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We provide geometric inequalities on R” and on general manifolds with nonnegative
Ricci curvature by employing suitable monotone quantities along the flow of capacitary
and p-capacitary potentials, as well as through related boundary value problems. Among
the main achievements, we cite

(i) a Willmore-type inequality on manifolds with nonnegative Ricci curvature leading
in turn to the sharp Isoperimetric Inequality on 3-manifolds with nonnegative Ricci
curvature ;

(ii) enhanced Kasue/Croke-Kleiner splitting theorems ;

(iii) a generalised Minkowski-type inequality in R" holding with no assumptions on
the boundary of the domain considered except for smoothness ;

(iv) a complete discussion of maximal volume solutions to the least area problem with
obstacle on Riemannian manifolds and its relation with the variational p-capacity.
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Notation and conventions

We briefly discuss some of the conventions adopted. Most of them will be readily recalled
along the thesis.

Riemannian manifolds and submanifolds

Riemannian manifolds will be usually denoted by (M, g). We address the reader to
[Pet06] for the Riemannian geometric notions we employ. We denote the Levi-Civita con-
nection by D, the Riemann curvature by Riem and the Ricci curvature by Ric. Let N — M
be a codimension-1 submanifold. In the present work, submanifolds will mostly appear
as boundaries of open subsets of () or smooth level sets of functions. We denote by h its
second fundamental form, and by H its mean curvature, that we define just as the trace
of h. No normalising constants are considered in the definition. Sometimes, in order to
highlight the submanifold involved, we will add its name as a subscript. For example,
Hjy denotes the mean curvature of N.

We largely use the following computational convention. Let N be a codimension-1
submanifold of M, and let f be a smooth function on an open neighbourhood of x € N.
Submanifolds are always endowed with the Riemannian metric inherited by the ambient
metricg, and we denote it by ¢y or by g7, where in the last notation the submanifold is
understood. Then, we denote the normal derivative of f with respect to N on x as

D*f(x) = (Df [v) (x)v(x),

where v(x) is a unit normal vector to N in x, and where by (X |Y) we are denoting
<(X,Y). The orientation chosen for v is always the one pointing towards the (usually
unique) unbounded component of M \ N. The dependence on x is usually omitted. Ac-
cordingly, we define the tangential derivative of f with respect to N as

D'f=Df-D'f,

where we omitted the point where the computation is performed. It is straightforward
to observe that

[Df* = D f* + D fP2.

With |T|, we denote the norm of the tensor T with respect to the underlying metric g.
When different metrics are considered, a suitable subscript appears. The submanifold N
the above formalism refers to is often understood, the typical situation being the follow-
ing. Let f be a function of the norm of some derivative tensor of a function u, such as
the gradient Du or the Hessian tensor DDu. In this case, when no other information is
added, the tangential and normal computations at a point x take place with respect to the
level set of u the point x belongs to.

Volumes, areas and perimeter

We are denoting by dy the volume element of the ambient metric g, and, given a sub-
manifold N of M, by do the volume element of the metric g induced by M on N. We



2 Notation and conventions

are referring to it as area element induced on N. Given a measurable set () C M, we de-
note by || its volume measure, that we are going to confuse with the Lebesgue measure
induced by g. Similarly, for a smooth submanifold N we let

IN| = /da.
N

Occasionally, in Chapters 1 and 2, when N is not smooth, but still has finite n — 1-
dimensional Hausdorff measure 2" ~! , we let |[N| = s#"}(N).

Sets with nonsmooth boundary are important mostly in Chapter 3, where we are us-
ing the theory of sets with finite perimeter. We decided to collect definitions and notions
employed in Subsection 3.2.1. Here, we just point that our main source about tools of
Geometric Measure Theory is [Mag12].

Dimension

Except when differently indicated, the dimensions of the ambient metric this thesis con-
sider are the following. In Chapter 1, the dimension of the underlying metric is n > 3.
Chapter 2, that takes place in the ambient IR", is instead valid in dimension n > 2. How-
ever, we remark that the conclusions for n = 2 are somehow different, and we are never
going to consider them. Chapter 3 involves Riemannian manifolds of dimension n > 2.
Appendix A, being related to Chapter 1 holds for n > 3 while Appendix B, that we apply
in Chapter 2 and 3 makes sense for n > 2.



Introduction

Geometric inequalities are from long ago thoroughly studied in both Analysis and Ge-
ometry, with also ground-breaking incursions in General Relativity. To name the maybe
most famous one, let us mention the Isoperimetric Inequality in IR", the ultimate version
of which, holding true for sets with finite perimeter, was obtained, according to [Mir97],
by adding Federer’s insights of [Fed58] to De Giorgi’s [DG58]. In curved Riemannian
settings, we cite the celebrated version on compact Riemannian manifolds with positive
Ricci curvature known as Levy-Gromov Isoperimetric Inequality, obtained in [Gro80]
building on [Lev22], and the one on noncompact Cartan-Hadamard manifolds of dimen-
sion 3 and 4 due respectively to Kleiner [Kle92] and Croke [Cro84]. Let us briefly point
out that the general case, known in literature as Cartan-Hadamard conjecture is still object
of ongoing research, and that a maybe decisive attempt at its solution has been proposed
in [GS19]. Among the countless generalisations and applications of the Isoperimetric
Inequality developed through more of a century of Mathematics, let us highlight now
the family of inequalities known in literature as Alexandrov-Fenchel Inequalities, involv-
ing quantities called quermassintegrals, that are suitable integrals of elementary functions
of the principal curvature of the boundary 02 of an open bounded sets with smooth
boundary (). These inequalities originated in [Ale37; Ale38; Fen29], where they were
shown to hold for convex sets (). The simplest inequality in this family is often referred
to as Minkowski Inequality, and was first obtained for convex sets in [Min03], and can be
written as follows

n—2
E TR / H
<
(o) = o [ 9 W
Q)

where by 5"~ we denote the unit sphere of R”. In recent years, effort has been put in
order to go beyond the convex settings, as well as to establish this inequality on relevant
Riemannian manifolds. We are mentioning some of these extensions available in liter-
ature later on in this Introduction. For now, let us just point out that some motivations
behind this inequality are the challenge this problem offers and its importance in General
Relativity. For what it concerns the latter point, we refer to the thorough survey [Mar09],
where, precisely in Subsection 7.1, the author clearly explains how the Penrose inequality
for shells of matter collapsing at the speed of light in flat Minkowski space, conjectured
in [Pen73], is related to (1), as first observed by Gibbons in his Ph. D. thesis [Gib73].

We focus now on a mathematical technique that has been recently employed in the
context of the Minkowski inequality. In order to best describe the approach adopted
in this thesis, we explain how the Minkowski Inequality can be deduced through the
Inverse Mean Curvature Flow (IMCF), a geometric evolution equation whose weak for-
mulation led, just to mention the most striking application, to the proof by Huisken and
IImanen, [HIO1], of the Riemannian Penrose Inequality, constituting a fundamental step
in the realisation of the conjectures of the aforementioned [Pen73]. Its classical, smooth
formulation consists in evolving the immersion Fy : 0() — R" by

;F(t,x) = %(t,x)v(t,x), F(0,x) = Fy(x),
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yielding, at least for a small T > 0, a sequence of sets {Q)}c(o ) with boundaries 90}
given by the immersions F(t,-) : 9Q) — R", and where H(t, x) and v (¢, x) are respectively
the mean curvature and the outward pointing unit normal of 9();. Clearly, what just
described makes sense for a strictly mean-convex initial hypersurface d(), that is, with
strictly positive mean curvature, an assumption obviously satisfied by convex initial sets.
Along this evolution, one can then define the quantity

( |aQt|_7 /H dO’t, (2)

o)

where do; is the area element induced on 9(); by the ambient flat metric. A direct com-
putation then shows that 2(t) is a monotone nonincreasing function. In particular, if
T = 400 and, as geometrically desirable, 0(); converges smoothly enough to expand-
ing spheres so that the scaling invariant 2(f) converges to its value on spheres, one gets
(1). These strong requirements are actually shown to be satisfied in the class of bounded
starshaped sets with smooth strictly mean-convex boundary in [Ger90; Urb90], yielding,
through the argument just outlined the extension of the classical Minkowski inequality to
this broader class of sets. This scheme, together with the derivation of other Alexandrov-
Fenchel inequalities, is carried out in details in [GL09]. We point out, on the other hand,
that this approach is suitable only for those hypersurfaces that do not change topology
along their evolution. For example, in R", there is no chance to employ it if the initial
boundary does not have spherical topology. These topological restrictions can be over-
taken considering the delicate notion of weak solutions introduced by Huisken-Ilmanen
in the aforementioned [HI01], that allows, as lectured in [Hui], to prove (1) in the broader
class of outward minimising sets with smooth boundary. Leaving the details of this ap-
proach to the sequel, where we are drawing a systematic comparison between that and
our methods, we just say here that a bounded set E with finite perimeter is outward
minimising if P(E) < P(F) for any E C F, and that, if the boundary of an outward min-
imising set is smooth, then it is mean-convex, as immediately seen through the standard
variational argument. The inclusion of the class of strictly starshaped sets with smooth
strictly mean-convex boundary into this one substantially follows from the combination
of [Ger90; Urb90] and [HIO1], and we refer the reader to Proposition 3.25 for a complete
proof of (a generalised version of) this result.

Finally reaching the starting point of this work, we do now recall another celebrated
geometric inequality, that along this work will be referred to as Willmore-type inequality,
asserting that a bounded set (3 C R" with smooth boundary satisfies

< [
n_
o)

This inequality was first obtained for surfaces inside IR® in [Wil68], where it is usually
called Willmore inequality, and later extended to all dimensions in [Che71]. We remark
that the Willmore energy, that is the right hand side of (3) for n = 3, arises also in the
context of cell membranes, as a first approximation of the Helfrich energy introduced in
[Hel73]. Despite, on those sets satisfying the Minkowski Inequality, the latter implies
(3) as a straightforward application of the Holder inequality immediately shows, the
Willmore-type inequality holds true with no assumptions on () other than smoothness of
its boundary. Moreover, equality is achieved in (3) only on balls. Observe that an Inverse
Mean Curvature Flow-proof is viable also for (3), considering, along the evolution of a

©)
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set with strictly mean-convex boundary, the function
W(E) = / H" (£, %) doy )
a0y

and finally obtaining (3) as a consequence of its monotonicity. As before, this scheme
allows to prove the Willmore-type inequality for starshaped sets with smooth strictly
mean-convex boundary, by appealing to [Ger90; Urb90], and most likely also for out-
ward minimising sets by combining the deep weak notion of IMCF of [HIO1] with the
observations performed in [Hui].

A different approach to (3) was introduced some years ago by Agostiniani and Mazz-
ieri in [AM20]. They considered the boundary value problem

Au=0 inR"\Q
u=1 onoQ (5)
u(y) -0 as|y| = +oo,

and showed that the the function

) = ¢ / Dyl do, te (0,1] ©)
fu=t)

is monotone nondecreasing, and in particular by coupling
wa)y = (n—2) / Dul"2 [H — (2=1) |Du|] do > 0
Q)

with
IS"7Y = lim U(t) < U(1), )
t—0*

they showed, with the aid of the Holder inequality, (3). Moreover, since the monotonicity
is strict unless () is a ball, this also shows that equality in (3) is achieved just on balls,
recovering the full statement of [Che71]. This approach immediately shows an analogy
with the IMCF’s one, since it is based on a monotonic quantity along a suitable evolution
of the set considered, but it also displays the power arising from the simplicity of (5).
Indeed, being the solution of this exterior boundary value problem well known to exist,
and to be smooth, thus classical, both long-time existence results as that of [Ger90; Urb90]
for the IMCEF, or the necessity of a delicate notion of weak solution as that of Huisken-
IImanen’s weak IMCF are immediately by-passed. Moreover, no starshapedness or out-
ward minimising assumptions are necessary, nor mean-convexity of the boundary. Let
us also observe that also (7) follows from very classical asymptotic expansions at spatial
infinity of the solution to (5).

The starting point of the present thesis is to generalise and better understand this new
approach to geometric inequalities. This is done essentially in two directions. The first
one concerns the application of this method to complete noncompact manifolds with
nonnegative Ricci curvature. The second one, concerning instead flat IR”, regards the
nonlinear generalisation of it, that is, considering the evolution given by the level sets
of the solution of the nonlinear version of (5), where the laplacian is replaced by the p-
laplacian. The following two Sections are devoted to illustrate the main results arising
from these lines of research. They will be developed in Chapter 1 and Chapter 2.
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Sharp geometric inequalities in nonnegative Ricci curvature

Looking at [AM20], one can realise that the main inequalities, actually based on the
Bochner identity, formally hold true even if the ambient is a nonnegatively Ricci curved
complete noncompact Riemannian manifold (M, g). We do actually show that this is
truly the case, and prove that the function U defined as in (6) is monotone nondecreas-
ing, everytime a solution to

Au=0 inM\Q
u=1 onodQ) (8)
u(y) —» 0 asd(O,y) — +oo,

with O being a fixed point in () and d the distance on M, exists. Clearly, the definition
of U is given in terms of such solution. It is known, and re-proved in Theorem 1.14, that
a solution to (8) exists if and only if (M, g) is nonparabolic, that is, if it admits a positive
Green’s function. As in [AM20] we show that the monotonicity property of U is in fact
shared by a family of functions Uy : (0,1] — R defined by

Up(t) = tﬁ(ﬁ%)/ Dulf*! do,
{u=1t}
if p = (n—2)/(n—1). If, for p in this range, Ug(ty) = 0 for some ty € (0,1], we
do show that ({u < tp}, g) must be isometric to a truncated cone. The statement of this
Monotonicity-Rigidity Theorem for Ug in nonparabolic manifolds with nonnegative Ricci
curvature is to be found in Theorem 1.19.

Recalling that the monotonicity of Ug, and precisely that of U,,_» = U, constituted the
main ingredient in the recent potential-theoretic proof of the Willmore-type inequality
outlined above, we are committed to apply that in order to derive a Willmore-type in-
equality for manifolds with nonnegative Ricci curvature. However, a serious issue arises
in the characterisation of the limit of Ug as t — 0T, since, as we detail in Remark 1.39,
there is no hope to derive pointwise Euclidean-like asymptotic expansions of the gradient
in our general setting, ultimately due to the possibility of infinite topology. On the other
hand, we overcome this problem by working out suitable delicate integral asymptotic
expansions, in the spirit of [CM97b]. This is an important technical difference from the
Euclidean case. This will be carried out in Section 1.4, that culminates in the computation

lim Ug(t) = Cap(Q)' P/ "= AVR(g)#/ ("=2) (n — 2)PH1 |51, ©)

t—0*

see Proposition 1.40 and (1.4.28). With AVR(g), appeared above, we denote the Asymp-
totic Volume Ratio of g, defined as

AVR(g) = lim O(r)

r—+o00

and where

_ [B(x,7)]
(0,400) 27— O(r) = B’

with B” denoting the unit ball of R". With B(x,r) we indicate the geodesic ball of radius
r centered at x € M. The classical Bishop-Gromov Theorem [Bis63; Gro81] ensures that ©
is monotone nonincreasing and thus admitting a limit as » — +o0, that actually does not
depend on the point x. Such limit AVR(g) is then included in [0, 1], and is 1 only on flat
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R". We say that (M, g) has Euclidean volume growth if AVR(g) > 0. The limit in (9) actu-
ally tells that a nontrivial Willmore-type inequality is likely to be deduced only if (M, g)
has Euclidean volume growth. We notice that by a known characterisation, see [Var82],
a complete noncompact manifold with nonnegative Ricci curvature is in particular non-
parabolic. In fact, such characterisation states that a complete noncompact Riemannian
manifold with Ric > 0 is nonparabolic if and only if, roughly speaking, the volume of
geodesic balls grows faster than quadratically, see Theorem 1.4.

The first main result of this thesis asserts that on a complete noncompact Riemannian
manifold (M, g) with Ric > 0 and Euclidean volume growth it holds

n—1
do, (10)

H

n—1

avr@gls < [ |2
Q)

with equality achieved only if (M \ (), g) is isometric to a truncated cone. This is the
content of Theorem 1.44. This result encompasses a variety of manifolds of interest. For
example, for n > 4, there exists an important class of complete noncompact Ricci flat
Riemannian manifolds with 0 < AVR(g) < 1, that is the class of Ricci flat Asymptotically
Locally Euclidean (ALE for short) manifolds. We refer the reader to Definition 1.48 for the
precise notion. For the time being, we just recall that an n-dimensional Riemannian man-
ifold is ALE if it is asymptotic to ((R"\ {0})/T’, gr+), where I is a finite subgroup of
SO(n) acting freely on R" \ {0}. This family of Riemannian manifolds is widely studied.
In this regard, we first mention that in [BKN89] it is proved that any Ricci flat manifold
with Euclidean volume growth and strictly faster than quadratic curvature decay is ac-
tually ALE. Moreover, we point out that 4-dimensional Ricci flat ALE manifolds appear
as important examples of gravitational instantons, that are noncompact hyperkhéler 4-
manifolds with decaying curvature at infinity, introduced by Hawking in [Haw?77] in the
framework of his Euclidean quantum gravity theory. An explicit example is given by the
famous Eguchi-Hanson metric, introduced in [EH79], where n = 4, Ric = 0 and I' = Z,.
We remark that ALE gravitational instantons are completely classified in [Kro89b] and
[Kro89a]. Concerning the general class of gravitational instantons, let us cite, after the
important works of Minerbe [Min0%a; Min10; Min11], the recent Ph.D. thesis [Chel7],
where gravitational instantons with strictly faster than quadratic curvature decay are
classified. We refer the reader to the latter work and to the references therein for a more
complete picture on this subject. Our Willmore-type inequality actually applies to ALE
manifolds with nonnegative Ricci curvature, where it improves to

. H
inf / ’ 1
[9)

with equality achieved on truncated cones with link homothetic to (5" ! /T, ggu1 ). No-
tice in particular that if I is trivial one recovers the classical Willmore-type inequality
described above with its rigidity statement. The lower bound of the Willmore-type func-
tional shown in (10) being actually an infimum is a fact that holds true for a larger class
of manifolds. Indeed, as proved in Theorem 1.47, it is sufficient to assume the hypotheses
of Theorem 1.44 together with a quadratic curvature decay condition. This will immedi-
ately yield (11) as shown in Corollary 1.49. Understanding metric and topological conse-
quences of curvature decay conditions is a very interesting and widely studied problem
in geometric analysis. Dropping any attempt of being complete, we refer the interested
reader to the aforementioned [BKNG89], to the seminal [CGT82], to [Reil5], where the case
n = 3 is considered, and to [Yeg09] and the references therein.

n—1 ’ nfll

do | (O C M bounded with smoothboundary » = cir T’ (11)
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To make the picture more complete, let us also mention that Willmore-type inequali-
ties are proven in [AM17] for asymptotically flat (AE) static metrics in the framework of
General Relativity, and in [Sch18] for integral 2-varifolds in Cartan-Hadamard manifolds.

As for the Euclidean case, Theorem 1.19 will actually be proved working in the man-
ifold (M \ O, §) where § is conformally related to g by

g=urzg,

where u is a solution to (8). In this setting, integral identities and splitting techniques are
employed to infer the monotonicity of (the conformal analogue of) Ug and the related
rigidity. We point out that these techniques can easily produce a more general version of
Theorem 1.19 for nonparabolic ends with Ric > 0 of a noncompact Riemannian manifold.
This conformal splitting method was introduced in [AM15] and has proved to be fruitful in
various other situations, such as [AM17; BM18] and [BM17], where it has been applied
to the relativistic setting. A different approach to exterior problems, but still relying on a
conformal change of metric, has been introduced in [BMM19]. As a consequence of that
approach, the authors were able to prove that in IR”, suitable, new pinching conditions
on the mean curvature of Q) or on the normal derivative of u at d() force () to be a
ball. Here, we show that those results can be achieved also in nonparabolic manifolds
with nonnegative Ricci curvature. To do so, we propose an alternative, easier tool, based
on a maximum principle for [Du|/u(*~1/("=2) and the Hopf boundary lemma, that we
interpret as a Monotonicity-Rigidity Theorem for the function

n—1

{u=t} Un=2

Two main consequences of the monotonicity-rigidity properties of Uare described in
Section 1.5, together with some other consequences of the monotonicity of Ug , and, as
just hinted, constitute the analogues of the main results of [BMM19] in our general Rie-
mannian setting. As for the Willmore-type inequality, the main difficulty in reaching
them lies in the asymptotic behaviour of U as t — 07, described in Proposition 1.43.

So far, we have considered nonparabolic Riemannian manifolds with Ric > 0. We now
turn our attention to parabolic Riemannian manifolds with nonnegative Ricci curvature.
As we will see in Section 1.2, for this class of manifolds, problem (8) does not admit a
solution, while the following problem does

Ay =0 in M\ Q
=0 on 00} (12)
P(y) = +oco asd(O,y) — +oo,

where () C M is any bounded and open subset with smooth boundary. Inspired by the
fact that problem (12) presents strong formal analogies with the conformal reformulation
of problem (8) in terms of § (see problem (1.3.13) below), we also provide a Monotonicity-
Rigidity Theorem for parabolic manifolds with Ric > 0 involving ¢ in place of u. For
B > 0, we define the function ¥ : [0,00) — R as

¥5(5) = [ IDylFlde,
{yp=s}
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and we prove that it is monotone nonincreasing if § > (n —2)/(n — 1), with deriva-
tive vanishing at s9 € [0, c0) only if (¢ > sp, g) is isometric to a truncated cylinder, see
Theorem 1.54. In complete analogy with the nonparabolic case, we may also define the
function

¥oo(s) = sup Dy, (13)

{y=s}

and prove that it is nonincreasing, as stated in Theorem 1.55. The coupling of the Mono-
tonicity - Rigidity Theorems for nonparabolic and parabolic manifolds of nonnegative
Ricci curvature yields as a straightforward consequence an enhanced version of a theo-
rem of Kasue, [Kas83, Theorem C (2)], see also [CK92], asserting that if a smooth bound-
ary 0Q) C M has mean curvature H < 0 on the whole 0Q), then H = 0 on Q) and M \ Q)
is isometric to a half cylinder. Our result actually gives precise lower bounds for the
supremum of H in terms of our monotone quantities and their derivatives, see Theorem
1.56. We point out that Kasue/Croke-Kleiner result holds true also in a compact ver-
sion with a two-connected-components boundary. We recover, through our techniques,
also (a slightly weaker form of) such statement in Theorem 1.59. We inform the reader
that similar splitting theorems have been recently provided in dimension 3 under a mild
scalar curvature lower bound in [G]19].

Finally, we combine our sharp Willmore-type inequality (10) with curvature flow
techniques along the lines of an argument presented by Huisken in [Hui]. We obtain
a characterisation of the infimum of the Willmore functional in terms of the isoperimetric
ratio of complete noncompact 3-manifolds with nonnegative Ricci curvature, refining the
analogous result stated in the aforementioned contribution. We get in fact

2
3 / H"do
OF e avr

inf =
367|Q))? 167

(&), (14)

on any complete noncompact Riemannian manifold (M, g) with Ric > 0 and Euclidean
volume growth, yielding in turn

o0
O

> 3671 AVR(Q). (15)

The key argument lectured by [Hui] involves the computation of the evolution along the
Mean Curvature Flow of a quantity we call Isoperimetric Difference, namely

D(t) = [0x[*/* — C|Q|,

with )y = () and some positive constant C. Such quantity is indeed shown to be mono-
tone if along the evolution some lower bound on the Willmore energy is preserved, and
if the flow vanishes as t — T~ for some T > 0. In this case, consequently, an Isoperi-
metric Inequality is deduced with constant related to such lower bound. So, we plug
our new Willmore inequality (10) for n = 3 into this argument, combine it with known
important results in the weak Mean Curvature Flow of mean-convex sets and with the
Kasue/Croke-Kleiner Theorem we have re-discovered to get (14). We are also able to
show that equality holds in (15) if and only if () is isometric to a ball of flat R". Beside the
characterisation of the isoperimetric constant in terms of the Asymptotic Volume Ratio,
the novelties with respect to [Hui] lie in the rigidity statement and in the fact that the
infimum of the Willmore functional is taken over the whole class of bounded open sub-
sets () with smooth boundary, and not just over outward minimising subsets. All of these
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improvements substantially come from our optimal Willmore-type inequality (10). We
wish to remark that the structure of complete noncompact 3-manifolds with nonnegative
Ricci curvature is well understood, see [Liul3], although this knowledge never enters in
the argument employed. Actually, as pointed out in [Heb99, Theorem 8.4], a positive
nonsharp isoperimetric constant for complete noncompact Riemannian manifolds with
Ric > 0 and Euclidean volume growth is known to exist. This was realised for the first
time most likely in [Var95], and can be achieved rigorously through the methods em-
ployed in [Car94].

The Isoperimetric Inequality is well known to be related to a huge variety of issues.
We discuss some of them in Subsection 1.7.4. Briefly, we consider the Sobolev Inequal-
ity and the Faber-Krahn Inequality, both achieving optimal constants deduced from (23)
on three-dimensional ambient manifolds, we state and comment the natural higher di-
mensional conjecture and compare the Isoperimetric Inequality with the Isoperimetric
problem.

Let us finally observe that relations between isoperimetry and mean curvature func-
tionals date back to Almgren [Alm86], while a first derivation of isoperimetric inequali-
ties through a curvature flow has been obtained by Topping in the case of curves [Top98].
Isoperimetric inequalities in R"” and in Cartan-Hadamard manifolds through curvature
flows have been established by Schulze in [Sch08] and [Sch18], while the application to
manifolds with nonnegative Ricci curvature is suggested in the already mentioned [Hui].
The techniques lectured in [Hui] have interesting applications also in connection with the
relativistic ADM mass, see [JL.17] for the details.

Geometric aspects of p-capacitary potentials
The natural nonlinear generalisation of problem (8) is

Apu=0 inR"\Q
u=1 ond) (16)
u(y) >0 as |y| - +oo,

for O C R" a bounded set with smooth boundary and where the p-laplacian operator
Ap acts on smooth functions f as A,f = div(|Df|F~?Df). In general, a Sobolev-type no-
tion of p-harmonic functions is available, and it allows to show existence of a function
u € W' weakly solving (16), and where the boundary value is reached smoothly. In
Chapter 2, we are committed to study monotonicity formulas along the level set flow of
the solution u of the problem above, that we refer to as the p-capacitary potential of ().
However, after guessing the correct quantities that should be formally smooth, a major
problem appears at once. Indeed, the lack of smoothness for solutions to (16), the optimal
regularity being mild %, invalidates most of the arguments employed in the linear case
to infer monotonicity, the most dramatic issue being the lack of a satisfactory Sard-type
property. On the other hand, it is evident that all of the consequences we were able to
draw from the monotonicity formulas in the linear setting just followed from Ug(1) > 0
and lim;_,o+ Ug(t) < Ug(1). Some reason for optimism can then arise, since Tolksdorf’s
Hopf lemma [Tol83] for p-harmonic functions and Kichenassamy-Veron’s [KV86] asymp-
totic expansion ensures that the solution to (16) is actually smooth in a neighbourhood of
() as well as sufficiently far away. What we succeed to prove in Theorem 2.7 is in fact an
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effective monotonicity property of the function

() = —Br-1 i) / IDu| BV g
(u=1}

defined only on regular values of u, for B > (n — p)/[(p — 1)(n — 1)]. By effective mono-
tonicity, we substantially mean that (Ug )'(1) > 0 and lim; o+ Ug(t) < Ug (1). Besides
their geometric implications, these formulas have a technical relevance on their own, as
they persist through all the possible singularities of the flow. It is worth noticing that, in
the present framework, the flow singularities correspond to the critical points of 1, and
these might in principle be arranged in sets with full measure.

The main geometric implication of such effective monotonicity is an extension of the
Minkowski Inequality (1), holding for every bounded and smooth subset of IR", in which
the total mean curvature of the boundary is replaced by the L!-norm of the mean cur-
vature, whereas the perimeter of the set () is replaced by the one of its strictly outward
minimising hull ()*. For the reader’s convenience we briefly recall that a set is called
outward minimising if it minimises the perimeter among all the sets containing it; more-
over, an outward minimising set is called strictly outward minimising if it coincides almost
everywhere with any outward minimising set containing it and having the same perime-
ter. Loosely speaking, ()* is, up to negligible components, the smallest strictly outward
minimising set that contains (2, and it happens to be the set containing () with smallest
perimeter. We are actually dedicating Chapter 3 to describe various aspects of the strictly
outward minimising hull in Riemannian geometry, and then we address the reader to its
presentation below for further discussions. Such Extended Minkowski Inequality, con-
tent of Theorem 2.25, reads

n—2
Q1 /
<

(I‘S“I - s
Q)

Let us point out that (17) leaves the long-standing question about the validity of the
Minkowski Inequality (1) under the sole assumpion of mean-convexity for dQ2 still open.
To this end, a straightforward consequence of the celebrated Michael-Simon Sobolev in-
equality [MS73] yields the existence of a constant C(n) depending only on the dimension
such that

H
n—l‘ do. (17)

n

C(n) < a0 / H| do (18)
0Q)

is true for any bounded set with smooth boundary (). The question, then, can be ex-
tended in terms of the optimal constant in (18), at least under a mean-convexity assump-
tion. We observe that an attempt to answer in the positive, that is, to show that one can
take as C(n) the one given by (17) replacing 0Q)* with Q) when the boundary is just
mean-convex was made by Trudinger in [Tru94]. However, such proof is acknowledged
to be incomplete in [Gua+10]. On the other hand, in [Dal+16] it is shown that (18) holds
true with such conjectured constant in the class of axisymmetric sets with ¢! boundary
regularity of R>.

As a matter of fact, the above Extended Minkowski Inequality is deduced as the limit,
for p — 17, of the following geometric p-capacitary inequality, which we believe of
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independent interest

p
nlj o do, (19)

n—p—1 1
Cy(Q) 7 < 5] /
Q)

stated in Theorem 2.24. Here, by C,(Q2) we denote a normalised version of the classical
variational p-capacity of () denoted by Cap,,(Q2). Briefly we remark that (19) follows

from the effective monotonicity of LIE with value B = 1/(p — 1) with a derivation very
similar to that of the Willmore-type inequality from the monotonicity of Ug with p = 2.

On the other hand, in order to deduce (17) from (19), one needs to compute the limit of
the p-capacity of a bounded set with smooth boundary as p — 17. We have established
that

: o0y
This relation, that we observe at once to be equivalent to lim,_,;+ Cap p(Q) = |9QY|, to

the author’s knowledge has never been explicitly considered in literature. Actually, it
happens to be intimately related to the geometry and to the potential theoretic proper-
ties of the underlying ambient, and this is the reason we prove it in a general setting in
Theorem 3.1 of Chapter 3.

As an immediate corollary of (17), we recover the Minkowski Inequality for outward
minimising sets, since for every Q) in this class it holds [0Q)| = [0Q)*| (see Remark 3.16)
and H > 0, as a standard variational computation readily shows. Such inequality was
originally conceived by Huisken in [Hui], exploiting the theory of weak solutions to the
IMCEF, previously developed in [HIO1] (see also [FS14, Theorem 2—(b)] for a published
version of the argument in the case of outward minimising sets with strictly mean-convex
boundary, or [Weil8] in the more general Schwarzschild setting). We remark here that
the class of outward minimising sets contain that of strictly starsharped sets with smooth
strictly mean-convex boundary. This substantially follows from [Ger90; Urb90] together
with the area minimising properties of the Inverse Mean Curvature Flow observed and
exploited with dramatic success in [HIO1]. We give a self contained proof and slightly
improve this fact in Subsection 3.3.2.

It is worth pointing out that an approximation argument through Mean Curvature
Flow, pointed out in [HI01] and refined in [HI08] allows to deduce the Extended Minkowski
Inequality from its version for outward minimising sets if n < 7, as we show in Subsec-
tion 2.4.1. On the other hand, this argument breaks down in higher dimension due to
minimal surfaces regularity issues, and then in higher dimensions inequality (17) seems
to be actually stronger.

A simple and very nice application of inequality (17) is a nearly umbilical estimate
for outward minimising surfaces in R®> with optimal constant. The relation between the
Minkowski Inequality and the nearly umbilical estimates was suggested by Huisken
in [Hui]. Here, for the sake of reference, we included a proof of this fact in Section 2.5 (see
Theorem 2.28). The general nearly umbilical estimate for surfaces in IR? with an implicit
dimensional constant is a very remarkable theorem, proved in [DLMO05] by De Lellis and
Miiller. We refer the reader to the original paper [DLMO05] as well as to the Ph.D. the-
sis [Per11] and the references therein for a complete account about the geometric features
and implications of such a deep result.
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Another application of the Extended Minkowski Inequality is the following inequal-
ity that we call Volumetric Minkowski Inequality,

0] \7_ 1 /
B) = 5]
Q)

again holding true for any bounded open set () C R" with smooth boundary. Inequality
(21) follows from (17) through a direct application of the Isoperimetric Inequality to 3%,
that actually also yields the isometry of d() with a sphere if equality is achieved in (21).
To the authors” knowledge, the Volumetric Minkowski Inequality was previously known
to hold for domains with a strictly mean-convex boundary of positive scalar curvature
(for short 9Q) € F; ). On this regard, we refer the reader to the paper [CW13] and the
subsequent [Qiul5], where the inequality was proved with methods based on Optimal
Transport.

H
n—1' do, (21)

To complete the analogy with the linear case treated in Chapter 1, we also prove in
Theorem 2.8 that the function
D
() = sup 101,
{u=t} un-v

is, in a suitable sense, effectively monotone. Together with some nonlinear generalisa-
tions of results appeared in [AM20] and [BMM19], we observe in Section 2.5 how the
monotonicity of UL is related to modern techniques in overdetermined boundary value
problems, with particular mention for [GS99] and [Pog18].

Before going on, let us recall, as anticipated before, that Minkowski-type inequalities
as well as many other related inequalities, like for example Penrose-type inequalities, are
provided in literature by using the Inverse Mean Curvature Flow or suitable generali-
sations of it. Without any attempt to be complete, in [GL09; LW17; BHW16; GWW13;
GWW14; Ge+15; LG16; MS16] suitable nontrivial generalisations of the long time exis-
tence result of [Ger90; Urb90] under more or less restrictive requirements on the initial
sets are derived and applied to get the desired geometric applications. On the other
hand, in [BMO08; FS14; Weil8; McC17; LN15] the Huisken-Ilmanen’s weak notion of In-
verse Mean Curvature Flow is employed for these purposes. We then find convenient to
yield some other insights on the relations between the method employed here and that
of the IMCE.

Inverse Mean Curvature Flow VS Nonlinear Potential Theory

The relation with the Inverse Mean Curvature Flow, in particular to its weak formula-
tion, is quite transparent when dealing with the nonlinear approach to the Minkowski
Inequality developed in Chapter 2. Actually, in light of the discussion that follows, the
success of the linear potential theoretic argument of [AM20] and of the extensions worked
out in Chapter 1 will appear somewhat surprising.

The key point in our approach is to replace the delicate elliptic regularisation proce-
dure of Huisken-Ilmanen with a novel analysis of a very natural family of approximate
solutions, namely the p-capacitary potentials of ), with p — 17. In fact, a well known re-
sult due to Moser [Mos07], subsequently extended by Kotschwar-Ni [KN09] and recently
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in [MRS19], says that if u, is a weak solution to problem

up=1 on 09Q,
up(y) >0 as [y[ = oo,

then, as p — 17, the functions w, = —(p — 1) log u, converge locally uniformly in R" \ ()
to a weak solution of the IMCEF, the definition of which is recalled in Section 3.3.2. It must
be noted that w), satisfies the identity

Apywy, = ]pr\p,
which is formally converging to
Dw
div| — | = |Dw|, 22
v (1Bop) = 0w 22

and the latter equation is known to rule the level sets formulation of the IMCEF. Albeit
its simplicity, this very clean approximation scheme has found applications so far only
to the existence theory for the weak IMCE. Very roughly, what we discover in Chapter 2
is that the p-harmonic approximators u, possess self consistent monotonicity formulas,
interpolating the linear ones of [AM15] and Chapter 1 with that of the function 2 defined
in (2) considered above. In light of this achievement the techniques worked out in [HI01]
allowing, as discussed in [Hui; FS14; Weil8], to extend the validity of the Minkowski
Inequality to outward minimising sets are fully replaced by new ones in the context of
nonlinear potential theory. In order to understand the relation between the monotonicity
of Ug and the one of 2 defined by (2), we proceed formally. Setting as above w, =

—(p—1)loguy, and t = —(p —1)logT, the monotonicity of the functions UE(T) with
B =1/(p—1) isequivalent to say that for every 1 < p < n the function

n—p—1

0, 400) 3 t s e"Pt/|pr|P do

{wp=t}

is nonincreasing. Taking the formal limit as p — 17, one would get the same monotonic-
ity statement for the function

[0, 400) 3 t eﬁ%f/mwy do
fw=)

where w solves (22), and thus |Dw|(x) coincides with the mean curvature of the level
set passing through x. Recalling that [{w = t}| = [9Q| = [9Q)| ¢! along the IMCEF, it is
easy to realise that the latter monotonicity is equivalent to the one in (2). We stress that,
at least with the technology available so far, such a computation is purely formal, since
wy is converging to w only locally uniformly and w itself is nothing more than a weak
solution to the IMCE. This is the best result available so far also under assumptions on (2
ensuring both w, and w to be smooth, such as convexity. In particular, we emphasise that
the techniques employed in Chapters 1 and 2 are fully self contained and free from any
argument involving the IMCF or its weak formulation. The approximation of the IMCF
through the p-capacitary potentials is somehow replaced by the simple (20), the proof of
which, in R", still will not use any of the IMFC approximation results of [Mos07; KN09;
MRS19].
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Coming back for a while to the linear setting, the above formal computations show
that the achievement of the Willmore-type inequality (3) through the monotonicity of Ug
along the level set flow of the solution u to (5), carried out in [AM20], as well as, conse-
quently, the extension performed in Chapter 1, is quite surprising. Indeed, proceeding
formally as above, the monotonicity of Uy with B = (n — 2) is equivalent to that of

t— /|Dw[”_1da,

{w=t}
where w = —logu. On the other hand, the monotonicity of #" defined in (4) along the
IMCF would be formally recovered by letting p — 1 in the monotonicity of Ug along
the solution u, to (16) with = (n — p)/(p — 1) that is equivalent to the monotonicity of

t— / IDw,|" ' do,
{wp=t}

where w, = —(p —1)logu,, so that w = w,. This sort of uniformity in p, that makes
a limit as p — 17 useless when looking after the Willmore-type inequality, is rigorously
partially explained in Subsection 2.5.1, where we show, among some other things, that
the Willmore-type inequality in R" can actually be deduced from any value of p, the value
p = 2 remaining thus the most convenient.

In Chapter 1 and 2, we are using the notion of strictly outward minimising hull out-
lined above twice. In the latter, we have already explicitly illustrated how it (actually, its
area) will appear in the limit of the p-capacity of a bounded set with smooth boundary Q).
In Chapter 1, it will allow us to reduce the proof of the Isoperimetric Inequality (15) to the
mean-convex sets. Chapter 3 is devoted to discuss this notion in considerable generality,
in particular justifying the previous applications.

The Strictly Outward Minimising Hull in Riemannian manifolds

The main property one would like the strictly outward minimising hull Q* of a bounded
set () to satisfy is that of being a bounded set minimising the perimeter among all of those
sets containing (). This is actually the property needed in the argument of the proof of the
Isoperimetric Inequality (15). However, easy examples show that in a general Rieman-
nian ambient this is not always quite so, since (2%, roughly defined as the intersection
of all the strictly outward minimising sets containing (), can in general happen to be the
empty set. Indeed, manifolds with cuspidal or cylindrical ends, discussed in more details
in Examples 3.8 and 3.9 provide examples of spaces containing bounded sets () that are
not contained in any strictly outward minimising set, yielding no admissible sets in the
intersection defining (*. Moreover, cuspidal manifolds do not even admit solution to the
least area problem with obstacle (), for any bounded () with finite perimeter contained
in it, no matter the regularity of the boundary. On the other hand, the cylindrical man-
ifold of Example 3.9 do admit solutions for the least area problem with obstacle (), but
it happens that one cannot select, among these solutions, a bounded one with maximal
volume. We realise in fact, in Theorem 3.13, that the well posedness of ()* is equivalent to
the solvability of the maximum volume-least area problem with obstacle, and that this is
in turn equivalent to the existence of an exhausting sequence of bounded strictly outward
minimising sets.
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If, on the one end, the condition of having such an exhausting sequence is not diffi-
cult to check on explicit metrics, such as warped products , on the other hand this general
criterion does not seem easy to be directly applied to relevant classes of manifolds, for
example, it is still not clear whether in complete noncompact manifolds with nonnega-
tive Ricci curvature with Euclidean volume growth we can define the strictly outward
minimising hull. The first achievement of Theorem 3.1 is that ()* is an open bounded
maximal volume solution to the least area problem with obstacle a bounded set with
finite perimeter () if one of the following two conditions are satisfied.

(i) The ambient manifold satisfies an Euclidean-like Isoperimetric Inequality, namely,
there exists Ciso, > 0 such that

002"
W Z Ciso (23)

for any bounded set () with smooth boundary;

(ii) the ambient manifold has nonnegative Ricci curvature and the superlinear uniform
volume growth condition holds

C.L 7 <|B(O,r)| < Coqr” 24

for some b > 1 and Cyo > 0, for any r > R for some R > 0.

As we observe in Examples 3.8 and 3.9, the cylindrical and cuspidal manifolds described
above coherently do not satisfy (i) nor (ii). However, the above assumptions are satis-
fied by a great variety of manifolds. First of all, let us remark that complete noncompact
manifolds with nonnegative Ricci curvature satisfy condition (23) as pointed out above
(see [Heb99, Theorem 8.4]), as well as Cartan-Hadamard manifolds, as a consequence of
[HS74] (see [Heb99, Theorem 8.3] for an explicit derivation). We observe that the strictly
outward minimising hull in Cartan-Hadamard manifolds was considered, for reasons
that were analogue to ours in Chapter 1, in [Sch08]. Condition (23) is verified also on
Asymptotically Flat ambient metrics, object of [HI01], and Asymptotically Locally Hy-
perbolic Riemannian manifolds, considered in [LN15]. This is a consequence of the fact
that by the aforementioned [HS74] and the assumed asymptotic expansion of the met-
ric (23) is valid outside a compact set, and thus, by [PST14, Theorem 3.2], this is true
on the whole manifold. For what it concerns the assumptions in (ii) observe that they
are naturally satisfied by complete noncompact Riemannian manifolds with nonnega-
tive Ricci cuvature that are (locally) asymptotic to warped products dp ® dp + p**gn for
some smooth n — 1 dimensional manifold N. In particular (ii) encompasses the case of
the so called ALF and ALG manifolds, arising in the classification issue of gravitational
instantons already hinted above. Moreover, the above warped products arise as models
in the celebrated [CC96]. Concerning the relation between (i) and (ii), we point out that if
b < n (observe that by Bishop-Gromov b < n) they are mutually exclusive. Indeed, if the
Isoperimetric Inequality holds, then it is known that so does the related Sobolev Inequal-
ity and thus by the arguments of [Car95] one can conclude that the volume of geodesic
balls |B(x, )| grow at least as 1", see [PST14, Proposition 3.1] for a self contained proof.

We emphasise that also the description of (3%, although very briefly outlined in [HIO1,
Section 1], was not, to the author’s knowledge, rigorously carried out in literature even
in the easier case of flat R”. In this framework, the most close study is that performed in
[BT84], where similar properties were derived for a related notion the authors refer to as
minimal hull. This notion differs subtly but fundamentally from that of the strictly out-
ward minimising hull, since, in the present terminology, it coincides with the intersection
of all the outward minimising sets containing (), not just the strictly outward minimis-
ing ones. Despite, as it will be clear by the arguments used in Chapter 3, the area of the
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resulting set will be the same, the volume in general differs, since Bassanezi-Tamanini’s
minimal hull will not in general yield a maximal volume solution to the least area prob-
lem with obstacle (). However, we acknowledge that some of the techniques presented
[BT84] will be very useful in our arguments.

The proof differs sensibly when dealing with assumption (i) or (ii). Indeed, in the
first case, we prove through the Direct Method in Calculus of Variations that the least area
problem with obstacle () admits a maximal volume solution, and then obtaining, through
the general criterion given in Theorem 3.13, the desired properties of (3*. The assumed
Isoperimetric Inequality enters in an ODE argument ! that shows uniform boundedness
of the minimising sequence considered. On the other hand, the proof in case (ii) is an
application of the existence theorem for weak IMCF developed in [MRS19, Theorem 1.8].
Indeed, once existence is established, the Huisken-Ilmanen’s theory applies and show
that level sets of this flow are strictly outward minimising, easily yielding the exhausting
sequence of strictly outward minimising sets required by Theorem 3.13. It is important
to notice that, anyway, in the case of nonnegative Ricci curvature with Euclidean volume
growth, being (23) in force, the weak IMCF still does not enter the game, leaving the proof
of the Isoperimetric Inequality free from such an expanding flow.

The last issue we face in Chapter 3 is that of the convergence as p — 17 of the vari-
ational p-capacity of a bounded set with smooth boundary () to the area of its strictly
outward minimising hull. In general this is not quite so. Indeed, we observe in Example
3.29 that the natural higher dimensional version of the 2-dimensional famous Hamilton’s
cigar [Ham88] admits a satisfactory notion of strictly outward minimising hull in the
variational sense explained above for any bounded set (), but on the other hand the vari-
ational p-capacity of () is zero for any p > 1. The manifold in this example has nonnega-
tive Ricci curvature and linear volume growth. In particular, it does not satisfy (i), and nei-
ther, sharply, (ii), since b in (24) is not allowed to be 1, that corresponds to linear volume
growth. On the other hand we prove in Theorem 3.1 that if (i) or (ii) is satisfied then the
claimed convergence takes place for any bounded set with smooth boundary. Again, the
techniques in the most delicate part of the proof, that is [0Q)*| < liminf,_,;+ Cap p (Q), dif-
fers in relation to the assumption satisfied. If the ambient metric comes with an Isoperi-
metric Inequality, then an argument inspired by [Xu96] involving the Sobolev Inequality
following from the Isoperimetric one does the job, yielding a self-contained proof. As-
sumption (i) is obviously satisfied in R", that is what we needed when passing to the
limit as p — 17 in Chapter 2 in reaching the Extended Minkowski Inequality (17). If,
on the other hand, we are assuming (ii), then we mostly rely on the decay estimates of
the p-Green’s function provided in [MRS19], in turn leading to the existence of the weak
IMCE

The present work ends with two appendices. Briefly, in Appendix A we systemati-
cally compare the monotonicity formulas for nonparabolic manifolds with nonnegative
Ricci curvature of Chapter 1 with those for the Green’s function obtained by Colding in
[Col12] and subsequently extended in [CM14b]. In particular, in light of this, observe
that Chapter 2 can be interpreted as a bridge between such monotonicity formulas, that
according to [Col12] and [CM14a] can be understood as a sort of regularised version of
the Bishop-Gromov monotonicity, and that of the function 2 defined in (2) leading to the
Minkowski inequality through Inverse Mean Curvature Flow.

In Appendix B, we give a proof of the existence of the p-capacitary potential under
the sole hypothesis of p-nonparabolicity and decay at infinity of the p-Green’s function,

IWe thank Prof. G. P. Leonardi for having outlined this idea.
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together with basic properties of the p-capacity. We are applying this result in Chapter 2
and 3.

Most of the achievements of Chapter 1 are contained in [AFM18], those of Chapter 2 are
obtained through the combination of [FMP19] with [AFM19], while the main result of Chapter
3 is not yet available in literature. It will be the content of a forthcoming joint paper with L.
Mazzieri.
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Chapter 1

Geometric inequalities in
nonnegative Ricci curvature via
Linear Potential theory

1.1 Structure of the chapter

In Section 1.2, we review, for ease of the reader, the theory of harmonic functions on Rie-
mannian manifolds with nonnegative Ricci curvature we are going to employ along this
chapter. The most important results are the existence Theorems for exterior boundary
value problems characterising respectively nonparabolic and parabolic manifolds with
nonnegative Ricci curvature, namely Theorems 1.14 and 1.17. Although Theorem B.1
in Appendix B fully encompasses Theorem 1.14, we propose here a proof that in some
sense is best suited for Ric > 0. In Section 1.3 we introduce the conformal formulation of
problem (1.2.15) and we prove, in this setting, (the conformal version of) Theorems 1.19
and 1.21, that are the Monotonicity-Rigidity Theorems in nonparabolic manifolds with
nonnegative Ricci respectively for the function Ug and U already encountered in the
Introduction. In Section 1.4 we work out the integral asymptotic estimates for the elec-
trostatic potential on manifolds with nonnegative Ricci curvature. With these estimates
at hand, we conclude the proof of Theorem 1.44, that is the Willmore-type inequality for
manifolds with nonnegative Ricci curvature and Euclidean volume growth, and discuss
its Corollary 1.49 for ALE manifolds. In Section 1.5, we consider some other consequences
of the Monotonity-Rigidity Theorems, generalising in the present general setting results
of [AM20] and [BMM19]. In Section 1.6 we turn our attention to parabolic manifolds,
and prove a suitable Monotonicity-Rigidity Theorem in this setting. We then combine it
with that for nonparabolic manifolds to get enhanced versions of the noncompact split-
ting theorem by Kasue/Croke-Kleiner, see Theorem 1.56. At the end of the section, we
also show how to recover its compact version, see Theorem 1.59. Finally, in Section 1.7,
we prove the Isoperimetric Inequality on complete noncompact Riemannian 3-manifolds
with Ric > 0. Finally, we give some perspectives and applications of such result, already
mentioned in the Introduction.

1.2 Harmonic functions in exterior domains

In this section we are mainly concerned with characterising Riemannian manifolds for
which problems (5) and (12) admit a solution. We are going to see that complete non-
compact nonnegatively Ricci curved manifolds for which a solution to (5) exists are the
nonparabolic ones, namely, manifolds admitting a positive Green’s function, while those
admitting a solution to (12) are the parabolic ones.
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Nothing substantially new appears in this section. We are just collecting, re-arranging
and applying classical results contained in [LT87; LT92; LT95; LY86; Yau75], and [Var82].
The interested reader might also refer to the nice survey [Gri99], where the relation with
the Brownian motion on manifolds is also explored, or, for a more general account on the
vast subject of harmonic functions on manifolds, to the lecture notes [Li] and the refer-
ences therein. Other important works in this field will be readily cited along the chapter.
Before starting, let us mention that the results gathered in this preliminary section are
spread in a huge literature, and frequently they do not appear exactly in the form we
need, or comes without a with a detailed proof. For this reason, we include the most
relevant ones.

1.2.1 Green’s functions and parabolicity
Let us begin with the definition of Green’s functions on Riemannian manifolds.

Definition 1.1 (Green’s function). A smooth function
G: (M x M) \ Diag(M) — R,

where Diag(M) = {(0,0),0 € M}, is said to be a Green’s function for the Riemannian
manifold (M, g) if the following requirements are satisfied.

(i) G(x,y) = G(y,x) forany x,y € M, x # y.
(ii) AG(O,-) =00n M\ {O}, forany O € M.
(iii) The following asymptotic expansion holds for x — O:

G(O,x) = (1+0(1))d*> "(O,x). (1.2.1)

It is well known that on a complete noncompact Riemannian manifold there always
exists a Green’s function. This result has been obtained for the first time by Malgrange
in [Mal55], while a constructive proof, best suited for applications, has been given by Li-
Tam in [LT87]. Complete noncompact Riemannian manifolds are then divided into two
classes.

Definition 1.2 (Parabolicity). Complete noncompact Riemannian manifolds which support a
positive Green'’s function are called nonparabolic. Otherwise they are called parabolic.

A by-product of Li-Tam’s construction of Green’s function gives the following very
useful characterisation of parabolicity, see for example [Li, Theorem 2.3] for a proof.

Theorem 1.3 (Li-Tam). Let (M, g) be a complete noncompact Riemannian manifold. Then, it
is nonparabolic if and only if there exists a positive super-harmonic function f defined on the
complement of a geodesic ball B(O, R) such that

lim inf < _inf f. 1.2.2
Aot S ) < gl f (122

Notice that if (M, g) is a nonparabolic Riemannian manifold then a barrier function f
as in Theorem 1.3 is just the function Gy p(p,r)- A positive Green’s function G is called
minimal if

G(p.a) < G(p.q)
for any other positive Green’s function G. The construction of the Green’s function in
[LT87] actually provides the minimal one.
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The following theorem is a fundamental characterisation of parabolicity for manifolds
with Ric > 0in terms of the volume growth of geodesic balls, first appeared in a complete
version in [Var82].

Theorem 1.4 (Varopoulos). Let (M, g) be a complete noncompact Riemannian manifold with
Ric > 0. Then (M, g) is nonparabolic if and only if

—+o0

r
T dr < 4o, (1.2.3)
1/ B(0,7]]

forany O € M, where B(O, r) is a geodesic ball centered at O with radius r > 0.

The above characterisation roughly says that on nonparabolic manifolds volumes are
growing faster than quadratically, while on the parabolic ones they grow at most quadrat-
ically. On the other hand, on a complete noncompact Riemannian manifold with Ric > 0
Bishop-Gromov’s Theorem and a result of Yau [Yau76] respectively show that the growth
of volumes of geodesic balls B(p, ) is controlled from above by 7" and from below by .

From now on we focus our discussion only on complete noncompact manifolds with
nonnegative Ricci curvature. In the following two subsections we collect some basic
though fundamental facts in this context, for the ease of references.

1.2.2 Harmonic functions on manifolds with nonnegative Ricci curvature.

A basic tool in the study of the potential theory on Riemannian manifolds is the following
celebrated gradient estimate, first provided by Yau in [Yau75] (see also the nice presenta-
tion given in [SY94]).

Theorem 1.5 (Yau’'s Gradient Estimate). Let (M, g) be a complete noncompact Riemannian
manifold with Ric > 0. Let u be a positive harmonic function defined on a geodesic ball B(O,2R)
of center O € M and radius 2R. Then, there exists a constant C = C(n) > 0 such that
D
sup M < E . (1.2.4)
xeB(O,R) Y R

We now apply the above inequality to a harmonic function v defined in a geodesic

annulus B(O, R;) \ B(O,Rp). We obtain a decay estimate on the gradient of u that we
will employ several times along this paper.

Proposition 1.6. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0, and
let u be a positive harmonic function defined in a geodesic annulus B(O,Ry) \ B(O, Ry), with
Ry > 3Rg. Then, there exists a constant C = C(n) such that

u(x
[Dul(x) < C d(é ZCY (1.2.5)
. Ri+Rp . P . ,
for any point g such that 2Ry < d(O, x) < T In particular, if u is a harmonic function
defined in M\ B(O, Ry), then
u(x
|Dul(x) < Cd((() l) (1.2.6)

for any point x with 2Ry < d(O, x).



22 Chapter 1. Geometric inequalities in nonnegative Ricci curvature

Proof. Let g be such that 2Ry < d(O, x) < Ri +Ro

. Then the ball B(x, d(O, x) — o) is all
contained in the annulus B(O, Ry) \ B(O, Ry). In particular, by Yau's inequality (1.2.4) we
have

u(x) u(x)
IDulx) = €55 =7 =2C30,0°

Letting Ry — oo, we get also (1.2.6). O

A fundamental and classical application of Yau’s gradient inequality is the Harnack’s
inequality, that we are going to apply several times in the sequel. The explicit dependen-
cies of the Harnack constant on large annuli will often play an important role. As usual
we state and prove it in the form and in the setting we are interested, mainly following
[Li]

Proposition 1.7 (Harnack’s inequality). Let (M, g) be a complete noncompact manifold with
nonnegative Ricci curvature, and let K C M be a connected compact subset, and let it be covered
by a finite number of geodesic balls B(x;, R;) with x; € M. Then, for u a harmonic function
defined on an open neighbourhood of K, we have

u(x) < e Crarlral 4(y) (1.2.7)

for any x,y € K, where vy, is a curve joining x and y fully contained in K, and where the
constant Cpy, satisfies
Char = SUP G,
1

with C; being such that |Dlogu| < C; on B(x;, R;).

Proof. The nonnegative Ricci curvature, ensures, by Yau’s Theorem 1.5, the existence of
C; as in the statement. Let then x,y € K, and let 7, be a curve joining x and y fully
contained in K (it obviously exists by connectedness). Then, we have

logu(x) —logu(y) = Dloguds < Char|Vayl-
Txy

Exponentiating, we obtain (1.2.7). O

An immediate application of the above Harnack inequality yields at once the follow-
ing compactness theorem for sequences of harmonic functions. Again, the source of the
proof is [Li]

Lemma 1.8. Let (M, §) be a complete Riemannian manifold with Ric > 0, and let D C M be an
open connected subset. Let { f;} be a sequence of positive harmonic functions defined on D, and
suppose there exists a constant C such that f;j(x) < C at some point x € D for any i € IN. Then,
there exists a subsequence { fi].} converging to a positive harmonic function f uniformly on any
compact set K C U.

Proof. 1t clearly suffices to prove the statement for connected compact K C D containing
x. By Proposition 1.7, we have

fily) < filx)ea! (1.2.8)

for some constant C; not depending on i. By the uniform bound on f;(x) and the com-
pactness of K we then deduce that the sequence f; is uniformly bounded in K. Combining
(1.2.8) with the Yau's inequality (1.2.4) we also get that |Df;| are uniformly bounded in K,
and then by Ascoli-Arzela a subsequence f;; converges uniformly on K to a continuous
function f.
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Let now ¢ € 4°(D) be a test function. Then, by harmonicity of f;, and uniform
convergence on compact sets,

0= lim ﬁjAdeZ/fAlPd%
J—7JD D

thatis, f is harmonic in the sense of distribution. Standard regularity theory then implies
that f is classically harmonic, completing the proof. O

1.2.3 Ends of manifolds with nonnegative Ricci curvature

It is a well-known and largely exploited fact that a complete noncompact Riemannian
manifold (M, g) with nonnegative Ricci curvature that is not a Riemannian cylinder has
just one end. However, since a complete proof of this fact is hard to find in standard
literature, we discuss the details below.

We employ the following definition of end, that is, the one used in the works by Li
and Tam, see for example [LT92, Definition 0.4 and discussion thereafter].

Definition 1.9 (Ends of Riemannian manifolds). An end of a Riemannian manifold (M, g)
with respect to a compact subset K C M is an unbounded connected component of M \ K. We say
that (M, g) has a finite number of ends if the number of ends with respect to any compact subset
K C M is bounded by a natural number k independent of K. In this case, we say that (M, g) has
k ends if it has k ends with respect to a compact subset K C M and to any other compact subsets
of M containing K.

To state the result, we quickly recall some terminology. A line in (M, g) is a curve
7 : R = M which is a minimal geodesic between any two points lying on it. A ray is half
a line. We also recall that a complete Riemannian manifold (M, g) is called a Riemannian
cylinder if it is isometric to the Riemannian product (R x N"~!, dt ® df + gy«-1), where
N"~!is a compact manifold.

Remark 1.10. Using the above definition and terminology it is clear that if a Riemannian
manifold has at least two ends, then it contains a line.

Proposition 1.11. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0. If
(M, g) is not a Riemannian cylinder, then it has just one end.

Proof. Since (M",g) has nonnegative Ricci curvature by hypothesis, then the Cheeger-
Gromoll Splitting Theorem [CG71] implies that

(M, g) is isometric to (R™ x N"™", gpi + gnn-n), (1.2.9)

for some m € {0,...,n}, where the manifold (N"~™, g¢nn-) has nonnegative Ricci cur-
vature and does not contain any line. The Riemannian manifold (M, g) is a Riemannian
cylinder if m = 1 and N"~! is compact. Let us then suppose that (M, g) is not a Rieman-
nian cylinder. We consider the cases m = 0, m = 1 and m > 2.

Case m = 0. In this case, (M, g) does not contain any line. Then there is no more than
one end, in view of Remark 1.10.

Case m = 1. Since (M, g) is not a cylinder, we have that N"~! is a noncompact Rie-
mannian manifold that contains no lines. Then again by Remark 1.10, it has at most one
end. Thus, also R x N"~1 has at most one end.

Case m > 2. We show that

M \ K is connected for every compact K C M. (1.2.10)
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In view of Definition 1.9, this readily implies that M has at most one end. Now, to check
(1.2.10) in view of (1.2.9), it is sufficient to check that for every compact Q € R" and
every compact P € N"~", we have that (RF x N*=)\ (Q x P) is connected. Let then
(x,9), (y,p) € (R™ x N*"™)\ (Q x P) and suppose for the moment that x,y € Q, so
that, in turn, g, p ¢ P. Choose z € R™ \ Q and define the curves

a(t) = (tx+ (1-1t)z,q),  B(t) = (ty+(1—t)z,p),

t € [0,1], connecting (x,¢) to (z,q) and (y, p) to (z, p), respectively. Note that a(t), B(t) €
(R™ x N"™)\ (Q x P) for every t € [0,1], because g, p ¢ Q. Now, let y(¢) be a contin-
uous curve in N"~™ connecting g and p. Then the curve (z,7(t)) € ((R™\ Q) x N"~™)
connects (z,4q) to (z, p). Gluing together the curves «, B, and (z,y), we obtain a continu-
ous path lying in (R™ x N"~™)\ (Q x P) and connecting (x,¢) to (v, p). Obtaining such
a curve in the case where either x ¢ Q or y ¢ Q requires a similar simpler construction.
We have thus proved that (R™ x N"~™) \ (Q x P) is path-connected, hence connected.

We proved that (M, g) has at most one end, if it is not a cylinder. Then, it has exactly
one end, because it is noncompact. O]

Let us now describe separately some aspects of harmonic functions on nonparabolic
and parabolic manifolds. In particular, we are going to characterise these two classes
of manifolds through a couple of existence results for solutions of suitable boundary
value problems in exterior domains (see Theorems 1.14 and 1.17 below). The monotone
quantities analysed in Theorems 1.19 and 1.54 are defined along the level sets of these
solutions.

1.2.4 The exterior problem on nonparabolic manifolds

The following is a fundamental estimate proved by Li-Yau in [LY86].

Theorem 1.12 (Li-Yau). Let (M, g) be a nonparabolic Riemannian manifold with Ric > 0.
Then, its minimal Green’s function G satisfies

< 2.
c! /|BOr)\ dt < G(O,x) c/ ’B (1.2.11)
d(0,x)

for some C = C(n) > 0.

Combining (1.2.3) with (1.2.11), we get that the minimal Green’s function goes to 0 at
infinity, i.e. for any fixed O in M

lim G(O,y) = 0. (1.2.12)
d(0y)—eo

An easy application of Laplace Comparison Theorem then gives the following well known
fact.

Lemma 1.13. Let (M, g) be a nonparabolic Riemannian manifold with Ric > 0, and let G be its
minimal Green’s function. Then, for any fixed pole O € M we have

d*>~"(0,x) < G(O,x). (1.2.13)

forany x # O in M.
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Proof. Let r be the function mapping a point x in M to d(O, x). By the Laplacian Compar-
ison Theorem, we have
n—1
r

Ar <

in the sense of distributions (see e.g. [CLN06, Theorem 1.128]). Therefore, we have, in
the sense of distributions,

AP = (n—2) [(n 1) H*”Ar} >0, (1.2.14)

and then the function 72"

e>0and R > ¢

— G(O, -) is sub-harmonic. By the maximum principle, for any

max (X "—=G(0O,")) = max " —G(O,)).
B(O,R)\B(O,g)( ( )) aB(O,R)UaB(O,s)< ( ))

We conclude by passing to the limit as ¢ — 0 and R — oo, taking into account the asymp-
totic behaviour at the pole O given by (1.2.1) and that G — 0 at infinity, as observed in
(1.2.12). O

Now, we characterise the existence of a solution to problem (8) with the nonparabol-
icity of the ambient manifold. Let us recall that, with respect to a bounded open subset
() C M with smooth boundary, and denoting by O a generic reference point taken inside
(), we consider

Au=0 inM\Q
u=1 onadQ) (1.2.15)
u(y) — 0 asd(O,y) — +oo,

The proof we give below uses some aspects of the nonnegative Ricci curvature, that we
believe of independent interest. We refer the reader to Theorem B.1 for a more general
argument involving boundary regularity estimates for solutions of elliptic equations.

Theorem 1.14. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0, and
let 0 C M be a bounded open subset with smooth boundary. Then, there exists an unique solution
to problem (1.2.15) if and only if (M, g) is nonparabolic.

Proof. Most of the arguments here are suitable adaptation of some already presented in
[LT92]. By Theorem 1.3 the existence of a solution to problem (1.2.15) implies nonparabol-
icity of M, since the restriction of u to M \ B(O,R) with Q C B(O, R) clearly satisfies
condition (1.2.2).

Conversely, assume that M is nonparabolic, and consider an increasing sequence of
radii {R;};en such that QO C B(O,Ry) and R; — co. Let, for any i € IN, u; be the solution
to the following problem:

Au=0 1in B(O,R;)\Q
u=1 on Q) (1.2.16)

u=0 ondB(O,R)).

Let now G be the minimal positive Green’s function, and consider the function G(O, -).
Due to the Maximum Principle for harmonic functions and the boundary conditions in
problem (1.2.16) we have that

0 < ugs(x) < G(O, x)

_—, 1.2.17
~ minyq G(OI ) ( )
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for x € B(O, R;). Let then K be a compact set contained in M \ Q. We can clearly suppose
without loss of generality that K is contained in B(O, R;) \ Q for any i. Then, (1.2.17) and
Lemma 1.8 give that u; converges up to a subsequence to a harmonic function u on K.
We now need to check the convergence of (a subsequence of) u; on compact subsets K
of M\ ), that, is possibly containing portions of dQ). To see this, we show that |Du;| is
bounded uniformly in i also on these compact subsets. To see this, consider the P-function
(see [PP79])
Du;
n= L

U; (n—2

It can be directly checked that the Bochner formula, and it is actually the content of
(1.3.35) written in terms of the current metric g, that f; is subsolution of an elliptic equa-
tion. In particular, once restricted on the annulus B(O, R) \ Q for some fixed R > 0 such
that the ball contains (), we deduce from the Maximum Principle that the maximum
value of f; is assumed, for i big enough, on dQ) U B(O, R). Then, if K is a compact set of
M\ Q), it suffices to consider separately the case where the maximum values of (a subse-
quence of) f; are assumed on interior points x; of M \ Q uniformly away from 9Q) and the
case where the points x; lie on d(). In the first case, Du; is uniformly bounded on K as
an immediate consequence of Yau's (1.2.4) together with the uniform convergence of u;
on the compact subsets of M \ Q. Assume then that the points x; lie on Q). Then, letting
v = —Du;/|Du;| the unit normal to 9Q), we have (df;/9dv)(x;) < 0. On the other hand,
recalling that u; = 1 on 0(), it holds

ofi n—1
affzz n_2|Dui|3—2H\Dui\2 ,

on x;, where we wrote the mean curvature H of dQ2 in terms of the Hessian of u; exactly
as in (1.3.17). Using the Hopf’s lemma, that ensures that |Du;| does not vanish on 0Q), we
then get

n—1
n—2

sup|Duy;| < supH,
K 0
that, is |Du;| is uniformly bounded also in this case.
We have built a harmonic function defined on M \ Q) taking the value 1 on 0Q). Finally,
by (1.2.17), the uniform convergence of u; to u and (1.2.12), we get u(y) — 0as d(O,y) —
+00, completing the proof of existence.

Uniqueness is checked as usual, considering for another solution v the harmonic func-
tion u — v, and satisfying u — v < ¢ on (a smoothed out approximation of) 9Q UdB(O, R;)
for R, big enough, for any ¢ > 0. The Maximum Principle then yields u < v+ ¢ on
B(O,R) \ Q, that implies u < v letting ¢ — 0. Reversing the roles of u and v yields
uniqueness. ]

We conclude this section with the following easy lemma, which shows that we can
control function u by the minimal Green’s function G.

Lemma 1.15. Let (M, g) be a nonparabolic Riemannian manifold with Ric > 0, and let G be
its minimal Green’s function. Let u be a solution to (1.2.15) for some open and bounded set ()
with smooth boundary, and let O € Q. Then, there exist constants C; = C1(Q) > 0 and
Cy = Co(Q) > 0 such that

C1G(0,y) < u(y) < C2G(O,y) (12.18)
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on M\ Q. In particular
C1d(0,y)* " < u(y). (1.2.19)

on M\ Q.

Proof. Justset0 < C; < 1/ maxan G(O, ), and C; > 1/ mingn G(O, -). The claim follows
from the Maximum principle and the observation that both u and G are vanishing at
infinity. The inequality (1.2.19) is obtained combining the lower estimate on u by (1.2.18)
with (1.2.13). O

1.2.5 The exterior problem on parabolic manifolds

The following inequalities, proved in [LT95, Theorem 2.6], can be interpreted as a version
for parabolic manifolds of the Li-Yau inequalities recalled in Theorem 1.12. We point out
that we are always dealing with Green’s functions obtained by the Li-Tam’s construction.

Theorem 1.16. Let (M, g) be a parabolic manifold with Ric > 0, and let O € M. Let G be a
Green's function. Then, for any fixed ro > 0 and for any x with d(O, x) > 2r there holds

d(0,x)
~G(O,x) < G /w(orr)’ dr + Gy, (1.2.20)
To

for some constants Cy and C, depending only on n, ro and the choice of G. Moreover, for any
R > ry, there holds

R
r
C3/ dr + C4 < sup —-G(O,), (1.2.21)
J |B(O, )| 3B(O,R)

for some constants C3 and Cy4 depending only on n, ro and the choice of G.

When (M, g) is parabolic, Li-Tam substantially proved in [LT92, Lemma 1.2] that the
exterior problem
Ap =0 in M\ Q
Pp=0 on 9() (1.2.22)
P(y) = +oo as d(O,y) — +oo,

admits a solution. The construction of such a solution i, combined with Yau's inequality
and Theorem 1.16, readily implies a uniform gradient bound on .

Theorem 1.17. Let (M, g) be a parabolic Riemannian manifold with Ric > 0, and let O C M
be a bounded and open subset with smooth boundary. Then, there exists a solution to problem
(1.2.22). Moreover, |Dy| is uniformly bounded in M \ Q.

Remark 1.18. Recall from Subsection 1.2.3 that if (M, g) is a Riemannian cylinder, then M \
() might have two connected components. If this is the case, it will be understood that
we consider problem (1.2.22) on a connected component of M \ Q). All the proofs work
unchanged in this case.

Proof of Theorem 1.17. Let O € ), let U C () be an open neighbourhood of O and let K
be the compact set defined by K = () \ U. Consider, for a sequence B(O, R;) of geodesic
balls with increasing radii containing (), a corresponding sequence of positive Green’s
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functions G;(O, -) of B(O, R;) with pole in O such that G;(O, x) = 0 for x € dB(O, R;). We
then consider the sequence of functions defined in B(O, R;) \ {O} by

hl(y) = sup Gi(O,x) — GI(O,y)

xeK

The construction in [LT87] implies that there exists a Green’s function G on M such that 4;
converges to —G(O, -) uniformly on compact subsets of M \ {O} (compare with the dis-
cussions around Lemma 1.2 in [LT92]). Observing that /1; = supy G;(O, ) on 0B(O, R;),
we set

a; = sup G;(O, x)

xeK

and consider the solution ¢; to the problem

Ap =0 in B(O,R;)\Q
=0 onoQ)
l[) =4a; on aB(O, Ri).

Since supy G;(O, -) > sup,q, Gi(O, -), the Maximum Principle immediately gives

hi — sup hi S l[Ji S I’li (1.2.23)
Q)

on B(O, R;) \ Q. Since the sequence }; is converging (uniformly on compact sets) to the Li-
Tam Green’s function, the second inequality in (1.2.23) combined with Lemma 1.8 shows
that ¢; converges uniformly on the compact subsets of M \ () to a harmonic function .
Moreover, since for every y € M\ {O} the sequence h;(y) converges to —G(O,y) and
since by (1.2.21) we have that —G(O,y;) — +oco along a sequence of points y; such that
d(O,y;) — +oo, we use the first inequality in (1.2.23), to deduce that ¢(y;) — +oo, as
j — 4oo. In particular, since by [CM97b, Lemma 3.40] { must admit a limit at infinity,
we infer that ¥(y) — +o0, as d(O,y) — +oo As in the proof of Theorem 1.14, we need to
check the convergence of ¢; also on compact K C M \ Q) possibly containing portions of
the boundary 9Q), by showing that the sequence of |[Dy;| is uniformly bounded on such
compact sets. To see this, let B(O, R) big enough so that it contains K U (), and consider
the harmonic functions v

1

- supgor) ¥i +1’

and define, as in the proof of Theorem 1.14, the P-functions

Z)i:1

| Do
fi= "=t

Ui n—2

Then, again, f; is subsolution of an elliptic equation (that again, corresponds exactly to
(1.3.35) in the original metric), and thus the maximum values of f; are achieved on x; &
00 UIB(O,R). If x; € dB(O, R), we easily see that |Dy;| is uniformly bounded by Yau’s
inequality (1.2.4) and the uniform convergence of ¥; on compact subsets of M \ Q. If, on
the other hand, x; € 9(), the very same computation performed in the proof of Theorem
1.14 involving the Hopf’s lemma shows that

IDyi| <H (1 + sup l[)i> . (1.2.24)

B(O,R)

Since ¢ — oo at infinity, we can infer from the uniform convergence of ; to i on compact
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subsets of M \ Q) that the points where the functions §; achieve the maximum value inside
B(O, R) are located, for i big enough, in a compact subset K’ away from 0Q), and then,
again by the uniform convergence of ¢; on K’, (1.2.24) allows to conclude that |Dy;]| is
uniformly bounded in this case too.

We are left to show that |Dy| is uniformly bounded. Observe that, again by (1.2.23),
P < —G(O, ). Inequality (1.2.6) then yields

—-G(0O,x)
d(0O,x)

Dyl(x) < -2 < ¢

70,1 (1.2.25)

for some constant C and any x outside some big geodesic ball B(O, rp). Combining now
(1.2.20) with Yau'’s lower bound on the growth of geodesic balls, saying that |B(O,r)| >
Cr for any r > 1 and for some constant C, we also have

—G(0, x) d(0,x)+C
709 < a0

for x with d(O, x) > 2rg and constants C; and C,. Plugging it in (1.2.25), this shows that
|Dy| is uniformly bounded, as claimed. O

1.3 The Monotonicity-Rigidity Theorems for nonparabolic man-
ifolds

The goal of this section is to prove the monotonicity of the function Ug : (0,1] — R for
B>(n—2)/(n—1)and U : (0,1] — R already presented in the Introduction, defined
respectively by

Ug(t) = t—ﬁ(H)/|Du|ﬁ+1 do (1.3.1)
{u=t}
and
U (t) = sup |D£| (1.3.2)
{u=t} Un=2

The following is the statement of the Monotonicity-Rigidity Theorem for Ug.

Theorem 1.19 (Monotonicity-Rigidity Theorem for nonparabolic manifolds). Let (M, g)
be a nonparabolic Riemannian manifold with Ric > 0. Given a bounded and open subset () C
M with smooth boundary, let u be the solution to problem (1.2.15) and let Ug : (0,1] — R
be the function defined in (1.3.1). Then, for every B > (n —2)/(n — 1), the function Ug is
differentiable, with derivative

—P) = gt (n)/|Du|ﬁ[H—(;;—;) IDlogu|] do, (1.3.3)



30 Chapter 1. Geometric inequalities in nonnegative Ricci curvature

where H is the mean curvature of the level set {u = t} computed with respect to the unit normal
vector field v = —Du/|Dul. The derivative of Ug fulfils

du n—
ﬁ(t) Sy 2 (i) IDu|f~2 4 Ric(Du, Du)
2
dt t {u<t}
of,  H <]
+ |Du|” |h 18
+ 8 |DTDul |’
n—2 B 5
+ (5123 IDuf [H - (=) Dlogu * | d,

(1.3.4)

where H is the mean curvature of the level sets of u computed with respect to the unit normal
vector field v. In particular, Ug is nondecreasing. Moreover, (dUg/ dt)(to) = 0 for some
to < 1and some B > (n—2)/(n — 1) if and only if (M, §) has Euclidean volume growth and
({u < to},g) is isometric to

1

2 1
r , [{u=1t}| \*'
( |:7’0, +00) X {M = to}, d?’ ®d1’+ <1"0> g{llto}) , wzth ro = <W) .

(1.3.5)
In this case, in particular, {u = to} is a connected totally umbilic submanifold with constant
mean curvature.

Remark 1.20 (Meaning of (1.3.3) at singular values). It is important to point out that when
t is a singular value for u, (1.3.3) has to be interpreted as the (unique) extension of such
quantity on regular values. This will turn to be allowable by Sard Theorem, and it is an
important technical point of the proof. This agreement will be assumed throughout the
whole chapter.

Analogously, the following is the Monotonicity-Rigidity Theorem for Uc..
Theorem 1.21 (Monotonicity-Rigidity Theorem for Us). Let (M,g) be a complete non-

parabolic Riemannian manifold with Ric > 0. Then, the function U : (0,1] — R defined
by (1.3.2) is monotone nondecreasing. Moreover, if x; € {u = t} is such that

|Du| |Du|
1 (X)) = sup ——,
Un=2 {u=t} U2
then . 5
H - ~—|Dlogu|(x;) = —~ log | nfﬁ' (xt) >0, (1.3.6)
-2 vy Un—2

where vy is the unit normal to {u = t} given by vi = —Du/|Du|. Moreover, Us(T) = Uw(to)
for some T < tg or inequality (1.3.6) holds with equality sign a t = to with ty € (0,1] if only if
(M, g) has Euclidean volume growth and and ({u < to},g) is isometric to

2 1
r , [{u=to}] \'
( [r0,+00) x {u =to}, dr @dr + <1’0> g{u:t0}> ,  with 1y = <AVR(g)|S”1|) :

In this case, in particular, {u = to} is a connected totally umbilic submanifold with constant
mean curvature.
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1.3.1 Preparation of the proof of the Monotonicity-Rigidity-Theorems

Before providing the proof of Theorems 1.19 and 1.21, we give a sharp and complete
statement the refined Kato’s inequality for harmonic functions, that is one of the main
responsible of the monotonicity, and describe the conformal setting where we are actually
going to work out the proofs.

A Kato-type identity and a related splitting principle
The classical Kato inequality for functions on a Riemannian manifold asserts that if f is a
smooth function defined somewhere on a Riemannian manifold, then

pipf||” < (DDA

When, in addition, f satisfies some differential equation, the above inequality can be
crucially improved. In the case of harmonic functions, the refined Kato inequality says
that

‘D|Df\ ‘2 < (n ; 1) IDDf2.
Other refined Kato inequalities, suited for various elliptic equations, have been derived
and applied successfully in the literature. We address the reader to [Her(00] for an account
on this subject.

In this work, and dramatically in the next chapter, we will not only use the inequality,
but also the deficit from being an inequality will be fundamental. The following is the
Kato-type identity for harmonic functions in Riemannian manifolds.

Proposition 1.22 (Kato-type identity for harmonic function). Let (M, g) be a Riemannian
manifold , and let f be a harmonic function defined on some subset of M. Then, in an open
neighbourhood of point where |Vv| # 0, the following identity holds true

n

os? — (5 ) [pios[ = s [h— BT [+ (57 ) oA asa)

n—1 n
Moreover, if f is nonconstant and the right hand side of (1.3.7) vanishes in {py < f < p1} for
some po < p1 with py possibly infinite, then the Riemannian manifold ({po < f < p1},8) is
isometric to the warped product ([po,p1] X {f = po}, dp ® do + 7*(0)g(=py}) , Where f, 1
and the coordinate p are related as

1

_ ([ f'(po)\ ™
n(p) = (f’(p)) (1.3.8)

We will not prove Proposition 1.22 here, since a more general statement will be proved
in the next Chapter, see Proposition 2.5. It is anyway substantially known, and can be de-
duced for example by tracking the proof of [BC12, Proposition 5.1]. The splitting result
arising from the vanishing of the right hand side of (1.3.7) is actually an interesting gen-
eralisation of a well known splitting result asserting that a function with null hessian in
some region of a Riemannian manifold forces such a region to be a cylinder. This fact can
be deduced from the more general principle discussed in [CC96, Section 1] and [CMM12,
Theorem 1.1] or it can be directly proved as done in [AM15, Theorem 4.1 (i)]. Here, we
derive it from Proposition 1.22.

Corollary 1.23. Let (M, g) be a Riemannian manifold, and let f be a function defined on some
subset of M that is nonconstant and satisfies [IDDf| = 0 on {pg < f < p1} for some pg < p1
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with py possibly infinite. Then, the Riemannian manifold ({po < f < p1},§) is isometric to the
cylinder ([po, p1] X ({f = po}, dp @ dp + g|(r=p,}) and, in this case, f is an affine function of
0.

Proof. Clearly the function f is harmonic. Since |D|Df|| < |DDf|, the function |Df]|
is constant in {p9 < f < p1}, and this constant must be positive by assumption. Then,
(1.3.7) holds, and since the left hand side is zero so is the right hand one, and in particular
the rigidity statement of Proposition 1.22 applies. Moreover, deriving (1.3.8) and taking
into account that f”/(p) = 0, we find that 7’(p) = 0. Since #7(p9) = 1, we conclude that 7
is the constant 1, that means cylindrical splitting. Moreover, again by (1.3.8), this implies
that f'(p) = f'(po), implying that f is an affine function of p. O

The conformal setting

Let (M, g) be a nonparabolic Riemannian manifold with nonnegative Ricci curvature. Let
() C M be a bounded and open set with smooth boundary, and let u be the solution to
problem (1.2.15). We introduce, in M \ Q) the metric

g = urg. (1.3.9)

The expression for § is formally the same as in [AM15] and [AM20]. Let us explain
why such a conformal change of metric is natural also in the current setting. Our model
geometry is that of a truncated cone

2
(M\Q,g) = ( [ro,—i—oo) x dQ), dr®dr + (:()) gag) , (1.3.10)

for some positive constant ry, and where g5 is the metric induced by g on 0Q). We
also assume that d() is a smooth closed sub-manifold with Ricyn > (n — 2)gsn. Such a
curvature assumption on d() is equivalent to suppose that the conical region in (1.3.10)
has nonnegative Ricci curvature. In this model setting, the solution to problem (1.2.15) is
u(r) = (r/r9)*". With this specific u, the metric § becomes

g=dp®dp+ g0,

where p = logr. In other words § is a (half) Riemannian cylinder over (9}, g3q)). In par-
allel, as the rigidity statement in Theorem 1.19 gives a characterisation of the truncated
cone metrics (1.3.10), so its conformal version in Theorem 1.25 characterises cylindrical
metrics.
Having this in mind, we are now going to describe the general features of (M \ , §)
in more details. Letting
¢ = —logu, (1.3.11)

we have that § = e’%g.

We denote by V, the Levi-Civita connection of the metric §, by VV its Hessian, and
we put the subscript § on any other quantity induced by §. We have, for a smooth func-
tion w

1
VoVgw = DyDgw + — <8aw8ﬁ(p + dpwd, g — (Dw | D(p)gw>,
where by (-, -) we denote the scalar product induced by g. In particular,

Agp = 0. (1.3.12)
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Moreover, the Ricci tensor Ricg of § and the Ricci tensor Ric of ¢ satisfy

do® d¢ n |V(P|§ ~

Ricg = Ric +VoVpp — — — — (1.3.13)
Finally, by (1.3.12) and (1.3.13) problem (1.2.15) becomes
Agp =0 in M\ Q
. dpwde Vel _
Ricg —VVe + 5 = n_2g+R1c in M\ Q (1.3.14)
=0 on 0Q)
¢(x) = +o0 as d(O, x) — +oo.

The classical Bochner identity applied to ¢ in (M \ ), §) , combined with the first two
equations of the above system, immediately yields the following identity

AQV¢@—(VWM@|V@g:2{MdV@V¢}HVV¢@, (1.3.15)

where Ric is the Ricci tensor of the background metric g. Such a relation is at the heart of
this work. As a first application, we state the following slight generalisation of Corollary
1.23 for solutions of (1.3.14) arising from solutions of (1.2.15).

Lemma 1.24. Let (M, g) be a nonparabolic Riemannian manifold with Ric > 0, let O C M be
a bounded open subset with smooth boundary. Assume that V|V ¢l = 0on {@ > so} for some
so € [0,400). Then the Riemannian manifold ({¢ > so},g) is isometric to the Riemannian
product ([so, +00) x {@ = so}, dp ® dp + §{|p—s,}) - I particular, 9Q) is a connected totally
geodesic submanifold inside (M \ (), §).

Proof. 1t suffices to observe that plugging V|V¢|; = 0 in (1.3.15) readily implies, since
Ric > 0, that
VVe =0 in {¢ >so}.

The isometry of (M \ ), §) with the claimed Riemannian product then follows from
Corollary 1.23.
O

We now briefly record some of the main relations among geometric quantities in-
duced by the two metrics. We omit the computations, since they are straightforward and
completely analogous to those carried out in [AM15] and [AM20]. First, observe that

Du
\Vgo\g = u (1.3.16)

w2
Let H and H; be the mean curvatures of the level sets of u, that coincide with those of
¢, respectively in the Riemannian manifold (M \ (), ¢) and in (M \ Q, §). They are com-
puted using the unit normal vectors —Du/|Du| and V¢/|V ¢|s, respectively. Exploiting
the g-harmonicity and ¢-harmonicity of u and ¢, we obtain that

= DDu(Du, Du)
-~ pup

_VVo(Ve, Vo)

H, =
g Vol

(1.3.17)
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These quantities are related as follows

1 n—1\ |Du|
Hy = u 2 |H—- — . 1.3.18
p= e i (G 5 319

Letting doz and dyg denote respectively the area and the volume elements naturally
induced by § on M \ (), we have

dog = uido, dpg = urzdp. (1.3.19)

Clearly, the first identity in (1.3.19) has to be understood with respect to a hypersurface
N in M. Finally, for every g > 0, define the conformal analogue of the Uy as the function
4 : [0, +00) — R mapping

Dy(s) = / Vol do. (1.3.20)
{p=s}

The functions Ug and ®g, and their derivatives are related to each other as follows
u5 = Cbﬁ(— log t),
—tUp(t) = Pp(—logt), (1.3.21)

for 0 < t < 1. The following theorems are the conformal versions of the Monotonicity-
Rigidity Theorem 1.19.

Theorem 1.25. Let (M, g) be a nonparabolic Riemmanian manifold with Ric > 0. Let O C M
be a bounded and open subset with smooth boundary, and let ®g be defined as in (1.3.20). Then,
for every B > (n —2)/(n — 1), the function @ is differentiable with derivative

do

TSﬁ(s) - —5/\V¢\§H§ doy, (1.3.22)
{g=s}

where Hg is the mean curvature of the level set {¢ = s} computed with respect to the unit normal

vector field v = V@ /|V @|s. Moreover, for every s > 0, the derivative fulfils

_ . 2 2
avy, o Vel {Re(Ve. Vo) + VY0l + (B-2)[VIVeli; |
dS (S) - € eq) ‘u§
{p=s}
s — - . n—2 2
——Be /e ? Vol Z{Rlc(V(p,Vgo)—l— (,B—n_l> VIVl
{p=s}
H > (n-2 2
+|Vol? hg—mgT + <n_1> VTVl >} dpg,

(1.3.23)

where the tangential elements are referred to the level sets of ¢. In particular, d®g/ ds is always
nonpositive. Moreover, (d®g/ ds)(so) = 0 for some so > 0 and some p > (n —2)(n —1) if

and only if ({¢ > so},§) is isometric to the Riemannian product ([so, +o0o) x {p =50}, dp ®
do+ gy (P:50}>' In particular, { ¢ = sy} is a connected totally geodesic submanifold.
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On the other hand, letting @, : [0, +00) — R be defined by

Do (s) = sup |V, (1.3.24)
{g=s}

the conformal version of Theorem 1.21 reads as follows.

Theorem 1.26. Let (M, g) be a nonparabolic Riemmanian manifold with Ric > 0. Let O C M
be a bounded and open subset with smooth boundary. Then, the function @ : [0,00) — R
defined by (1.3.24) is monotone nonincreasing. Moreover, if x; € {¢@ = s} is such that

IVol(xs) = sup [Vo),
{p=s}

then

)
H(x;) = —afvsloglqul(xs) >0, (1.3.25)

where vy is the unit normal to {¢ = s} given by vs; = D¢/ |Dg|. Moreover, equality holds in the
inequality of (1.3.25) for some s = sy € [0,00) or Peo(S) = Poo(sg) for some S > s if and only
if ({9 > so},§) is isometric to the Riemannian product ([sg, +c0) x {¢ = so}, dp @ dp +
${p=so}). In this case, in particular, Q) is a connected totally geodesic submanifold.

We would like to highlight the full and striking formal analogy between the two state-
ments above and Theorems 1.54 and 1.55, that are the Monotonicity-Rigidity Theorems
for parabolic manifolds. As we are going to see later, the proofs also will follow the very
same scheme.

Proofs of Theorems 1.19 and 1.21 after Theorems 1.25 and 1.26. Deducing formulas (1.3.3) and
(1.3.4) from formulas (1.3.22) and (1.3.23) is just a matter of lengthy but straightforward
computations carried out using the relations between g and ¢ recalled above. We sketch
the main steps. First, compute

2 4 3
’ __a_ ) |DDu n(n—1) |Du 2n  |Du
2 — -\ - —| H 132
VVeol; = u 2{‘ e =22 | u - , (1.3.26)
where H is defined as in (1.3.17), and
> . [|DDu|f, (n—1\*|Dul|* n—1\ |Dul’
VIVelg|, = u z{’ —| =) 5| 2 =) |5 | Hpe 1327)

By (1.3.26) and (1.3.27), we can write

2
2 _ 4 |DD”|2 - (n%) D|Dul
VYol + (B-2)|VIVeles = u { DIDE
(g1 [|pIDu 2+ n—1)\? 4_2 n—1Y\ |Du
B n—2 u n—2 n—2 u

Now, considering a orthonormal frame as {ey, ..., e,_1, Du/|Du|}, where the first n — 1
vectors are tangent to the level sets of u, we can decompose

Du
u

o)

(1.3.28)

2 n—1
iy <D|Du|

j=1

2
e]-> . (1.3.29)

D|Du|
u

T ‘Du




36 Chapter 1. Geometric inequalities in nonnegative Ricci curvature

Plugging the above decomposition into (1.3.28), we obtain, with the aid of some algebra,

VY +(B—2)|VIValg; = ur= { | [PDuf* — (;27) |D|Dw||* |
+(p=3h) D pulf

+(p=33) IDuf [H— (33) Dlogu]* |
(1.3.30)

=

where

2 DDyl |\
pulf = < ; e]> .
The monotonicity formula (1.3.4) now follows easily by pluggin (1.3.7) into the right hand
side of (1.3.30). On the other hand, (1.3.3) follows from (1.3.22) by an easy computation
using directly (1.3.16), (1.3.18) and (1.3.19).

With regard to the relation between the monotonicity U, and ¥, they are obviously
equivalent since |Vg|; = |Du|/u~1/("=2) On the other hand, (1.3.6) follows from
(1.3.25) using directly (1.3.16) and (1.3.18).

Assume now that U/g(to) = 0 or the inequality in (1.3.6) holds with equality sign at
x¢, for some tp € (0,1] and some 8 > (n —2)/(n — 1). Then, by (1.3.21) or by (1.3.16) re-
spectively, we deduce that ®}(—log fy) = 0 or equality holds in the inequality of (1.3.25)
respectively. Similarly, if U (t1) = Uw(tp) then @ (—logty) = Peo(—logty). In all of
these cases, the cylindrical rigidity statements of Theorems 1.25 and 1.26 are in force, and
we are thus left to show that they imply the conical splitting of Theorems 1.19 and 1.21.
To see this, observe first that that ¢ is an affine function of the coordinate s, and we write
itas ¢ = as + b, for some constants a and b. Observe that a # 0 due to the nonconstancy
of ¢ (that follows from (1.3.14)). By the definition of § given by (1.3.9), we have that the
metric g on {u < tp}, with ty = e % is

g = AenzTSZ (ds ® ds +§\{¢:50}) ,
for some positive constant A. Define now the coordinate r by
dr = VAerz ds,

so that )
T
g=dredr+ (70> Slu=to}s (1.3.31)

with {u < to} = {r > ro}, so that {r = ro} = {u = to}, where we also used that by the
constancy of the conformal factor in the definition of § on the level set of ¢, the metric ¢
and g are proportional when restricted to a level set of ¢. The structure of g displayed in
(1.3.31) is that of a (truncated) cone with cross section given by {u = t}, that in particular
has Euclidean volume growth. We are then left to show that ry assumes the value claimed
in (1.3.5). To compute it, observe that for ro < r < R, the set {ro < r < R} is a geodesic
annulus, and so we can treat {r = R} as a geodesic sphere dB(O, R) centered at some
O € M. We have

n—1 n—1
|0B(O, R)| /da = / (f) detglr do'...do" ! = <R> {u = to}],
0 1o

{u=to}
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so that we can explicitly express g in terms of AVR(g) as in (1.3.5) by

_ . 19B(O,R)| _ [{u = to}|
AVR(g) = REIEOO Ri=1[gn=1] ~ ri-l|gn-1|’

where the first identity is a well known characterisation of AVR(g) in terms of areas of
geodesic spheres instead of volumes of geodesic balls (see Subsection 1.4.1 , it follows
easily by the standard proof of the Bishop-Gromov Theorem (see e.g. [Pet06]). The proof
of the second claim is completed. O

The computations we performed above show that the derivative of U (1.3.4) can also
be written displaying the quantity on the right hand side of (1.3.30), that manifests the
role of the Kato inequality in the monotonicity. This is actually how the monotonicity
formula was presented in [AFM18]. Here, we preferred to plug (1.3.7) in order to ease
the comparison with the (effective) monotonicity of the nonlinear counterpart worked
out in Chapter 2. See in particular Theorem 2.23.

1.3.2 Proof of Theorems 1.25 and 1.26

In what follows, we are always referring to a background nonparabolic Riemannian man-
ifold (M, g) with Ric > 0. Outside a bounded and open subset QO C M with smooth
boundary, we define the conformal metric § as in (1.3.9). In particular, with the same
notations as in the previous subsection, (M \ (), §, ¢) is a solution to (1.3.14).

We first prove (the conformal version of) Theorem 1.21, that is the Monotonicity-
Rigidity Theorem for @, since it is considerably easier and gives as a corollary the uni-
form boundedness of |V¢|, a property that will be important also in the proof of (the
conformal version of) Theorem 1.19.

Proof of Theorems 1.26. We first show that there exists a constant C = C(g, Q) > 0 such
that [Vg|; < Cin M\ Q. Fixing a reference point O inside (2, and letting d(O, -) be the
distance from this point with respect to the metric g, we have, by (1.2.6), that

Dul(y) < ¢ AW

d(O,y)
outside some ball containing (). Then,
|Du| u*nlz (]/) EE
5 = < P A < n

where in the last inequality we used (1.2.19). Consider now, for a given constant « > 0,
the auxiliary function
Wy = |V(p|§e_‘w.

Observe that by the just proved upper bound on |V ¢|; we have w,(q) — 0as d(O,q) —
+oo for any & > 0. Moreover, a direct computation combined with (1.3.15) shows that w,
satisfies the identity

Agwy — (1= 2a) (Ve | Vo), = 2e7*7 [Ric(V(p, Vo) + |VV(;)|§} +a(l-— tx)|V(p|§wa.
(1.3.32)
In particular, for any « € (0,1) the right hand side above is nonnegative.
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For the time being, we let s be a regular value. Then, applying the Maximum Principle
to wy, in force by (1.3.32), one gets that for every y € {¢ > s} it holds

wa(y) < sup [Volg.
{p=s}

Letting « — 07 in the above inequality yields

[Volz(y) < sup [Volg,
{g=s}
for every y € {¢ > s}. that in particular implies the monotonicity of ®. It is now easy
to realise that

10
2 _ 2
‘Vq)‘gH(xs) = _ET%’V(P"? >0, (1.3.33)
where x; € {¢ = s} is the maximum point of |[V¢l|; in {¢ > s}. Indeed, the equality
in (1.3.33) follows immediately from a direct computation with the second identity of
(1.3.17), while the inequality immediately follows from the definition of x; to be a maxi-

mum point.

Let us consider now the rigidity statements. Assume that @ (S) = Poo(sp). Then,
the maximum value of [V ¢z in {¢ > so} is attained at some interior point y € {¢ > so}.
Then, by the Strong Maximum Principle , |Vgo|§ must be constant, since it satisfies

Ag|Volz = (VIVel3[Ve), > 0. (1.3.34)

Lemma 1.24 then yields the desired conclusion.

On the other hand, if |V¢| i; is not constant in {¢ > s}, the above strong maximum
principle argument implies that x; is a point of strict global maximum, and then the Hopf
lemma (again in force due to (1.3.34)) immediately yields that (1.3.33) holds with a strict
inequality sign.

We are left to discuss the case of singular level sets, that is, admitting a subset Crits C
{9 = s} (by [HS89] of Hausdorff dimension at most n — 2, compare also with [CNV15])
where |V ¢|; = 0. This situation is easily controlled by Sard’s Theorem, ensuring that this
can occur only for a set of values of measure zero. Indeed, assume that s is a critical value,
that is, {¢ = s} is a critical level set, and let y € {¢ > s}. Then, by the Sard’s Theorem
recalled above, there exists a sequence of smooth level sets { ¢ = s;} withs; — sasj — oo
satisfying y € {¢ > s;}. By the proof given above for smooth level sets, we infer

IVol2(y) < sup Vo3,
{o=s;}

that through passing to the limit yields the monotonicity of ®« also through singular
level sets. If @ (s9) = Poo(s1) for some s; > sp, with sy a possibly singular value, the
monotonicity yields that ®w(sg) = Peo(sj) for a sequence of s; < s; < s as above,
implying that |V ¢|; is a positive constant on {¢ > s;}. In particular, by the continuity
of [V g|g, the level set {¢ = sg} is actually not critical, and the splitting principle applies.
Finally, observe that even for critical level sets {¢ = s}, the point x; lies outside Crits,
and, in particular, (1.3.33) and the the Hopf Lemma argument employed above for the
rigidity case work substantially unchanged in this case. O

A direct consequence is that the functions ®y’s are bounded.
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Corollary 1.27. For every B > 0 the function ®g : [0, +00) — R defined in (1.3.20) is bounded
as

@5(s) < sup|Vol; [|Vplsdor.
200

for every s € [0, +o0).

Proof. Just observe that a simple application of the Divergence Theorem combined with
the g-harmonicity of ¢ gives the constancy in s of the function

{p=s}

Combining this observation with the boundon |V ¢|; following from Theorem 1.26, we
have

@p(s) =/!W!§\W\g dog < s;)p\W\?/!W!g dog,
{o=s} 20

for every s € [0, +00), as claimed. O

A fundamental tool in the forthcoming computations, leading to the expression of
the derivative of ®4 in terms of a nonpositive integral (as in (1.3.23)), is the following
Bochner-type identity.

Lemma 1.28 (Bochner-type identity). At every point where |V ¢|g # 0, the following identity
holds for every B > 0

Aol (VIVol; | Vo) = BIVol; [Ric(Ve, Vo) + VY9l + (8 —2)|VIVelsl; ],

(1.3.35)
where the Ric is the Ricci tensor of the background metric g.
Proof. By a direct computation one gets
-2 2
BeIVelf = (V917 | BadITolt + pis 271V k3]
that, combined with (1.3.15), leads to (1.3.35). O

We prove now an integral identity that will enable us to link the derivative of ®g to
the Bochner-type formula above. Although, differently from the Euclidean case where u,
and thus g, is analytic, we cannot rely on the discreteness of the set of singular values of
@, the proof of such fundamental relation does not importantly differ from that of [AM?20,
Lemma 3.4]. We report it for the reader’s sake. We also point out that a different proof
was proposed in [AFM18], building on the fine estimates on the Minkowski content of the
critical set provided in [CNV15]. However, that proof just recovered the monotonicity of
Ug for B > 1, that was, anyway, still sufficient to provide the Willmore-type inequalities.
In what follows, we let Critgp = {x € M\ Q| |V¢| = 0}.

Lemma 1.29 (Fundamental Integral Identity for regular values). Let 0 < s < S < +00 be
regular values, that is, Critp N {@ = s} = Crito N {p = S} = @. Then, the following identity
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holds
Bl Vo Bl Vo
<V‘V§0‘§‘ \V<P|g> dos — / <V‘V(P‘g‘ |V<P|g‘> do
eS & es g
{o=S} {p=s}
_2 . 2
Volf? [Ric(Vg, Vo) + [TV + (8- 2)| V|Vl
=B o7 Mg,
{s<g<sS}

(1.3.36)
where the Ricci tensor is referred to the background metric g.

Proof. Since all the quantities that appear in this proof are referred to the metric §, except
for Ric, which is the Ricci tensor of the background metric g, we shorten the notation,
dropping the subscript §. We consider the vector field

B
x = VIVel”
e?

that is well defined at every point where |V¢| # 0. By (1.3.35), we have that wherever
|Ve| # 0it holds

AlVelP — (VIVelf, Vo)
e?
_ . 2
Volf2 [Ric(Vo, Vo) + |V Vgl + (- 2)|V|Vgl’]

divX =
(1.3.37)

e?

Let s and S as in the statement, and consider, for € > 0, the cut-off function x. defined by

x(t)=0 int < Je,
0< x(t) <27! infe<t<3e, (1.3.38)
x(H) =1 int>%£,

and define accordingly the auxiliary vector field X, = x.(|V¢[?)X. Let also N5 =
{IV¢|*> < &} be the tubular neighbourhood of the critical set introduced in [AM20].
By the continuity of |V¢|?, for any ¢ small enough we have {¢ = s} NN, = {9 =
S} N Nzesp = @. Observing that X, = X on {¢ = s} and {¢ = S} we get, using the
Divergence Theorem

(o), ATl

eS es
{p=5} {p=s} {s<p<S}
= / xedivXdu + / (VXe|X) dp
{s<g=s5} Nie/2\Ne/a
: : VolP=2|V|Ve|*?
- / XedivXdpy + B / XS<‘V§0’2)| 7 2‘e(!" il dp.

{s<9<S} Nsz¢/2\Ne /2
(1.3.39)



1.3. The Monotonicity-Rigidity Theorems for nonparabolic manifolds 41

By (1.3.37) and (1.3.7), the integrand in the first term of the rightmost hand side is non-
negative, and thus, by Monotone Convergence Theorem, its integral converges to the
right hand side of (1.3.36). One is thus left to show that the second term in the rightmost
hand side of (1.3.39) vanishes as ¢ — 0". To see this, observe that by the coarea formula
and the second property in (1.3.38) of x.

3e/2
. 2 [VolP 2| VIVl L [ g2 VIVel
/ Xe(IVol?) o0 dp< [ o dods.
Niz¢/2\Ne /2 e/2 {IVo[>=s}

By means of the Mean Value Theorem, it then suffices to show that the function r(B=2)/2F (r),
with 5

e?
{IVo2=r}

vanishes as r — 07. We prove that this is actually the case if > (n —2)/(n —1). Indeed,
observe that

[ (VIVe]) ww!z [ IVVg]?
N;

\VWF
dods.
//{Vq)zs} e?|V|Vol?|

The above relation implies in particular that F is absolutely continuous. Then, taking
derivatives, and exploiting the refined Kato’s inequality provided by (1.3.7), we get

, VP B T P S
= ——1 __do>2 —— T _d — .
P2 [ aemem=2(ih V[Vl T 20 =1 1

{IVoP=r} {IVol=r}

for almost any r > 0. Integrating, we get, for R > 7,

FO) _ FR).
r2(n-1) R2(-1)

Then, we deduce that for 8 > (n —2)/(n — 1) the function r#=2/2F(r) vanishes as
r — 0. To complete the proof of the present Lemma also for B = (n—2)/(n—1), it
suffices to pass to the limit as p — (n —2)/(n — 1) from above in (1.3.36), employing
the Dominated Convergence Theorem on the one side and the Monotone Convergence

Theorem on the other.
O

Building on the Fundamental Integral Identity for regular values proved in Lemma
1.29, we are now ready to deduce the following monotonicity result, holding up also
at critical level sets. Here, it becomes transparent the key role played by the density of
regular values, ensured by the Sard Theorem, a property that we are going to miss in the
nonlinear case treated in the sequel of this thesis.
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Theorem 1.30 (Monotonicity of e*Sq)/’S(s)). Let B > (n—2)/(n—1). The function &g
defined in (1.3.20) is differentiable for any s > 0, and its derivative satisfies
Ve >d0g~ = B / VoliH; dog. (1.3.40)

Dy(s) = /<vv p
{p=s} {p=s}

In particular, forany 0 < s < S < oo, we have

e‘SQ%(S) —e ' Dp(s) = ﬁ/|V¢|§_2[RiC(V¢,V¢)+ |VV¢]§
{s<¢<5}
2]
+(B=2)|VIVolg[; [ dug,
(1.3.41)

where the Ricci tensor is referred to the background metric g.

Proof. Let us drop the subscript §. Let s9 € [0,+0), and s > sy be possibly singular
values of ¢. We first claim that

Dp(s) — Dp(so) = / div(|Ve|fVe)duy = / <V|V(p|ﬁ’V(p> du.  (1.342)
{so<g<s} {so<g=s}
To see this, consider again the tubular neighbourhoods N; considered in the proof of

Lemma 1.29 above. Applying the Divergence Theorem to the vector field Y = [V¢[FV¢
in the set {sp < ¢ < s} \ N, we get

/ div (|VlfVe) du = / Volftlde — / IVolFtldo
{s0<p<s}\N¢ {p=s}\N¢ {p=s0}\Ne
VIVl
+ / v 5<v ‘ dpu.
VRV wiwpn)
IN:N{sp<p<s}

(1.3.43)

Observing now that

- BV ) = Blve) = pVolf Vo V(P)

aiv([VoPVe) = (VIVeP|ve) = BIVelv Ve (T o)
we deduce that the integrand in the left hand side of (1.3.43) is uniformly bounded, and
thus by Dominated Convergence Theorem we deduce that its integral converges as ¢ —
07 to the right hand side of (1.3.42). By Monotone Convergence Theorem , it is also easy
to see that the first two terms in the right hand side of (1.3.43) converges to the left hand
side of (1.3.42). We are thus left to show that the last term in (1.3.43) vanishes as ¢ — 0.
In fact, since |V ¢|?> = e on ON,, we have

;|C(I’|2
B < Bt1)/215 <<
Vo <V(p VIVol] du<e |ONe N {so < ¢ < s},

ON:N{so<p<s}

that tends to 0 as ¢ — 07, as desired.
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We now aim at showing that the function mapping

s—I(s)=e" / <V|V¢|ﬁ"§2’> do,

P=s

a priori defined just for almost any s € [0, c0), can be extended to a continuous function
defined on the whole [0, +o0). Letting D be the set of regular values of ¢, it is well known
that it suffices to show that I is uniformly continuous on DN [s,S] for 0 < s < § < +o0
to ensure the existence of such an extension in [s, S|. To see this, let s) € DN [s,S], and
let s; € DN s, S| be a sequence of regular values converging to so. Let us assume for
simplicity that s; > s for any j, the general case displaying no additional difficulties. By
(1.3.36), we have

Volf~2 [Ric(Vo, Vo) + [VVol2 + (8—2)|V|Vgl’|
e?

eL'({s < 9 <S}).

In particular, for any ¢ > 0and § € DN [s, S, there exists § = J(¢, §) such that

_ . 2
Volf~2 [Ric(Vo, Vo) + [VVol2 + (8—2)|V|Vgl[’]
/ du <e.
e?
{§—0<¢p<5+0}

By the density of regular values, the union of open intervals (5§ — J,5 + J) as § ranges
in DN [s, S], covers the whole compact [s, S|, and thus we can extract a finite number of
intervals ($5; — 0;, ; + 9;). Let then § = min; §; > 0, and let us come back to our sequence
of regular values s; converging to sp. It is now clear that, if s; € (so,so + J), by the above
discussion and Lemma 1.29,

IVglf~2 |Ric(Vg, Vo) + [VVe + (B —2)|V|Vg|[
I(sj) —I(s0) = / [ o7 ‘ } } du <e.

{so<p<so+5}

The radius J being independent of xy shows that I is uniformly continuous on D N [s, S].
Since this holds for any interval [s,S], we can extend I to a continuous function on
[0, +00), that we are still calling I(s). Clearly, by (1.3.36), this function satisfies

_ . 2
Volf~2 [Ric(Vo, Vo) + [VVol2 + (8—2)|V|Vgl[’]
I(S) = I(s) = / ~ dy
{s<g<S}

forany 0 < s < S < oo. Moreover, with this terminology, the function e T (+) is a
continuous function on [0, c0) such that

e’I(s) = / <V\V¢\ﬁ“gz‘> do

{p=s}

everytime s is a regular value for ¢.
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Finally, apply the coarea formula in (1.3.42), to get

o {e=1}
By the Fundamental Theorem of Calculus, the continuity of (the extension of) the map-

ping
T—e'I(T) = / <V|Vgo|5 ’ %> do

{o=7}
proved above implies the differentiability of ®, together with the first identity in (1.3.40).
The second one follows from the first just by a direct computation involving (1.3.17). The
proof is completed. O

We are now in a position to complete the proof of Theorem 1.25.

Conclusion of the proof of Theorem 1.25. We are going to pass to the limit as S — oo in
(1.3.41). The following argument is due to Colding and Minicozzi, [CM14b]. We first
prove that the derivative of ®g has a sign. By (1.3.41) we have that, for every g > 1 and
every 0 <s < § < +oo,

Dp(S) > e5HD)(s).

Integrating the above differential inequality, we get
Dy(S) > (e<5—5> - 1) D)y (s) + Py(s). (1.3.44)

forevery 0 < s < § < +oco. Assume now, by contradiction, that q);;(s) > 0 for some

€ [0, +00). Then, passing to the limit as S — +-oc0 in (1.3.44), we would get ®g(S) —
+00, against the boundedness of ®z provided in Corollary 1.27. Thus, CD//S(S) > 0 for
every s € [0, +00). Therefore ®g is a nonincreasing, differentiable bounded function on
[0, +0c0), and in particular, CD% (S) = 0as S — oo, possibly along a subsequence. Passing
to the limit as S — +o0 in (1.3.41) finally gives the monotonicity formula (1.3.23).

For the rigidity statement, assume now that <I>;3(so) = 0 for some sy € [0,+o0). Then,
if, B > (n—2)/(n—1) we see from (1.3.23) that | V|V ¢4 ‘g = 0, and we can thus conclude
by Lemma 1.24. If on the other hand p = (n —2)/(n — 1), (1.3.23) still shows that the
terms on the right hand side of (1.3.7) vanish, and so the related rigidity statement ensures
that ({¢ > so},§) is a warped product. In particular, the mean curvature of {¢ = s}
depends only on s for any s > s9. Consequently, (1.3.22) shows us that they all have zero
mean curvature. By (1.3.17), we deduce in particular that [V+|V¢|s|; = 0, that, coupled
with [V |Vgls ‘g = 0 following from the vanishing of (1.3.23), implies that | V|V ¢l ‘g =
0, and we can conclude as before appealing to Lemma 1.24. O

1.4 Long time behaviour of the electrostatic potential
In this section, we are going to prove the Willmore inequality on manifolds with non-

negative Ricci curvature and Euclidean volume growth, using the geometric features of
the capacitary potential u of a given bounded domain with smooth boundary Q). For the
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reader’s convenience we recall that u is a solution to the following problem

Au=0 inM\Q
u=1 onodQ)
u(y) =0 asd(O,y) — +oo,

whose existence in the present context follows from Theorem 1.14. As sketched in the
Introduction, the proof makes use of the global features of the Monotonicity-Rigidity
Theorem, that is, it compares the behaviour of Ug in the large with Ug(1). The well
known asymptotics of u and of its gradient in the Euclidean case were the crucial tool to
compute the limits of Ug in [AM15], that consequently gave the sharp lower bound on
the Willmore-type functional. On manifolds with nonnegative Ricci curvature and Eu-
clidean volume growth, the work of Colding-Minicozzi [CM97b] actually implies that the
asymptotic behaviour of the potential is completely analogous to that in R”. However,
as we will clarify in Remark 1.39, there is no hope to get an Euclidean-like pointwise
behaviour of Du in the general case. Nevertheless, using techniques developed in the
celebrated [CC96], we are able to achieve asymptotic integral estimates for the gradient
that in turn will let us conclude the proof of the Willmore-type inequalities (10).

We introduce the (normalised) capacity of (), that is

Cap(Q) = inf{(n_Z;W/IRW\Df]zdy ‘ f e (RY), f > 1onQ}. (14.1)

Such notion will arise here in the following form

/ |Du|do
(1.4.2)

Cap(Q)) = ek

written in terms of the capacitary potential u of (). We address the reader to the proof of
Theorem B.1 for the equivalence between (1.4.1) and (1.4.2).

1.4.1 Manifolds with Euclidean volume growth

A foundational result in comparison geometry, that we did not explicitly employed yet, is
the Bishop-Gromov Theorem. In order to ease the reader with the conventions we adopt,
we recall the classical statement in the case of nonnegative Ricci curvature.

Theorem 1.31 (Bishop-Gromov Theorem). Let (M, g) be a complete noncompact Riemannian
manifold with Ric > 0. Then, for any point x € M, the function ©, : (0, +00) — R defined by

|B(x,7)]

®x(r) - ‘]B”|7’” ’

is monotone nonincreasing. Moreover, the limit as r — oo of Oy is independent of x, and it
satisfies
lim O (r) =1

r—00
for some x € M if and only if (M, g) is isometric to R" with the standard metric.

The above Theorem justifies the following commonly used Definition.

Definition 1.32 (Asymptotic Volume Ratio and Euclidean volume growth). Let (M, g) be
a complete noncompact Riemannian manifold with Ric > 0, and let O € M. Then we define its
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Asymptotic Volume Ratio AVR(g) € [0,1] as

. [B(O,r)]
AVR(g) = lim “r

We say that (M, g) has Euclidean volume growth if AVR(g) > 0.

If follows at once that manifolds with Euclidean volume growth satisfy (1.2.3), and
thus from Varopoulos’ characterisation manifolds with Euclidean volume growth are non-
parabolic.

Let us also recall the well known fact that in a noncompact complete Riemannian
manifold (M, g) with Ric > 0 also the function

|0B(O, 1)|
(O, —|—OO) St —— l9x(7’) = W

is monotone nonincreasing for any x € M, and the asymptotic volume ratio satisfies

AVR(g) = lim 12801

rroo = 1[Gn1| (14.3)

The proof of the monotonicity of 9, (r) is actually the main step in the classical proof of
the Bishop-Gromov Theorem, see e.g. the proof given for [CLN06, Theorem 1.132] or
that proposed for Theorem 3.1 in the survey [Zhu97], while the validity of (1.4.3) is easily
checked through an application of de 1'Hopital rule.

Let us point out an obvious but very important feature of the Bishop-Gromov Theo-
rem and of the Euclidean volume growth assumption, that is

AVR(g)|B"|r" < |B(x,r)| < |B"|r" and AVR(g)|S" |r"~! < |0B(x,r)| < 8" 1|«

(1.4.4)

The importance of the above bounds lie also in the fact that the constants in front of

" do not depend on the base point x. We are explicitly making use of this fact in the
computation of the limit of Uw(t) as t — 07, see the proof of Proposition 1.43.

In the remainder of this section we are repeatedly going to use both the area and the

volume formulations of the Bishop-Gromov Theorem without always mentioning them.

Rough estimates for the electrostatic potential

Let us now derive some rough estimates for the electrostatic potential u# and its gradi-
ent Du holding on manifolds with nonnegative Ricci curvature and Euclidean volume
growth, to be refined later. Here, and in the sequel, we set r(x) = d(O, x), where O € Q.

Proposition 1.33. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0
and Euclidean volume growth. Then, it is nonparabolic and the solution u to problem (1.2.15) for
some bounded and open Q) with smooth boundary satisfies

Ci"(x) < u(x) < Cur¥"(x) (1.4.5)

on M\ Q for some positive constants Cy and Cy depending on M and Q. Moreover, if Q3 C
B(O, R), it holds
[Du|(x) < Csr'™"(x), (1.4.6)

on M\ B(O,2R) with C3 = C3(M, Q) > 0.
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Proof. The first inequality in (1.4.5) is just (1.2.19). To obtain the second one, recall from
(1.4.4) that

[B(O,r)| > (n]s"}|AVR(g)) 1"

Then, the second inequality in the Li-Yau estimate (1.12), combined with the second in-
equality in (1.2.18) completes the proof of (1.4.5). Finally, inequality (1.4.6) is achieved
just by plugging the upper estimate on u given by (1.4.5) into (1.2.5). O

1.4.2 Asymptotics for u and its gradient

The behaviour at infinity of u can be deduced along the path indicated in [CM97b]. How-
ever, we prefer to present here a simplified version of that proof, taking advantage of
some of the refinements provided in [LTW97]. Let us first recall the following asymptotic
behaviour of G (see [CM97b, Theorem 0.1], or [LTW97, Theorem 1.1] for a completely

different proof),

. G(O,x) 1
] - . 147
r() oo 7(X)2-"  AVR(g) (14.7)

Building on this fact, we deduce precise asymptotics for the capacitary potential of ().

Lemma 1.34. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0 and
Euclidean volume growth, and let u be a solution to problem (1.2.15). Then

o u(x) _ Cap(0)

= . 1.4.8
r(x)—+o0 V(X)Z_” AVR(g) ( )

Proof. By [LTW97, Theorem 1.2], that slightly extends [CM97b, Theorem 0.3], we have
that outside some large ball B(O, R) containing ()

G ou
dB(O,R)

where G is the Green’s function with pole in O, v is the exterior unit normal to the bound-
ary of B(O, R) and v is a harmonic function defined in M \ B(O, R) satisfying
o] < c% (14.10)

for some constant C > 0. We point out that the Green’s function considered in [LTW97]
is, in our notation, G/ ((n — 2)|S"!|). By the Divergence Theorem and the harmonicity

of u, we infer that
Ju Ju
/ad + a—da = /Aud],t—O,

3B(O,R) 90 B(O,R)\Q

where we denote by v the exterior unit normal to the boundary of B(O, R) \ Q. Since, on
0Q), v = Du/|Du|, we get, by the above identity, that

Ju
/ S do / IDu| do
_ J9BOKR) - = Cap(Q). (1.4.11)

(n—2)8"| 2)|s""|

Dividing both sides of (1.4.9) by >~ and passing to the limit as r — +oo taking into
account (1.4.7), (1.4.11) and (1.4.10), we get the claim. O
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As a straightforward corollary of the above lemma, we compute the rescaled area of
large geodesic spheres in M.

Corollary 1.35. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0 and
Euclidean volume growth, and let u be a solution to (1.2.15). Then

n—1

| b e Cap(Q)
R,vligi-loo un2do = |S"7'| AVR(Q) (AVR(g) (1.4.12)
3B(O,R;)
Proof. 1t follows from Lemma 1.34 and (1.4.3). O

Building on the above formula (1.4.8) for the asymptotics of 1, we now derive inte-
gral asymptotics for Du. They are achieved through an adaptation of the methods used
in [CC96, Section 4]. Similar estimates have been widely considered in literature (see
e.g. [Col12] [CM97b], [CM97a], [CM14a]). We are providing here a complete and self-
contained proof.

In the computations below, we are going to consider first and second derivatives of
the distance function x +— d(O, x). This can be readily justified by approximating the
distance function by convolution, by performing the computations below for the approx-
imating sequence and finally passing to the limit. A scheme like this, often implicit in the
aforementioned literature, has been carried out in details for example in [LTW97]. We
state this underlying approximation lemma, a complete proof of which can be obtained
following a standard regularisation argument as in [Col97, Lemma 1.4].

Lemma 1.36 (Smooth approximation of the distance function). Let (M, g) be a complete
Riemannian manifold. Let O € M, and let K C M be a compact set such that O € M\ K.
Let r(x) = d(O,x), and let f : (0,400) — R be a smooth function. Moreover, assume that
A(for) < hor in the sense of distributions for some smooth function h : (0,400) — R.
Then, there exists a sequence of smooth functions { f;}jen such that for any e > 0 there exists a
jo = jo(K, h) such that

(i) foranyj > jo we have

fi(x) = f(r(x))] <€
forany x € K,

(ii) for any j > jo we have
IDfj(x)| < [Df(r(x))| +¢

forany x € Kand Dfj(x) — Df(r(x)) for almost any x € K,

(iii) for any j > jo we have
Afi(x) < h(r(x)) +e

forany x € K.

The above lemma will be applied mostly with f(t) = —t*> " and h(t) = 0, for
t € (0, +00), so that (iii) approximates the well known relation Ar>*~" > 0 in the sense of
distribution, already observed in (1.2.14). Observe also that (ii) easily allows to pass
to the limit under the integral sign when approximating the gradient of functions of
the distance. Moreover, we are also going to repeatedly apply the Divergence Theo-
rem to vector fields depending on (approximations of) the distance function on annuli
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B(O,kR) \ B(O,R) with k > 1. We can do this since by the coarea formula the inter-
section of the cut locus with geodesic spheres is (1 — 1)-negligible for almost any value
of the radius. We are actually applying the Divergence Theorem to annuli bounded by
such geodesic spheres (we implicitly used this observation also in the proof of Lemma
1.34). Alternatively, we can refer to the much more general weak Sard-type property of
Lipschitz functions object of [ABC11].

In order to keep the presentation as transparent as possible, we are going to work di-
rectly with derivatives of the distance function, having in mind a repeated use of Lemma
1.36 as hinted above, and on geodesic annuli allowing us to apply the Divergence Theo-
rem as just illustrated.

Proposition 1.37 (Integral Asymptotics for Du). Let (M, g) be a complete noncompact Rie-
mannian manifold with Ric > 0 and Euclidean volume growth, and let u be a solution to problem
(1.2.15). Then, for every k > 1, it holds

R2n 2

2
li D2—" du = 0, 1.4.13
R |ARkR| / ‘ AVR ' # (1.4.13)

where, for R > 0, we set Agxr = B(O,kR) \ B(O,R).

Proof. A simple integration by parts combined with the harmonicity of u leads to the

following identity
2
- Cap(Q) , ,_ Cap(Q) -
2—n _ P 2—n o 1% 2—n
/ e g = (g ™) (v SR @
R,kR
1/> do.

L /(u B CaP(Q)rz_n> <Du B Cap(Q)Drz_11
(1.4.14)

AVR( g) AVR( g)
0ARKR

Let us estimate separately the integrals on the right hand side of the above identity. Let
e > 0. Then, by (1.4.8),

u Cap(Q)
e AVR(g)‘ =
for r big enough. We have, for R big enough
Cap Cap(Q)
' / AVR(g > <” AVR(g) )
RkR
/ Cap(Q u _Cap(Q) rz_”dy
AVR(g 72" AVR(g)
. (1.4.15)
ap 2—n
<e
= / ‘AVR ArT du

_ Cap(Q) , »-
_ 2—n 2—n
= ¢R AVR(g) Ar-"du,

ARKR
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where in the last identity we used Ar*=" > 0 in the sense of distributions, already dis-
cussed above. Integrating by parts Ar>~" we obtain

/Ar2_” dj = (2—n) [(KR)'"|{r = kR}| ~ R""|{r = R}]] .
AR R
In particular, by the assumption on the Euclidean volume growth, the above quantity is

uniformly bounded in R. We have thus proved that the first summand on the right hand
side of (1.4.14), for R large enough, is bounded as follows

Cap(Q)) \ > » Cap(Q) 5, -
/ (AVR(g)N2 ><“—AVR(g)72 )d# < CieR*". (1.4.16)

RkR

Let us turn our attention to the second integral in the right hand side of (1.4.14). Proceed-

ing as in (1.4.15), we have
Cap(ﬂ) 2—n Cap(Q) 2—n
_ — <
/ ‘ <u AVR(g)r Du AVR(g) Dr v)|do <
< eR*M / [\Du\ + (n— 2)Cap(Q)r1’” do.

OARKR
AVR(g)

OARKR
(1.4.17)

Recall now that in Proposition 1.33 we proved that
Du| < Cpr'™™,

for some positive constant C, independent of r. Thus, by the Euclidean volume growth,
the integral on the right hand side of (1.4.17) is uniformly bounded in R and so

[ (o S0 oo S

1/> do| < CzeR*™  (1.4.18)

RkR

for some C3 independent of R. Finally, by (1.4.14), (1.4.16) and (1.4.18), we obtain, for R
big enough, the estimate

1 Cap(Q) 5.
Du — Dr—"
| AR kR /‘ AVR(g)

AR R

2 Ran
dy < Cue— < C5eR*,
| AR kr|

for some positive constants C4 and Cs independent of R. In the last inequality we used
the Euclidean volume growth assumption. Our claim (1.4.13) is thus proved. O

From the above Proposition we easily deduce the integral asymptotic behaviour of
|Du| on geodesic spheres.

Corollary 1.38. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0 and
Euclidean volume growth, and let u be a solution to problem (1.2.15). Then, there exists a sequence
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of positive real numbers Ry with Ry — +o0 such that

lim /’|Du|—(n—2)§2};{(((3r1_" do = 0. (1.4.19)

Ry—+o0
{r=R}

Proof. Let us first observe that, by means of Holder inequality, we can deduce from the
L? asymptotics (1.4.13) an analogous L! behaviour. Namely, for any ¢ > 0 we have

) 1/2
fo S ([ oS T
AR,kR (g) AR,kR (g) e
R |Ap x| B R*"| AR kx| B

for any R large enough. By the Coarea Formula, the above L! estimate gives, for R large

enough,
kR

Cap(Q) 2—n
/ds/ ‘Du_AVR(g)Dr do
R {r=s} < e
R'"™"|Agr] B

Thus, by the Mean Value Theorem, there exists Ry € (R, kR) such that

/ ’DM Cap(“) D],.Z*n
} g)

do

~ AVR(
{Y:Rk < C£

R™"| ARz

for some constant C independent of R. The Euclidean volume growth of the annulus
Agrkr as R increases then implies the existence of a sequence Ry — +o0 as in the state-
ment. O]

Remark 1.39. The integral asymptotic for |Du| given by Corollary 1.38 cannot, in general,
be improved to a pointwise asymptotic expansion at infinity on a manifold with nonnega-
tive Ricci curvature and Euclidean volume growth. Indeed, the validity of such a formula
would imply |Du| # 0 outside some big ball B(O, R), and, in turn, M \ B(O, R) would
be diffeomorphic to dB(O, R) X [R,+0c0). This would imply that M has finite topologi-
cal type. However, Menguy provided in [Men00] examples of manifolds of dimension
n > 4 with Ric > 0 and AVR(g) > 0 with infinite topological type. On the other hand,
we notice that in dimension 3 topological obstructions like these cannot occur. This is
due to the structure result obtained in [Liu13], where it is proved that if a 3-dimensional
complete noncompact Riemannian manifold (M, g) with Ric > 0 is not diffeomorphic
to IR?, then its universal cover isometrically splits a product N x R where N is compact
Riemannian manifold with nonnegative sectional curvature. In particular, in this case,
(M, g) has nonnegative sectional curvature, and the finite topology immediately follows
from the celebrated Soul Theorem proved in [CG72].

1.4.3 Limits of the monotone quantities.

Recalling that
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it is easy to realise that we have now at hand all the elements to compute the limit as
t—0t.

Proposition 1.40. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0
and Euclidean volume growth. Then, for every B > 0, we have that

lim Ug(t) = Cap(Q)'~ 72 AVR(g)"2 (n — 2)PH1 81| (1.4.20)

t—0+

Proof. We multiply and divide inside the integral in (1.4.19) by u(*~1/("=2) " Using the
asymptotics of u obtained in Lemma 1.34, we obtain

pim / ~(n—2) (?Zf((éi) )

{r=Ri}
Let us now recall the following basic interpolation inequality
1l < Hf”gl(X)Hin;(g()’

holding for any f € L!(X) N L9(X), where X is a measure space and the numbers p and
gsatisfyl <p<g<+4ooand1l/p =8+ (1 —09)/q. We apply such an estimate with

e ()

Du

n—1

Un-2

—2doe = 0.

Du
n=1
Uun-2

f=

p=1+pB,q=2+pB,sothat® = 1/(1+ B)?, and with respect to the measure u("~1)/("=2) 4o
We get

- 1/(1+p)
Du AVR(g) \ " n-1
— J— n— <
/ = U (Capm)) ey =
{r=R;}
1 1/(1+B8)?
Du AVR(g)>"2 -1
< —(n—=2 =2 d X
< | ) |l )<Cap<0> wede
{V:Ri}
(1.4.21)
| aes B/ (1+p)?
Du AVR(g)\ "2 n-1
X / T% (n—2) <Cap(0)> un—2 do
{r=Ri}

Due to both the uniform bounds on [Du|/u("~1)/("=2) = |V |, following from Theorem

1.21 and the bound on [ (=R} w2 do, that follows from Corollary 1.35, it is easy to see
that the second integral on the right hand side of (1.4.21) is bounded in R;. Thus, by
(1.4.21) and (1.4.19), we deduce that

()

Du
n=1
Uun-2

lim
R,‘*}OO
{r=Ri}
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The above limit in particular implies that

that, combined with (1.4.12), gives

Du 1+8

n—1
un-2

lim w2 de = (n—2)*P Cap(Q)1~72 AVR(g)72 |81
i—T00
{r=R;}

Moreover, by the asymptotic behaviour of u, we have
14Fﬁ n—1
un2do = lim

lim /
R;—+4o0 u ti—+0+

r=R; u=t;

Du 1+

n—1
n—2

D n—
,:ll MT*; do = lim Uﬁ(tl)/

yn—2 ti—0t

and we have thus proved our claim for some sequence ; — 07. However, by the bound-
edness and monotonicity of Ug the whole limit as t — 0" exists, and it coincides with the
just computed one. O

The computation of the limit of U (#) as + — 07 is more subtle, but it can still be
returned to Proposition 1.37, thanks to a clever trick sketched by Colding in the proof of
[Col12, Theorem 3.5]. The argument is based on a very nice mean value inequality for
positive super-harmonic functions in manifolds with nonnegative Ricci curvature, first
provided in [CCM95] and stated and proved separately in [Col12, Lemma 3.6].

Lemma 1.41 (Mean value inequality for positive super-harmonic functions). Let (M, g)
be a complete noncompact Riemannian manifold with nonnegative Ricci curvature and let u be
a positive super-harmonic function defined in an open set D C M. Then, for any geodesic ball
B(x,r) € D we have

1

- <
BB(x7) / udo < C u(x)
9B(x,r)

for some C = C(n).
Remark 1.42. The correspondent statement for positive sub-harmonic function is classical
and is proved in the celebrated [LS84], see Theorem 2.1.

We can finally compute the limit of U, at infinity.

Proposition 1.43. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0
and Euclidean volume growth. Then

. B AVR(g) 1" "2
tlg(% Us(t) = (n—2) [Cap(ﬂ)} . (1.4.22)
Proof. Let us first observe that proving
. Dul2 L, [AVR(g)]¥"?
]llrglo sup  — = (n1-2) Cap(Q) (1.4.23)

M\B(O,R;) U™"

for some sequence {R;}jen such that R; diverges to infinity as j — oo suffices to get
(1.4.22). Indeed, if (1.4.23) holds, it suffices to take a sequence XR; realising the supremum
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of [Du|?/u?(*=1/(n=2) in M\ B(O, Rj). In fact, xp is easily seen by the same argument as
in the proof of Theorem 1.21 to belong to dB(O, R;). Up to possibly consider a subse-
quence of the R;’s, let t; such that B(O, R]-) C M\{u < t]-} C B(O, R]-+1). Then, we
have

[Duf? Duf? _ Dul?
ke SPET= R il = SUP ot
M\B(O,Rj 1) u-n=2 M\{u<t;} U2 M\B(OR;) usn—2

(1.4.24)

In particular, since

sup zn—l = Sup 27171
M\{ugt]} u n-2 {Mztj} u n=2

as the argument in the proof of Theorem 1.21 showed, we get, passing to the limit as

j — +ooin (1.4.24) and using (1.4.23), that

. DuP _ (2 [AVR(g)]¥?
lim sup —— = (n—2) Cap(Q))

t]-a0+ {ll:t]‘} nn—2

7

that is obviously equivalent to (1.4.22) for the subsequence t;. However, the monotonicity
of U provided by Theorem 1.21 yields the desired full limit.

We thus devote ourselves to prove (1.4.23). To this aim, let, for R > 0 big enough,

D 2
Lgr = sup |L_|1,

M\B(O,R) 142112

and let xg € 9B(O, R), as above, to satisfy Lg = [Du|?/u?("~1)/("=2)(x). Consider now
on M\ B(O, R) the positive function

Du/|?
)

u-n-2

A direct computation shows that

Dul? Du?
Af = —u [A' f’1+2<Du’D<| fl|1>>],
w2 u?n=2

that amounts, by the formulas recalled in Subsection 1.3.1, to

Af = —e 7% (8g| Vol; — (VIVo [V9)) <0,

where the nonpositivity is due to (1.3.15). In particular, the function f is a super-harmonic
positive function, and so it satisfies the assumptions of Lemma 1.41. We thus have

’aB(xin{M / fdo < Cf(xqr) = Cu(xsr) (Lr — Lar)

9B(x4R,R)

for any R < R < 3R and some C = C(n). In particular, we get

infop v, k) 4 1 / ( |Du? )

' 5 Lr — — = (x do < C(Lg — Lsg). (1425

u(x4r)  |0B(x4r, R)| ) R uzg( 4R) < C(Lr — Lar) ( )
aB(X4R,R)

A direct application of the Harnack’s inequality (1.2.7) combined with Yau’s gradient
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inequality (1.2.4) shows that the ratio of on the left hand side of (1.4.25) is bounded from
below from a constant C = C(n), and then we are left with

1 Du|?
i1 / (LR - ZA (X4R)> do < C(Lg — Lar), (1.4.26)
N U-n-2
BB(x4R,R)

for some constant C = C(AVR(g)), where we also used the assumption of Euclidean
volume growth in the form of (1.4.4). Observe now that since, as observed above, Ly is
nonincreasing as R — +oo, it admits a finite limit and in particular the right hand side of
(1.4.26) tends to 0 as R — +oo, forcing the right hand side to do so too. To complete the
proof, we are going to show that also

1 v (AVR(9\Y"P Duf?
Rn—1 / (n—2) <Cap(Q) =) (x4r) | do— 0 (1.4.27)
BB(x4R,R)

as R — +o0. Indeed, since obviously

[ (o Bhe) ool [ [noar (SR

0B(x4r,R) 9B (x4r,R)

1 v (AVR(g)\ Y rDur2
= [(n 2 (G D) | Ao,
BB(x4R,R)

if (1.4.27) holds, we deduce by coupling it with (1.4.26) that

lim Lg = (n—2)?
R—+4o0

7

]

that is (1.4.23).

To finally prove (1.4.27), consider the annulus Agsr(xar) = B(xsr,3R) \ B(xsr, R)
centered at x4, and observe that it is contained in the annulus Ag7r centered at the
reference point O. By Proposition 1.37, for e > 0 it holds

R21—2 5 2
D —n
[Ax 7R\ / ‘ AVR r

du <e

if R is big enough. Multiplying and dividing for u2("~1)/("=2) ‘and employing Lemma
1.34, we deduce that

2

1 Du AVR(g) V"2

— = _(2- <

LI = [Cap(Q)] Pri dus<Cie,
AR7R

for some C; independent of R, where we also used the Euclidean volume growth assump-
tion to control the volume of the annulus. Since as just observed Agsr(x4r) C Agryr, We

also get
1 Du . [AVR(g)]""?
v | |EeeGew| v

2
d,u S CZ <y

AR3R(¥4R)
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for some C; independent of R. By the coarea formula and the integral mean value theo-
rem we actually find R € (R,3R) such that

T B = Cap(Q))
aB(X4R,R)

2
du <Cse.

for any R big enough and some constant C3 independent of R, that is, we proved (1.4.27).
Ul

Limits of the monotone quantities in the sub-Euclidean volume growth case

As happens also for the monotone quantities in [Col12], Ug and U vanish as t — 07 if
(M, g) has Euclidean volume growth. In this case, we have

im BN

r—r 00 Ik

for any x € M. Then, by (1.2.18), (1.12) and (1.2.6), one easily obtains

outside some ball containing () for some C = C(M, Q2). This implies that

Du
n—1

un-2

B
lim Ug(t) = lim IDu|do = 0, (1.4.28)

t—0t t—0t

{u=t)

where we used the constancy of t — [ (u=t} |Du| do. Similarly, one realises that lim; ¢+ U () =
0. This computation clearly shows that Uz cannot be employed to deduce a Willmore in-
equality on manifolds with sub-Euclidean volume growth, and it supports the perception

that the infimum of the Willmore-type functional is zero on these manifolds. This actu-

ally happens for example on noncompact Riemannian manifolds with a metric which is
asymptotic to a warped product metric of the following type

¢ = do® dp+Cp*gyx,

where X is a closed hypersurface, C > 0and 0 < a < 1. Indeed, this is readily checked by
computing the Willmore-type functional on large level sets {p = r}. Actually, Theorem
1.68 below, following from the arguments leading to the Isoperimetric Inequality, shows
that this happens also on complete noncompact 3-manifolds with Ric > 0 admitting a
uniform superlinear volume growth condition.

1.4.4 The Willmore-type inequalities for nonnegative Ricci

We are finally in position to state and prove one the first main results of this work, a
Willmore-type inequality on complete noncompact Riemannian manifolds with nonneg-
ative Ricci curvature.

Theorem 1.44 (Willmore-type inequality). Let (M, g) be a complete noncompact Riemannian
manifold with Ric > 0 and Euclidean volume growth. If (O C M is a bounded and open subset
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with smooth boundary, then

n—1

do, (1.4.29)

H

AVR =< —

vr@gls™ < [ |2
a0

where AVR(g) € (0,1] is the asymptotic volume ratio of (M, g). Moreover, the equality holds if
and only if (M \ Q, g) is isometric to

1
2 : _ 00 o
([ro,—f—OO) x dQ), dr@dr+ (r/r) gaQ), with ry = <AVR(g)]S”1]> .

In particular, 0Q) is a connected totally umbilic submanifold with constant mean curvature.

Proof of Theorem 1.44. With Theorem 1.19 and Proposition 1.40 at hand, Theorem 1.44 fol-
lows exactly as in the Euclidean proof recalled in the Introduction. Precisely, let B = n — 2.
Then, (1.4.20) reads

lim U, »(t) = AVR(g) (n—2)""1|s"7}|.

t—0t

Moreover, by the nonnegativity of expression (1.3.3) proved in Theorem 1.19, and the
Holder inequality,

-1
(m )/ Du|"'dor < / |Du|">Hdo
o) o0

(n—2)
(n=2)/(n-1) 1/(n-1)
< (/ ]Du|”_ld(f> </ H" ! d(7> ,
a0 a0
that gives
n—1
/ Du|" ' doe < (n—z)"l/ do. (1.4.30)
20 s n—1

Finally, one has

AVR(g) (n —2)" 1|51 = Jim U, 2(t) < U, 2(1) = /aQ|Du]”_1da <

This completes the proof of the Willmore-type inequality. The rigidity statement when
equality is attained follows straightforwardly from the rigidity part of Theorem 1.19. [

n—1

do.
(1.4.31)

H
n—1

Application to ALE manifolds

We can improve our Willmore-type inequality if (M, g) satisfies a quadratic curvature decay
condition, showing that, in this case, the lower bound AVR(g)||S"!| on the Willmore
functional is actually an infimum. Let us recall the following well known definition.

Definition 1.45 (Quadratic curvature decay). A complete noncompact Riemannian manifold
(M, g) has quadratic curvature decay if there exists a point x € M and a constant C =
C(M, x) such that

[Riem|(y) < Cd(x,y)?,

where by Riem we denote the Riemann curvature tensor of (M, g).
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When this assumption is added on a Riemannian manifold with Ric > 0 and Eu-
clidean volume growth (M, g), [CM97b, Proposition 4.1] gives the following asymptotic
behaviour of the gradient and the Hessian of the minimal Green’s function G.

Theorem 1.46. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0, Eu-
clidean volume growth and quadratic curvature decay, and let G be its minimal Green’s function.
Then

ID:G|(O,x)  (n—2)

i _ 1.4.32

d(O,xl)H—lH-oo d="(p,x) AVR(g) ( )

lim |DD (GZ/(Z_”)> O,x)—2 (i Zzng(x) = 0. (1433
d0x)—too| ' AVR(g) ’ o

Observe that arguing as in Remark 1.39, one realises that (1.4.32) actually implies
that Riemannian manifolds satisfying the assumptions of the above Theorem have finite
topological type.

Theorem 1.46 enables us to prove that the Willmore-type functional of large level sets
of the Green’s function approach AVR(g)|S"~!|. This fact, combined with our Willmore-
type inequality (1.4.29), easily yields the following refinement.

Theorem 1.47. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0, Eu-
clidean volume growth and quadratic curvature decay. Then,

n—1
inf{ / nI;I 7 do | QO C M bounded and smooth} = AVR(g)|S"71|. (1.4.34)
a0

Moreover, the infimum is attained at some bounded and smooth Q) C M if and only if (M \ Q, g)
is isometric to

1
190 >nl

2 ; Y N Lk B
( [r0, +00) x 0Q), dr ® dr + (r/ro) gaQ>, with 1y = (AVR(g)\S”1|

Proof. Let p € M be fixed, and let G be the minimal Green’s function of (M, g). Let us
denote again by G the function x — G(O, x). In light of Theorem 1.44, it suffices to prove

that
lim ‘
t—+o00 n—1

{G¥/@-m) =t}

n

-1
do = AVR(g)|S"!|. (1.4.35)

To see this, consider, at a point x, orthonormal vectors {ey, ..., e,_1} tangent to the level
set {G = G(x)}. Then, letting r(x) = d(O, x), we have, by (1.4.33),

1
7

= 2 1 =
im ; DD (GH) (e;e)(x) = 2(n—1) (AVR(g)) . (1.4.36)

The mean curvature of the level sets of G2/ (=" is easily computed as

L5 DD (G77) (e e1)
‘DGZ/@*”) ‘

7

HGZ/(Z—n) -
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that, combined with (1.4.36), (1.4.32) and (1.4.7) gives

lim r(x)Hgen(x) = (n—1).

7(x)—00

Combining it again with (1.4.7) and Euclidean volume growth gives (1.4.35), in fact com-
pleting the proof. O

We now particularise Theorem 1.47 to Asymptotically Locally Euclidean (ALE) mani-
folds, proving Corollary 1.49. We adopt the following definition, that is a sort of extension
of the one considered in the celebrated [BKN89] — where striking relations between cur-
vature decay conditions and behaviour at infinity of manifolds are drawn — and sensibly
weaker than the one used by Joyce in the classical reference [Joy00].

Definition 1.48 (ALE manifolds). We say that a complete noncompact Riemannian manifold
(M, g) is ALE (of order T) if there exist a compact set K C M, a ball B C R", a diffemorphism
F: M\ K — R"\ B, asubgroup T < SO(n) acting freely on R" \ B and a number T > 0 such
that

(Flom)*g(z) = gre +O(J2]) " (1.4.37)
al(F o m)gl|(z) = O(Jz)) (1.4.38)
a5(F o )"gl|(z) = O(lz)) ™2, (1.4.39)

where 7t is the natural projection R* — R"/T,z € R"\ Bandi,j=1,...,n.
The following is the version of Theorem 1.47 sharpened for ALE manifolds.

Corollary 1.49. Let (M, §) be an ALE Riemannian manifold with Ric > 0. Then,

H
(e
m{/nl

0Q)

Moreover, if the infimum is attained by some Q), then M \ Q) is isometric to

n—1 |Sn71|
do | O C M bounded and smooth » = (1.4.40)

cardT’

1
. 4T[0\ 7T
([r°’+°°) x (8"1/T), dr®d7+r2gsn—1/r>/ with 1y = <w> '

(1.4.41)
for some ro > 0 and some finite subgroup T of SO(n). In particular, (00, gaqy) is homothetic to

(8" 1/T, 851/1)-

Proof. Conditions (1.4.37), (1.4.38), (1.4.39) readily imply that ALE manifolds have Eu-
clidean volume growth and quadratic curvature decay. Moreover, condition (1.4.37) and
a direct computation give that

sl 1
|S*=1|  cardT "

AVR(g) = | (1.4.42)

The characterisation (1.4.40) then follows immediately from (1.4.34).
Assume now that the infimum of the Willmore functional is attained at some (2 C M.
Then, by the rigidity part in Theorem 1.47, M \ ) is isometric to a truncated cone over 0Q).

However, by (1.4.37), (M, g) is also C%-close at infinity to a metric cone with link gn-1/T,
Since the cross sections of a cone are all homothetic to each other, Q) is homothetic to
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§"~1/T, that s, they are diffeomorphic and gan = A?ggs1 1 for some positive constant A.
This fact, together with (1.4.42) in the rigidity part of Theorem 1.44 imply that

1
00 n-1
( [r0, +00) x 3QY, dr @ dr + (Ar/r9)*gen 1/r> with ) = % :
|S*=1/T|
In particular, one has

n—1
pBO,R)| = (57) I8
0

Combining this with (1.4.42) we conclude that A = ry, proving the isometry with (1.4.41)
and completing the proof. O

1.5 Other consequences of the Monotonicity-Rigidity Theorem
for nonparabolic manifolds

In this short section we draw some other consequences of Theorem 1.19, in particular of
the monotonicity of U, that we did not apply yet.
1.5.1 Capacity estimates

The following capacity estimate hold on any nonparabolic manifold with Ric > 0, and,
at this point not surprisingly, holds as equality only on truncated cones.

Proposition 1.50 (Capacity estimates for nonparabolic manifolds). Let (M, g) be a com-
plete noncompact Riemannian manifold with nonnegative Ricci curvature, and let 0 C M be a
bounded set with smooth boundary. Then, for any p > (n —2)/(n — 1), we have

148 1/(14B)
Cap(Q)) < m (]i@ da) . (1.5.1)

Moreover, equality is achieved if and only if (M \ Q, g) is isometric to

H
n—1

1
2 : _ 90| t
([ro,—f—oo) x 0Q), dr@dr+ (/1) gaQ), with 1y = (AVR(g)]S”H) .

Proof. By the nonnegativity of expression (1.3.3) for t = 1, we get, as for (1.4.30), that

/ Dulftlde < (n 1+5/
Q)

/ |Du| do
20
(n—2)s""]

we easily obtain (1.5.1) by applying the Holder inequality in the above definition of ca-
pacity and combining with (1.5.2). See the analogous proof of the nonlinear version The-
orem 2.5.1 in R" for additional details. The rigidity statement follow immediately from
the equality case of Theorem 1.19. O

148
do. (1.5.2)

n—1

Recalling that

Cap(Q2) =
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We would like to highlight, among the various inequalities provided in (1.5.1), the
one obtained setting f = n — 2, reading
dcr) ,

(n-2)
Q2|1 /

Cap(Q)) < —~r——

R I

since it combines the Willmore-type functional and the capacity of (). In the next chapter
we will show how in R” the nonlinear version of it, that is (2.5.4), involving the p-capacity
of ), actually leads to the Willmore inequality in the limit as p — n.

In the the above inequality we just used Ug'(0) > 0, and this is why it is meaningful
on any nonparabolic manifold with nonnegative Ricci curvature. The following one, on
the other hand, will employ lim;_,o+ Ug(t) < Ug(1), and this is where, by Proposition
1.40, the Asymptotic Volume Ratio and thus the Euclidean volume growth assumption
enters.

H
n—1

Proposition 1.51 (Capacity estimates for manifolds with Euclidean volume growth). Let
(M, g) be a complete noncompact Riemannian manifold with nonnegative Ricci curvature and
Euclidean volume growth, and let (3 C M be a bounded set with smooth boundary. Then, for
every p > (n—2)/(n — 1) we have

1+

H do.

n—1

B/(n—2) 5" 1] b(n2)
AVR(g) < [Cap(Q?)]
|0QY] 20

Moreover, equality is achieved if and only if (M \ Q, §) is isometric to

1
: . o0\

( [TO, +OO) X aQ, di’ ® d?’ + (1’/1’0) gaQ), wzth 7’0 - <IWR(g)’Snl’> .
Proof. This is substantially (1.4.31) with a generic B > (n —2)/(n — 1), obtained com-
bining (1.4.20) with (1.5.2) in the proof above, and suitably rearranging the terms. The
rigidity statement follows as usual from the rigidity statement of Theorem 1.19. O

As before, we would like to point out a particularly relevant inequality given by the
above result, that is, the inequality obtained through setting f = 1, reading

Vn-2) 1 H
AVR (e’ < do.
(avrig)cap (@) " < i |15 e
This is, with the terminology of Theorem 2.24 in the next chapter, the L>-Minkowski
inequality in the general setting of manifolds with nonnegative Ricci curvature and Eu-
clidean volume growth. The L” version of it, indeed, will be seen to lead, in R", to the
(extended) Minkowski inequality.

1.5.2 Rigidity Theorems under pinching conditions

Observe that, passing to the limit as § — oo in (1.5.1) after taking the 1 + B-power on both
sides, one gets

AVR(g) |72 _
T o In—1

Cap(Q) o

Q
However, with this procedure one cannot apply the rigidity statement of Theorem 1.19,
that regards finite values of B, in order to prove that equality in the above inequality char-
acterises truncated cones. On the other hand, this can be deduced from the monotonicity
property of Uy and the value of its limit (1.4.22).
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Theorem 1.52. Let (M, g) be a complete noncompact Riemannian manifold with nonnegative
Ricci curvature and Euclidean volume growth. If there exists a bounded set () C M with smooth
boundary satisfying

B [AVR(g)]"lZ < H [AVR(g)]”lz (1.5.3)

Cap(Q) “n—17 [Cap(Q)
on every point of 9QY, then (M \ Q, g) is isometric to

1
2 : _ 90| "t
( [ro, +00) x 9Q), dr ® dr + (r/79) gaQ), with 1y = <AVR(g)]S”1]> .

Proof. By Theorem 1.21 and Proposition 1.43, we immediately get

1/(n—-2)
lim Us(t) = (1 —2) [AVR@]

< Du| < (n—2 ,
t—0+ Cap(Q) - s;?)p| ul < (n )s;;)p n—1
where the equality is achieved only if (M \ (), g) splits as in the statement. In particular,
this happens if (1.5.3) holds. O

The above result can be interpreted as a rigidity theorem under a pinching condition
on the mean curvature of d() with respect to the capacity of (), first observed for R" in
[BMM19], where it can be interpreted as a sphere theorem. An analogous statement is
immediately deduced from the proof above for |Du|, stating that

<sup
90

) (1.5.4)

AVR(g) V2 U
n—2

Cap(Q2)

with equality achieved only on truncated metric cones. An application of the above sharp
inequality yields the following analogue of [BMM19, Corollary 1.4], that, in our case,
gives a sufficient condition to infer that the whole manifold is actually R” with Euclidean
metric and () is a ball.

Theorem 1.53. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0 and
Euclidean volume growth, and let () C M be bounded set with smooth boundary. Let u be the
solution to (1.2.15), and assume that

Du 81\ T
2’ < AVR(g) < el > : (1.5.5)

n—

sup
o0

Then (M, g) is isometric to R" with the Euclidean metric and ) is a ball.
Proof. Under the validity of (1.5.5), we get

Cap(Q)) =

/ Dide e <|Sn1|>—:—zl

Sn 1‘ — ’8Q|

that in particular yields

n—2
IS’HI)“ AVR(g)
< < su
( 0] ) = Cap(q) = %%

where we used (1.5.4) and again (1.5.5) respectively in the second and third inequality. In
particular, the chain above implies that AVR(g) = 1, that implies, by the Bishop-Gromov

n—2

B Sn—l =
< AVR(g)" 2 <|!80||> , (1.5.6)

n—
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Theorem, that (M, g) is actually isometric to (R”, gr»). Moreover, since the second in-
equality in (1.5.6) becomes an equality, we infer from Theorem 1.21 that 0Q2 is a compact
connected totally umbilical submanifold, that is, () is a ball. O

The strong rigidity statement proved above is the same that happens in the equality
case of the Isoperimetric Inequality for manifolds with Ric > 0, that is Theorem 1.60.

