We provide geometric inequalities on $R^n$ and on general manifolds with nonnegative Ricci curvature by employing suitable monotone quantities along the flow of capacitary and $p$-capacitary potentials, as well as through related boundary value problems. Among the main achievements, we cite [(i)] a Willmore-type inequality on manifolds with nonnegative Ricci curvature leading in turn to the sharp Isoperimetric Inequality on $3$-manifolds with nonnegative Ricci curvature ; [(ii)] enhanced Kasue/Croke-Kleiner splitting theorems ; [(iii)] a generalised Minkowski-type inequality in $R^n$ holding with no assumptions on the boundary of the domain considered except for smoothness ; [(iv)] a complete discussion of maximal volume solutions to the least area problem with obstacle on Riemannian manifolds and its relation with the variational $p$-capacity.
Geometric Applications of Linear and Nonlinear Potential Theory / Fogagnolo, Mattia. - (2020 Feb 13), pp. 1-164. [10.15168/11572_252169]
Geometric Applications of Linear and Nonlinear Potential Theory
Fogagnolo, Mattia
2020-02-13
Abstract
We provide geometric inequalities on $R^n$ and on general manifolds with nonnegative Ricci curvature by employing suitable monotone quantities along the flow of capacitary and $p$-capacitary potentials, as well as through related boundary value problems. Among the main achievements, we cite [(i)] a Willmore-type inequality on manifolds with nonnegative Ricci curvature leading in turn to the sharp Isoperimetric Inequality on $3$-manifolds with nonnegative Ricci curvature ; [(ii)] enhanced Kasue/Croke-Kleiner splitting theorems ; [(iii)] a generalised Minkowski-type inequality in $R^n$ holding with no assumptions on the boundary of the domain considered except for smoothness ; [(iv)] a complete discussion of maximal volume solutions to the least area problem with obstacle on Riemannian manifolds and its relation with the variational $p$-capacity.File | Dimensione | Formato | |
---|---|---|---|
Fogagnolo-phdthesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione