimensionality, due to the long-ranged nature
of the dipole-dipole interactions leading to electric fields
that are not compatible with periodic boundary condi-
tions. In 3D materials, however, the development of an-
alytical models based on the Born effective charges and

the dielectric tensor has allowed for the correct numeri-
cal treatment of the LO-TO splitting9–14. Similar efforts
remain to be attained in 2D materials. A few theoretical
and computational works have identified the main char-
acteristics of the LO-TO splitting in 2D h-BN. Namely,
it was pointed out that the splitting vanishes at the zone
center15 while the slope of the LO dispersion is finite16–18.
However, the peculiarity of screening in a 2D framework
was not accounted for, and the proposed slopes were not
quantitatively accurate. Furthermore, the empirical force
constant models used lacked the generality and predictive
power of first-principles simulations.

It should be pointed out that in most first-principles
calculations of two-dimensional materials, the 2D system
is repeated periodically while using a large interlayer dis-
tance. In such a setup, the splitting does not vanish at
the zone center, due to the spurious long-range interac-
tions with the periodic copies. The equality of LO and
TO frequencies at zone center can be enforced by simply
omitting the 3D splitting19, but the dispersion at small
momenta remains erroneous due to spurious interactions
between the periodic images. Alternatively, the authors
of Ref. 20 study zone-border phonons so that LO phonon
modes in neighbouring layers are out-of-phase. In this
case, the electric fields generated by periodic images can-
cel out at long wavelengths. However, this approach also
removes the effects of the electric field generated by a sin-
gle isolated layer, and so it is not completely satisfactory.
In this work we study in detail the LO-TO dispersions in
2D materials, that is their slope splitting at the zone cen-
ter as well as the transition to a flatter dispersion for the
LO mode at larger momenta. This is accomplished by
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formulating a detailed and quantitative analytical model
that takes into account the subtle effects of screening in
2D, and by performing density-functional perturbation
theory (DFPT) calculations of the LO-TO splitting in
the appropriate open boundary 2D framework, using our
implementation8,21 of Coulomb cutoff techniques22,23 in
the relevant codes (PWSCF and PHONON) of the Quan-
tum ESPRESSO distribution11,24. This latter approach
unlocks the full potential and versatility of DFPT meth-
ods for 2D systems, and allows us to study LO-TO split-
ting in different monolayers, multilayers and heterostruc-
tures, providing the insight needed to interpret the re-
sults of various experimental setups and their effect on
transport measurements.

In order to frame the discussion, we begin with intro-
ducing our analytical model. We are interested in the
dispersions of LO and TO phonons near the Γ point in
2D materials or layered 3D materials, and we consider
a phonon of in-plane momentum qp. For simplicity, we
use the |qp| → 0 limit of the phonon displacements and
neglect the deviation from the strictly longitudinal and
transverse nature of the phonon modes as momentum in-
creases. The displacement of atom a in the unit cell is
then given by uaLO = eaLO/

√
Ma, where Ma is the mass of

atom a and eaLO is the |qp| → 0 limit of the eigenvector
of the dynamical matrix corresponding to the LO mode,
normalized over the unit cell. The origin of the LO-TO
splitting in polar materials is the polarization density
generated by the atomic displacement pattern uaLO and
the associated electric fields. The Fourier transform25 of
the polarization density is

P(qp) =
e2

Ω

∑
a

Za · uaLO, (1)

where e is the elementary charge and Ω is either the vol-
ume of a 3D-periodic system’s unit cell V or the area of
a 2D-periodic system’s unit cell A. The tensor of Born
effective charges associated with atom a in the unit-cell
is Za. Note that in the general case, treated in Ap-
pendix, it is not necessarily possible to define a pair of
LO/TO modes belonging to the same irreducible rep-
resentation at Γ. For simplicity and clarity, we focus
here on materials where this is possible, such as the com-
monly studied materials with hexagonal in-plane symme-
try. Further, we assume in-plane isotropy with respect to
long-wavelength perturbations, strictly in-plane phonon
displacements and diagonal Born-effective-charges ten-
sors. Within these assumptions, valid for all the materi-
als mentioned in this work, the LO and TO modes would
be mechanically similar in the long-wavelength limit. In
polar materials, however, the emergence of long-ranged
dipole-dipole interactions differentiates them. The di-
vergence of the polarization, with Fourier transform
qp ·P(qp), represents a polarization charge density. This
polarization charge density is zero for the TO mode due
to the orthogonality of the polarization and the direction
of propagation. The LO mode, however, does induce a
polarization charge density which, in turn, generates an

electric field. The Born effective charges describe the
atomic response to such a field and this leads to an ad-
ditional restoring force on the atoms and an increase in
energy cost for the displacement pattern of the LO mode
with respect to the TO mode. The resulting relationship
between the square of the frequencies of these modes is
well-known in 3D bulk materials10,11,13. As the central
analytical result of this paper, we generalize this relation-
ship for both 2D and 3D layered materials as

ω2
LO = ω2

TO +Wc(qp)
e2|qp|2

Ω

(∑
a

eqp ·Za · eaLO√
Ma

)2

,

(2)

where eqp
= qp/|qp| and Wc(qp) is a screened Coulomb

interaction discussed below. In general, the second term
on the right-hand side depends on the momentum direc-
tion qp via the Born effective charges and the screen-
ing. Here, we focus on in-plane isotropic materials for
which all quantities depend only on the magnitude of
qp for qp → 0. We capture the fundamental role of di-
mensionality in the long wavelength limit by introducing
the following simple model for the screened macroscopic
Coulomb interaction

Wc(qp) =

{
4π

|qp|2εbp
in layered 3D materials

2π
|qp|ε2D(|qp|) in 2D materials

, (3)

where, in addition to the different powers at which |qp|
appears in the Coulomb interaction, screening is consid-
ered differently in 2D and 3D. In the 3D layered materials
discussed here, screening can be described by the in-plane
dielectric constant of the bulk εbp. The splitting (sec-
ond term in Eq (2)) is then independent of momentum,
with an expression that depends notably on the effective
charges and the dielectric constant. In 2D, screening can
be described by ε2D(|qp|) = εext + reff |qp|8,26–30, where
the constant εext describes the dielectric properties of the
environment. In the case of two semi-infinite dielectrics
on each side of the 2D material, with relative permit-
tivity ε1 and ε2, we have εext = ε1+ε2

2 . In the case of
an isolated monolayer εext = 1. The effective screening
length reff describes the screening properties of the 2D
material itself. It can be approximated as reff ≈ εbpt/2
where t is the thickness of the 2D material (see Ref. 8
for details). Due to the effect of dimensionality on the
screened Coulomb interaction, the 2D splitting now de-
pends on momentum. Namely, Eq. (2) can be written in
the shorthand form ω2

LO ≈ ω2
TO + S|qp|/ε2D(|qp|) where

S is a constant depending on the effective charges and the
masses. For qp � εextr

−1
eff , the splitting is linear in |qp|

and screened solely by the surrounding medium. As mo-
mentum decreases, the electric field lines associated with
the polarization charge density spread more and more in
the surrounding medium, leading to a vanishing dipole-
dipole interaction and thus a vanishing splitting. At Γ,
although the splitting is zero, the slope of the LO disper-
sion is finite and discontinuous. It has a positive value
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FIG. 1. LO-TO splitting for three different isolated monolay-
ers. We show direct DFPT phonon calculations in 2D open
boundary conditions of the LO and TO modes as well as the
model of Eq. (2) for the LO mode. For the model we use the
first-principles parameters of table I, and εext = 1. Phonon
momenta are in the Γ−K direction. Note that the scales are
different, and the slope splitting strongly increases in going
from MoS2 to BN.

TABLE I. First-principles parameters related to LO-TO
splitting in various polar 2D materials. ω2

LO = ω2
TO +

S|qp|/ε2D(|qp|) with ε2D(|qp|) = εext + reff |qp|. The effective
dielectric constant εext of the surrounding medium is defined
as ε1+ε2

2
where ε1 and ε2 are the dielectric constants of the

surrounding media on each side. The parameter S is com-
puted from first-principles Born effective charges and phonon
displacements. The effective screening length of the mono-
layer reff is computed via an effective medium model as in
Ref. 8.

Monolayer S (eV2· Å ) reff (Å) ωTO (cm−1)
h-BN 8.40 10−2 7.64 1387.2
MoS2 1.13 10−3 46.5 373.7
MoSe2 2.09 10−3 53.2 277.5
MoTe2 4.87 10−3 69.5 223.6
WS2 2.10 10−4 42.0 345.9
WSe2 6.25 10−4 48.7 239.4
In2S2 1.37 10−2 28.62 260.8
In2Se2 6.58 10−3 35.77 179.0

S
2εextωTO

in all directions. For qp � εextr
−1
eff , one recovers

the 3D case. Indeed, in this limit, the electric field associ-
ated with the polarization density is confined within the
thickness of the monolayer. The dipoles interact within
the layer and it makes no difference whether the mono-
layer is isolated or surrounded by other monolayers (as
in a layered 3D material). The material-specific effec-
tive screening length reff determines the transition be-
tween the two regimes, and can be estimated from first-
principles8,27–30.

To complement these analytical results we performed

DFPT calculations in 2D open boundary conditions of
the of LO and TO dispersions in a selection of monolay-
ers, as shown in Fig. 1. These are in excellent agree-
ment with the 2D analytical model of Eq. (2), using
the parameters obtained independently from first prin-
ciples and reported in Table I. Note that at larger mo-
menta the LO dispersion displays some material-specific
behaviour, as seen more clearly for MoS2. Contrary to
the 3D case, the computation of the frequency of the LO
mode is not problematic at Γ exactly, since the splitting
is zero. To obtain the correct behaviour at small but
finite momentum, however, several issues arise. In stan-
dard plane-wave DFPT, spurious interactions with the
artificial periodic images yield erroneous results in the
long-wavelength limit: when the phonon momentum is
smaller than the inverse of the distance between periodic
images, the atoms of one monolayer feel the polarization
field of the neighbouring monolayers. In addition, the pe-
riodic images lead to spurious screening31,32. No matter
the amount of vacuum inserted in between the periodic
images, for sufficiently small momenta one will always
end up with the response of a 3D-periodic system, i.e. a
non-vanishing splitting, as shown in Fig. 2. This issue is
solved by using our implementation of the 2D Coulomb
cutoff technique8,21, as shown in Fig. 1. In addition,
a technical difficulty arises when using Fourier interpo-
lation schemes10,11,13, that are otherwise very useful to
obtain phonon dispersions on fine momentum grids at
minimal computation cost. In fact, the discontinuity in
the first derivative of the LO dispersion, due to the long-
ranged dipole-dipole interactions, leads to interatomic
force constants (IFC) decaying with power-law in real-
space33. Since the Fourier interpolation scheme relies on
finite-ranged IFCs, it is not suited to capture correctly
LO-TO splitting. A similar issue is present in 3D, with
a discontinuity in the value of the frequency rather than
in its derivative. In 3D, the established solution9–14 is to
construct a model of the long-ranged dipole-dipole inter-
actions in reciprocal space, such that the corresponding
contribution to the dynamical matrices can be excluded
from the interpolation process. We apply the approach
detailed in Ref. 13 to the 2D case, simply replacing the
3D screened Coulomb interaction with the 2D one (for
the case of isotropic materials it is given in Eq. (3), for
the anisotropic materials it is in the Appendix). In the
long-wavelength limit, this amounts to excluding from
the interpolation the following contribution to the dy-
namical matrix :

DZ
ai,a′j(qp → 0) =

e2

Ω

2π

|qp|
(qp ·Za)i (qp ·Za′)j√

MaMa′
(4)

where i, j are Cartesian coordinates. In principle, the
long-wavelength bare dipole-dipole interaction above is
sufficient to treat the non-analyticity of the dynamical
matrix giving rise to the power-law decay of IFCs. In
practice, we also include screening at finite momenta via
the use of the screened 2D Coulomb interaction. This
helps convergence with respect to the phonon momen-
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FIG. 2. LO-TO phonon dispersions in monolayer h-BN using
various methods. Phonons are computed on a 12×12 in-plane
grid using DFPT in 2D (with 2D open boundary conditions)
or 3D (with ≈ 15 Å of vacuum between periodic images).
The dispersions are then Fourier interpolated, using different
treatments for the long-range (LR) electrostatic dipole-dipole
interactions. “No LR electrostatics” means that we directly
interpolate the result of DFPT (with vanishing splitting at
Γ). The 3D treament of long-ranged electrosctatics (“3D LR
electrostatics”) is described in10,11,13. The 2D treatment (“2D
LR electrostatics”) is described in the text. For reference, we
include direct single q-point calculations: green dots for 2D
DFPT, blue triangles for 3D DFPT (with ≈ 15 Å of vacuum),
and red squares for 3D DFPT using zone border phonons and
≈ 7.3 Å of vacuum as in Ref. 20.

tum grid from which the dispersions are interpolated.
Indeed, screening brings some analytical but potentially
sharp variations to the LO dispersion. Fig. 2 shows that
this interpolation scheme is successful in reproducing the
correct long-wavelength behavior. To highlight the im-
portance of adapting DFT and DFPT to 2D materials,
we also show how standard 3D periodic boundary condi-
tions calculations fail in describing the long-wavelength
behavior of polar-optical phonons in 2D.

For a comprehensive understanding of 2D systems we
also study and propose a simple model of LO-TO split-
ting in multilayers. We take here h-BN as an example.
Van-der-Waals interactions are neglected. These might
affect the absolute value of the LO and TO frequencies
by influencing interlayer distances but they would not
change the LO-TO splitting itself since it is an electro-
static effect depending on in-plane Born effective charges
and screening. We assume that, aside from thicker slabs,
the dielectric properties of the multilayers remain un-
changed. The underlying assumption is that the perturb-
ing field and the material’s response to it are uniform
over the multilayer. Furthermore, we focus on the the
highest LO branch, with an in-phase LO mode in each
monolayer, noted here as “hLO”. We find the frequency

0 0.05 0.1 0.15
14001450150015501600

FIG. 3. Evolution of LO-TO splitting in multilayer BN as a
function of the number of layers. We show direct 2D DFPT
phonon calculations (plain lines with dots corresponding to
data points) as well as the results of the model of Eq. (5)
(dashed lines). Phonon momenta are in the Γ−K direction.
The layer separation is set to the experimental value for bulk
BN (≈ 3.25 Å). For reference, we also show the bulk limit, in
green, computed with standard 3D DFPT.

of this mode to be

ω2
hLO = ω2

hTO +
NS|qp|

(1 +Nrmonoeff |qp|)
. (5)

where the index “hTO” designates the highest TO mode
(see Appendix for details). Both the strength of the split-
ting and the screening length are multiplied by a factor
N with respect to the monolayer. We compare the model
of Eq. (5) with our DFPT calculations in Fig. 3, show-
ing excellent agreement for the slope at Γ and its evolu-
tion. Moving away from Γ, the splitting is dictated by
the screening of the 2D material and the model is in very
good agreement considering the assumptions made about
the dielectric properties of the multilayer. The model of
Eq. (5) only treats the highest LO mode of the multi-
layer, for which the polarization densities are in-phase
and the splitting effect from each layer adds up construc-
tively. The lower LO modes, noted “out-of-phase LO” in
Fig. 3, behave quite differently. In particular, they do
not display a finite slope at zone center. Indeed, the elec-
tric fields generated by the polarization densities in differ-
ent layers cancel each other in the long-wavelength limit,
due to the atomic displacements being out-of-phase. The
same argument explains the absence of splitting at zone
center for the lower TO mode in bulk h-BN with AB
stacking.

The expression in Eq. (5) offers further insights on the
2D/3D transition. As the number of layers N increases,
the slope of the LO mode increases and the range of mo-
menta over which the dispersion is linear decreases. For
increasing N the slope of the highest LO mode becomes
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very large, but the range of momenta for which the fre-
quency increases closes up around Γ34 . Eventually, we
arrive to a situation where all physically relevant mo-
menta are such that q > (Nrmonoeff )−1. In this bulk limit
(N → ∞), the difference in the squared frequencies ap-
proaches a constant value, giving rise to a finite LO-TO
splitting close to Γ, which can be estimated to be S

reff
by

considering N →∞ in Eq. (5)35. In BN, and using Table
I, we obtain S

reff
≈ 0.011 eV2. This value is within 10% of

the bulk splitting obtain in 3D DFPT (see Fig. 3), and
in excellent agreement with experimental results36,37 in
bulk h-BN. Such agreement points to a relatively easy
way to estimate this quantity from experiments or bulk
calculations.

0 0.02 0.04 0.06 0.081380
1420
1460
1500

FIG. 4. Long-wavelength behaviour of the LO-TO splitting
for isolated h-BN, monolayer h-BN on monolayer graphene
and monolayer h-BN on bilayer graphene. Phonon momenta
are in the Γ−K direction. The slope of h-BN’s LO mode
depends on the dielectric environment.

Last, in order to assess the role of environmental
screening on LO-TO phonons we consider van-der-Waals
heterostructures. These considerations are also relevant
for transport properties of heterostructures, as the LO
dispersion slope is representative of the strength of the
long-ranged polarization fields that can scatter electrons
remotely in all layers. In practice, it is essential to con-
sider that the slope of the LO dispersion at the zone cen-
ter is divided by the effective dielectric constant of the en-
vironment εext. Isolated monolayers are not always easily
fabricated36,38, and future devices will rely on Van-der-
Waals heterostructures, in which the polar 2D material
is surrounded by a variety of other 2D layers. We study
the effect of the dielectric environment by simulating h-
BN on top of monolayer and bilayer graphene (see Fig.
4). The calculations are performed with an electronic
smearing equivalent to room temperature. This smear-
ing is small enough to consider monolayer graphene as
neutral, with a constant static screening function31,39–45,
namely εgr ≈ 5.531,32. At small momenta, the graphene
layer then behaves like an insulating bulk dielectric and

the slope of the LO dispersion is divided by εext =
1+εgr

2 .
Bilayer graphene has a larger density of states at the in-
tersection of the valence and conduction bands. In this

case the smearing is enough for the bilayer graphene to
exhibit a metallic behaviour in the long wavelength limit.
The slope of the LO dispersion vanishes, as the polar-
ization field from h-BN is completely screened by the
electrons of bilayer graphene. Finally, note that in the
general case of heterostructures containing other polar
materials, the LO-TO splitting will be the result of a
complex interplay between the polarization densities and
screening properties of the various layers.

In conclusion, we use our implementation of the 2D
Coulomb cutoff within density-functional perturbation
theory to study the long wavelength limit of polar-optical
phonons in a two-dimensional framework and comple-
ment this with physical, analytical models of the interac-
tions and their screening. At the zone center, although
the splitting of LO and TO phonon modes vanishes, a
discontinuity appears in the slope of the LO phonon dis-
persion, and we provide a model to evaluate this slope in
various situations. For isolated 2D materials, the slope
can be estimated directly from the Born effective charges.
For a multilayer, we find that the slope of the highest
LO mode is proportional to the number of layers. In the
general case, the slope also depends on the dielectric en-
vironment of the 2D material. In the experimentally rel-
evant case of h-BN/graphene heterostructures, the slope
is reduced, and can even vanish when screened by the
metallic behaviour of the electrons. Last, screening from
the electrons of the 2D material occurs only for phonon
wavelengths smaller than an effective screening length.
A wavelength-independent splitting similar to bulk 3D
materials is then recovered.
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Appendix A: Computational details

Phonon calculations are performed within density
functional perturbation theory using a modified version
of the PWSCF and PHONON codes of the Quantum
ESPRESSO distribution. In particular, the modifica-
tion includes the implementation of the 2D Coulomb
cutoff for the calculation of total energy, forces, bands
and the linear response of the system to a phonon per-
turbation. We use pseudopotentials from the Standard
Solid-State Pseudopotentials (SSSP) library46 (accuracy
version), with the exception of BN, for which we use ul-
trasoft pseudopotentials within the local density approx-
imation. We use 16 × 16 × 1 electron-momentum grids,
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except when graphene is involved in which case the grid
is 64 × 64 × 1. Calculations were performed using the
AiiDA materials informatics platform47.

Appendix B: LO-TO splitting in the non-isotropic
case

The expression for the polarization density induced by
a given phonon mode ν in a single layer is:

P(rp, z) =
e2

A

∑
a

Za · uaνf(z) eiqp·rp (B1)

where rp, z are respectively in plane and out-of-plane
space variables, and f(z) is the out-of-plane profile of
the monolayer, homogeneous to an inverse distance and
normalized to unity (

∫∞
−∞ f(z)dz = 1). Like in the main

text, we use the |qp| → 0 limit of the atomic displacement
pattern uaν . The polarization density P(rp, z) induces a
potential V (rp, z) = V (qp, z)e

iqp·rp with the same peri-
odicity, given by Poisson equation

∇ · (ε(z) · ∇V (r)) = 4π∇ ·P(r), (B2)

where ε(z) is a dielectric tensor depending on z. Al-
though we preserve generality in the notation of phonon
mode ν, note that a field is effectively generated only
if the divergence of the polarization is non-zero (which
is true for optical modes with a longitudinal compo-
nent). To solve Eq. B2, it is convenient to work in
reciprocal space. In the context of 2D materials, since
there is a periodicity only in the plane, we work with
in-plane Fourier Transforms. However, the third dimen-
sion must be treated with care to account for screen-
ing properly. In the following, the subtleties of dimen-
sionality and the treatment of the out-of-plane direction
will be hidden in the screening. The in-plane Fourier
Transform of P(r) is defined as follows. In a 2D-periodic
framework, we integrate over the out-of-plane variable
P(qp) =

∫
P(qp, z)dz. The potential induced by a slab of

polarization density extends much further than its source
in the out-of-plane direction, as it decays as e−|qp||z|.
This calls for a slightly different definition of the in-plane
Fourier Transform in the 2D framework. Since we are
only interested in the value of the potential within the
material, we define the in-plane Fourier Transform of the
potential as V (qp) =

∫
V (qp, z)f(z)dz in 2D. Note that

f(z) is normalized to unity. In the 3D-periodic frame-
work, we work with the usual average over the unit cell

g(qp) = 1
c

∫ c/2
−c/2 P(qp, z)dz and V (qp) = 1

c

∫
V (qp, z)dz,

where c is the size of the unit cell in the out-of-plane
direction.

Given those definitions, the Poisson equation is solved
by:

V (qp) = Wc(qp)qp ·P(qp) (B3)

where Wc(qp) is the screened Coulomb interaction. As-
suming in-plane isotropy for the dielectric properties of
the material, we can write it as in the main text:

Wc(qp) =

{
4π

|qp|2εbp
in 3D

2π
|qp|ε2D(|qp|) in 2D

(B4)

with εeff(|qp|) = εext + reff |qp|, and εbp is the in-plane
dielectric constant of the bulk. See the appendix of Ref.
8 for more details. In the anisotropic case, εbp and reff

become tensors and we use the following model in the
long-wavelength limit:

Wc(qp) =


4π

qp· ε↔b·qp
in 3D

2π

|qp|
(
εext+

qp· r
↔

eff ·qp

|qp|2
|qp|

) in 2D (B5)

Each component of r↔eff can be obtained separately with
the same method as in the isotropic case8.

The associated electric field is:

E(qp) = −∇V (qp) = −Wc(qp) (qp ·P(qp)) qp (B6)

The corresponding force on atoms a is:

Fa = E ·Za (B7)

Fa = −Wc(qp)

(
qp ·

e2

Ω

∑
a′

Za′ · ua
′

ν

)
(qp ·Za) (B8)

This bring the following additional term to the dynamical
matrix:

DZ
ai,a′j = − 1√

MaMa′

∂Fa,i
∂ua′j

(B9)

DZ
ai,a′j =

e2

Ω
Wc(qp)

(qp ·Za)i (qp ·Za′)j√
MaMa′

(B10)

Where the index Z indicates that this is only the contri-
bution related to Born-effective charges. After selecting
the eigenvalue ω2

ν by multiplying left and right by (the
|qp| → 0 limit of) a generic eigenvector eν , we obtain
that the frequency is increased by:

∆ω2
ν(qp) =

∑
a,i,a′,j

e2

Ω
Wc(qp)

(qp ·Za)i e
a,i
ν (qp ·Za′)j e

a′,j
ν√

MaMa′

(B11)

∆ω2
ν(qp) =

∑
a,a′

e2

Ω
Wc(qp)

(qp ·Za · eaν)
(
qp ·Za′ · ea

′

ν

)
√
MaMa′

(B12)

∆ω2
ν(qp) =

e2

Ω
Wc(qp)

(∑
a

qp ·Za · eaν√
Ma

)2

(B13)

with Ω = A or V depending on the dimensionality.
Here we have made no assumption on the dependency
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of phonon eigenvectors or Born effective charges on the
direction of the phonon momentum. Using the LO
phonon eigenvector in a material with hexagonal in-plane
symmetry like in the main text, we have ∆ω2

LO(qp) =
ω2

LO(qp) − ω2
TO(qp). In more general cases of 2D mate-

rials with lower symmetry, it is not always possible to
define a pair of LO/TO modes that belong to the same
irreducible representation at Γ. In this case we would
have ∆ω2

ν(qp) = ω2
ν(qp)− ω2

ν(Γ)

Appendix C: Evolution with the number of layers

To compute the splitting of the highest LO branch
(hLO) in multilayers, we first assume that the effec-
tive charges Za are unchanged. We then notice that,
with respect to the single layer, the squared term on
the right-hand side of Eq. B13 is multiplied by a fac-

tor
(
N√
N

)2

= N , where the numerator comes from the

sum over the atoms while the denominator comes from
the normalization of the phonon eigenvectors.

For the screening, we have the same Coulomb in-
teraction, but with εmultieff (|qp|) = ε0eff + rmultieff |qp| and
rmultieff = Nrmonoeff because reff is proportional to the thick-
ness of the 2D material8. We thus have:

ω2
hLO − ω2

hTO =
2π ×N

(1 +Nrmonoeff |qp|)
e2|qp|
A

(C1)(∑
a

eqp
·Za · eaqpLO√

Ma

)2

Where the squared term on the right-hand side is
summed only on the atoms of one layer. Thus, it has
the same value as in the monolayer case and all the con-
sequences of having several layers is explicitly conveyed
by the presence of the N factors.
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