1.6 Monotonicity-Rigidity Theorems for parabolic manifolds and
the Enhanced Kasue’s Theorem

For B > 0, we recall the definition of the function ¥z : [0, +-00) — R satisfying

¥5(5) = [ IDylFide,
{yp=s}
and that of ¥ : [0, +00) — R

Yools) = sup [Dyl,
{p=s}
where ¢ is a solution to problem (1.2.22) for some bounded () C M with smooth bound-

ary and B > 0. The following is the statement of the monotonicity-rigidity properties of
Y.

Theorem 1.54 (Monotonicity-Rigidity Theorem for parabolic manifolds). Let (M, g) be
a parabolic manifold with Ric > 0. Let O C M be a bounded and open subset with smooth
boundary, and let 1 be a solution to problem (1.2.22). Then, for every p > (n —2)/(n — 1), the
function Y g is differentiable with derivative

d¥g

1) =~ [IDyIPH o,

{p=s}

where H is the mean curvature of the level set {{p = s} computed with respect to the unit normal
vector field v = D/ |Dyp|. Moreover, for every s > 0, the derivative fulfils

d¥ -2
26 == [ oyl Ricyp, o)+ (5123 ) [DiDylf
{y=s}
H |? —2
+DyEh -S|+ (Z—1> ‘DT|D¢H2>} -

(1.6.1)

In particular, d¥g/ ds is always nonpositive. Moreover, (d¥g/ ds)(so) = 0 for some sp > 1
and some B > (n —2)/(n —1) ifand only if ({¢ > so}, g) is isometric to the Riemannian prod-
uct ([so, +00) x {¢ = so}, dp ® dp + gyy—s,}). In this case, in particular, 9 is a connected
totally geodesic submanifold.

Analogously, these properties are shared by Y.

Theorem 1.55 (Monotonicity-Rigidity Theorem for ¥). Let (M, g) be a complete parabolic
manifold with Ric > 0. Then, the function Yo : [0,00) — R defined by (13) is monotone
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nonincreasing. Moreover, if x; € {¢ = s} is such that

[Dy|(xs) = sup [Dy],
{y=s)

then

H(x,) = — - loglDy]| >0, (162)

where vs is the unit normal to {¢ = s} given by v = Dy/|Dy|. Moreover, equality holds in
the inequality of (1.6.2) for some s = sg € [0,00) or Yoo (51) = ¥eo(S0) for some sq > sq if and
only if ({¢ > so},g) is isometric to the Riemannian product ([so, +o00) x {¢ = so},dp @ dp +
g{lp:sO}). In this case, in particular, Q) is a connected totally geodesic submanifold.

As for the proofs of Theorems 1.25 and 1.26, the triggering factor implying the mono-
tonicity of the above functions is a Bochner-type identity. In the parabolic case, it reads,
forp >0,

ADy|P = BIDy|F~ ||DDY[? + (B —2)|DIDy|[* + Ric(Dy, Dy)| . (1.6.3)

The details of the above basic computation are analogous to those giving the Bochner-
type identity (1.3.35).

As done in Section 1.3, we first show the monotonicity of ¥, together with the related
rigidity statements.

Proof of Theorem 1.55. Define now the auxiliary function w,
wy = [DY[*(p+1)7"
Applying (1.6.3) with B = 2, a straightforward computation gives
Aw, + 20 (Dw, | Dlog(y 4+ 1)) = 2 [[DDy|* + Ric(Dy, Dy)| + a(1 — &) | Dy? |w,.

If « € (0,1), we see that the right hand side of the equation above is nonnegative, and
in particular, by the Maximum Principle applied in {s < i < S} we find that that the
maximum of w, in such a set is achieved on {ip = s} U {¢ = S}. Since by Theorem 1.17
the function|Dy|? is uniformly bounded, and then w, vanishes at infinity, we infer that
SUP{,>g) Wa = SUPy,_ ) Wa for any & € (0,1). Letting « — 0, we get the desired upper
bound for |Dy|?, giving as a consequence the monotonicity of Y. The inequality (1.6.2)
follows as in the proof of Theorem 1.26 by the property of xs to be a maximum point.

Once the monotonicity and (1.6.2) are established, the rigidity statements are obtained
exactly as in the proof of Theorem 1.26, using that, by (1.6.3)

ADy|> >0
in place of (1.3.34). The case of singular level sets is treated as there too. O

Now, we prove the Monotonicity-Rigidity Theorem for parabolic manifolds with non-
negative Ricci curvature.

Proof of Theorem 1.54. Observe that the right hand side of (1.6.3) is nonnegative if B >
(n—2)/(n—1), by means of the refined Kato’s inequality (1.3.7) for harmonic functions.
Analogously to (1.3.42), we first prove, applying the Divergence Theorem to the vector
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field Z = |Dy|PDy in the set {sy < ¥ < s}, that

¥~ taleo) = [ di(DyPoy) = [ (DIoyl| ) an.
{so<g<s} {o<g<s}
(1.6.4)
Applying the Divergence Theorem on to the vector field W, = x.(|Dy|>)W, with W =
D|Dy|f and x. the same cut-off function as in the proof of Lemma 1.29, we can show that

DID 5’Dll) do — <DD ,3’D¢>d —
/<"”' rD¢|>" | {pmer| 5y ) @

{yp=5} {p=s}
— B /]D1p|5—2 |IDDy 2 + (8 — 2)[DIDy||* + Ric(Dy, Dy)| dy

{s<p=s}
(1.6.5)

everytime s < S are regular values. Sard’s Theorem then allows to extend the function

B D‘/’>
s—>{¢/} <D|D1,l)\ "Dlﬂ do

to a continuous function on [0, o), and finally, by applying the coarea formula to (1.6.4),
this permits to apply the Fundamental Theorem of Calculus in order to get

¥y = —p [ (DIDyl?| b ) e,
{p=s}

where the above right hand side is defined by density also on singular values. In partic-
ular, with this convention, (1.6.5) yields

¥5(5) —¥j(s) = p | [Dyl?*(Ric(Dy,Dy) + [DDy|* + (8 -2) IDIDY* ) de > 0.

{s<p<S}
(1.6.6)
Combining the uniform bound on [Dy| given in Theorem 1.17 with the constancy of
AN / Dy do,
{y=s}

we obtain, as in Corollary 1.27, that ¥ is uniformly bounded in s for any g > 0. We
can thus argue as in the conclusion of the proof of Theorem 1.25 to pass to the limit as
S — +o0in (1.6.6) and obtain, plugging also the Kato-type identity (1.22), the mono-
tonicity formula (1.6.1). The rigidity part of the statement is obtained exactly as for that
of Theorem 1.25. O

1.6.1 The Enhanced Kasue’s Theorem

The Enhanced Kasue’s Theorem 1.56 now follows at once.

Theorem 1.56 (Enhanced Kasue’s Theorem). Let (M, g) be a complete noncompact Rieman-
nian manifold with Ric > 0, and let O C M be a bounded and open subset with smooth boundary.
Then, the following assertions hold true.
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(i) If (M, g) is nonparabolic, then, for every p > (n —2)/(n—1),

1 n—1 1 du’B
> - .6.
S;.;)pH = [ [Duffde [(n—Z) Uﬁ(O)—i—ﬁ T (O)] > 0, (1.6.7)

and

n—1 d |Du| n—1
> - — > —— .6.
s;?)pH > <n—2> |Du|(x1) 5 log ! (x1) > <n 2) ;?)p\Du| >0, (1.6.8)

where H is the mean curvature of 0Q), v = —Du/|Du| and x; is defined in Theorem 1.21.

(ii) If (M, g) is parabolic, then, for every B > (n —2)/(n — 1),

supH > — ! [1 ¥ (O)] >0 (1.6.9)
a0 JuoDylPdo B ds - h
and 3
supH > ——log|Dy|(xp) >0 (1.6.10)
20 ov

where H is the mean curvature of 0Q), v = D/ |Dy| and xq is defined in Theorem 1.55.
Moreover, the second inequality in (1.6.9) and the second inequality in (1.6.10) hold with the
equality sign if and only if (M \ Q, g) is isometric to the Riemannian product ([0, +00) X
0Q), dp ®@ dp + o) and dQY is a totally geodesic connected submanifold of (M, g).

Kasue’s Theorem follows immediately as a corollary.

Corollary 1.57 (Kasue’s Theorem). Let (M, §) be a complete noncompact Riemannian manifold
with Ric > 0 and let O C M be a bounded and open subset with smooth boundary such that
Hyn < 00n 0Q). Then (M \ Q, g) is isometric to the Riemannian product ([0, +-c0) x 0Q), dr ®
dr + gaq) and 9QY is a totally geodesic connected submanifold of (M, g).

Proof of Theorem 1.56 and Corollary 1.57. Assume first that (M, g) is nonparabolic. Then, it
is sufficient to use (1.3.3) and (1.3.4) at t = 1 to get

n—1 1 dUﬁ
il — B < B
(n—2> Ug(0) + g dt (0) /H|Du| do < s;g)HaQ/|Du] do,
a0 90

that is (1.6.7). If (M, ) is parabolic, one can prove inequality (1.6.9) in a completely anal-
ogous fashion. The inequalities (1.6.8) and (1.6.10) on the other hand follow immediately
from (1.3.6) and (1.6.2). Since Ug > 0, it is easy to deduce from (1.6.7) and (1.6.9) that
Hjn < 0on 0Q if and only if (M, g) is parabolic and d¥/ dsz(0) = 0. The rigidity state-
ments of Theorems 1.54 and 1.55 imply at once the rigidity statement in Theorem 1.56,
that in particular implies Corollary 1.57. O

Corollary 1.57 can also be interpreted as a rigidity statement when the equality is
attained in (1.4.29) if AVR(g) = 0. The following is then a direct consequence of Theo-
rem 1.44 and Corollary 1.57.

Corollary 1.58. Let (M, g) be a complete noncompact Riemannian manifold with Ric > 0. If
Q) C M is a bounded subset with smooth boundary, then

n—1

do. (1.6.11)

H

n—1

AVR(g)|8" 1| < /’n_l
Q)
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If AVR(g) > 0, then equality in (1.6.11) holds if and only if (M \ Q), g) is isometric to
1

2 : _ 09| m

( |:7’0/ +OO) X aQ, d?’ ® dr + (7’/1’0) gaQ>l Wlth 1"0 — <W> .
In particular, 9Q) is a connected submanifold with constant mean curvature. If AVR(g) =
0, equality holds in (1.6.11) if and only if (M \ Q,g) is isometric to a Riemannian product
([0, 400) x 9Q), dr ® dr + gaq)). In particular, 0Q) is a connected totally geodesic submanifold

of (M, g).

1.6.2 A Maximum Principle/Splitting Theorem for manifolds with two bound-
ary components

The Splitting Theorem by Kasue, that we rediscovered in Corollary 1.57, is known to
be true also in a compact versions. Namely, it is proved in [Kas83, Theorem B 1] or
in [CK92, Theorem 1] that if a compact manifold (M, ) has nonnegative Ricci curvature
and boundary oM = N U Nj, with N a compact connected submanifold, such that M has
nonpositive mean curvature , then it splits a compact cylinder ([0, T] x N, dt ® dt + gn).
We show that we can recover also this result by means of a suitable boundary value
problem. As in Theorem 1.56, this new approach actually bounds from below the supre-
mum of the mean curvature of M in terms of the nonnegative normal derivative on the
boundary of a suitable sub-harmonic function, that vanishes exactly when the splitting
occurs. In spite of this enhancement, we point out that our assumptions are more re-
strictive than those of [Kas83, Theorem B 1], in that we also ask for N; to be a compact
smooth submanifold. The reason for this extra condition is in the definition of a bound-
ary value problem with Dirichlet data on dM. This seems to be a delicate issue in case of
noncompact boundary, and we are not intentioned to address it here.

Theorem 1.59. Let (M, g) be a compact Riemannian manifold with Ric > 0 and nonempty
boundary oM = N U Ny, where N and Ny are complete connected smooth manifolds of dimension
n — 1. Let v the solution to the boundary value problem

Av=0 inM
v=0 on N (1.6.12)
v=1 on Nj.

Let x € OM realise |Dv|(x) = sup,,,|Dv|. Then, we have

supH > —ilog|Dv|(x) >0, (1.6.13)
oM ov

where H is the mean curvature of dM with respect to the inward pointing unit normal v. More-
over, equality holds in the second inequality above if and only if (M, g) splitsas ([0, T] x N, dt ®
df + gn). In particular, this happens if and only H = 0 on the whole d M.

Proof. Since v satisfies (1.6.12), the Bochner inequality yields
A|Dv|* = 2 [|DDo|* + Ric(Do, Dv)] . (1.6.14)
In particular, by the Maximum Principle

sup|Do|* = sup|Do/?
M oM
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Let then x as in the statement be the point on the boundary of N where the maximum of
|Dv|? is achieved. Letting v the inward normal, it is immediately checked, as in the proof
of Theorems 1.3 and 1.55 that

aaV|Dv\2(x) = —2H|Dv|*(x) <0, (1.6.15)

where the sign is due to the property of x to be a maximum point. This already proves
(1.6.13). Assume now that equality holds in the second inequality of (1.6.13), or equiv-
alently in the inequality of (1.6.15). By the Hopf Lemma, this can happen only if |Dv|?
is constant in M. By (1.6.14) and the assumption of nonnegative Ricci curvature, this
implies that the Hessian of v vanishes, and this yields, by Corollary 1.23, the claimed
splitting. O

1.7 The isoperimetric inequality for 3-manifolds

As already discussed in the Introduction, we show here how to use our Willmore in-
equality (1.4.29) to improve a result stated by Huisken in [Hui], in which the infimum of
the Willmore energy is characterised in terms of the infimum of the isoperimetric ratio on
3-manifolds with nonnegative Ricci curvature.

Theorem 1.60 (AVR(g) & Isoperimetric Constant). Let (M, g) be a complete noncompact
3-manifold with Ric > 0 and Euclidean Volume Growth. Then,

oop L
inf ——— = inf =“:—— = AVR(g), 1.7.1
where the infima are taken over bounded and open subsets () C M with smooth boundary. In
particular, the following isoperimetric inequality holds for any bounded and open () C M with
smooth boundary
20
O

Moreover, equality is attained in (1.7.2) if and only if M = R and Q is a ball.

> 367 AVR(g). (1.7.2)

We point out that in the 3-dimensional case Theorem 1.60 extends Theorem 1.47 to
any complete noncompact manifold with Ric > 0 and Euclidean volume growth, with
no curvature assumptions at infinity. Actually, we can even relax the volume growth
assumption, see Theorem 1.68.

1.7.1 Huisken’s argument.

Let us briefly present Huisken’s heuristic argument to deduce an isoperimetric inequality
from Willmore’s through the mean curvature flow. We first recall that a sequence of ori-
entable hypersurfaces F;(x) : ¥ — M immersed in a Riemann manifold (M, g), evolves
through the Mean Curvature Flow if

d
—F(x) = —H(t,x)v(tx),
dt
where H is the mean curvature of ¥; = F(X) and v is its (exterior, in the case where
Y, is the boundary of a domain) unit normal. Accordingly, we say that {();} is a mean
curvature flow if the boundaries are evolving through mean curvature flow in the sense
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explained above. Let then () be an open bounded set with smooth boundary and let
{4}, with t € [0,T), be a smooth mean curvature flow starting from Q). Suppose, in
addition, that
lim || = 0. (1.7.3)
t—=T-

Consider, for some constant C > 0 to be defined later, the isoperimetric difference
D(t) = [ou*2 = C|yl. (1.7.4)

Taking derivatives in t, and using standard formulas (see for example [HPP99, Theorem
3.2]), one finds

%D(t) = — g |aQt|1/2/H2da + C/Hda,
a0 o)
that, through Holder inequality, gives
1/2 1/2
d 2 3 2
aD(t) < | [0 /H do C — 5 /H do
CloN a0y

Thus, if we choose C such that

1/2
C < g( / sza) (1.7.5)
Q)

for any bounded and smooth ) C M, t — D(t) is nonincreasing. This implies that

D(0) = [0Q)¥?*-C|Q| > lim D(t) > 0,
t—T-

where we have also used (1.7.3). The above comparison in particular gives the (possibly
non sharp) isoperimetric inequality

D2
> .
o = ¢

In [Hui], the constant C is chosen to be the infimum of the right hand side of (1.7.5), when
() varies in the class of outward minimising sets.

1.7.2 Tools from the Mean Curvature Flow of mean-convex domains.

We are first concerned with the accurate justification of the above computations. This
will be accomplished with the help of a couple of important results due to Schulze and
White, respectively. In the first part of our treatment we assume that the boundary 0Q2 of
the bounded set () is smooth and mean-convex, that we understand as H > 0. We will
see later how to deal with the general cases.

Since the Mean Curvature Flow (MCF for short) is likely to develop singularities,
one needs to consider an appropriate weak notion in order to state the following useful
results. In particular, we consider the Weak Mean Curvature Flow in the sense defined
in [ES91]. A special case of the regularity theorem [Whi00, Theorem 1.1] gives

Theorem 1.61 (White’s Regularity Theorem). Let (M, g) be a complete noncompact 3-dimensional
Riemannian manifold, let ) C M be a bounded set with smooth mean-convex boundary and let
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{Qt}iejo,1) e its Weak Mean Curvature Flow. Then, the boundary of Q) is smooth for almost
everyt € [0, T).

We point out that the maximal time T might a priori be infinite on a general Rieman-
nian manifold. We are going to combine the above regularity result with the following
special case of [Sch08, Proposition 7.2], that is a weak version of the monotonicity of the
isoperimetric ratio. It can be checked, indeed, that the computations performed to obtain
such a result do not involve the geometry of the underlying manifold.

Theorem 1.62 (Schulze). Let (M, g) be a 3-dimensional Riemannian manifold, let Q0 C M be a
bounded set with smooth mean-convex boundary and let {4 }¢(o 1) be its Weak Mean Curvature
Flow. Assume there exists a universal constant C > 0 such that

1/2
3 2
a0

for almost every t € [0,T). Then, the isoperimetric difference t — D(t) defined as in (1.7.4)
using the constant C, is nonincreasing for every t € [0, T).

Remark 1.63. A different tool that might be used to deal with the singularities would be
the theory of the Mean Curvature Flow with surgery, recently developed by Brendle and
Huisken in [BH16] and [BH18]. On this regard, one should first make clear whether the
monotonicity of the isoperimetric difference survives the surgeries.

The following theorem provides a complete description of the long time behaviour of
the Weak MCF of a surface moving inside a 3-dimensional Riemannian manifold, and it
can be readily deduced from [Whi00, Theorem 11.1].

Theorem 1.64 (Long time behaviour of MCEF). Let (M, g) be a 3-dimensional Riemannian
manifold, let OO C M be a bounded set with smooth mean-convex boundary and let {Q}co,7)
be its Weak Mean Curvature Flow. If |Q| and |0QY| do not vanish at finite time as t — T,
then () converges smoothly to a subset K, and the boundary of any connected component of K is
a stable minimal submanifold.

As a consequence, if (M, g) contains no bounded subsets with minimal boundary,
the Weak MCF of a bounded set with mean-convex boundary is going to vanish. In
particular, combining Corollary 1.57 with Theorem 1.64, one gets the following corollary.

Corollary 1.65. Let (M, g) be a complete, noncompact, 3-dimensional Riemannian manifold
with Ric > 0 and no cylindrical ends, let 0 C M be a bounded set with smooth mean-convex
boundary and let {Q},c0,1) be its Weak Mean Curvature Flow. Then, T is finite and |Q| and
|0Q)| tend toOast — T~

1.7.3 Some properties of the strictly outward minimising hull

In order to prove the isoperimetric inequality for any set (2 with smooth and possibly
not mean-convex boundary, we are going to consider the strictly outward minimising
hull Q*. This notion, with roots in [BT84], manifested its importance in the celebrated
construction of weak solutions the Inverse Mean Curvature Flow of [HIO1], that led to
the proof of the Riemannian Penrose Inequality. We are going to extensively discuss
this notion in Chapter 3. For the time being, we limit ourselves to define briefly the
relevant notions and state the fundamental facts needed in the proof. We first recall the
notion of strictly outward minising sets, a variational property of bounded sets with finite
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perimeter that played a key role in the foundation of the Weak Inverse Mean Curvature
Flow worked out in [HIO1]. Simply, we say that a bounded set with finite perimeter
E C R" is outward minimising if for any bounded set with finite perimeter F D E with
finite perimeter and |F \ E| > 0 it holds P(F) > P(E). We say that it is strictly outward
minimising if for any such set F we have in fact P(F) > P(E). We can thus define the
strictly outward minimising hull (O of an open bounded set () as the intersection of all the
strictly outward minimising sets containing (). What mostly matters to us now, is that on
any complete noncompact Riemannian manifold with nonnegative Ricci curvature and
Euclidean volume growth ()* is an open bounded strictly outward minimising set with
finite perimeter containing () and satisfying

P(Q) = inf{P(E) | Q C E}.

In particular, if Q) is outward minimising then O)* satisfies P(Q)) = P(Q*). This is (part
of) the content of Theorem 3.1, that is the main result of Chapter 3. Let us just briefly
remark that complete noncompact Riemannian manifolds with nonnegative Ricci curva-
ture satisfy (i) in that statement, compare with the discussion in the Introduction. By
[SZW91], 90)* enjoys %! -regularity where it touches the obstacle ), and it is a locally
area minimising hypersurface where it does not. See Theorem 3.14 for the complete state-
ment. In particular, if () has smooth boundary, the strictly outward minimising hull also
enjoys P(Q)*) = |0Q)*|, see Remark 3.16. By minimal surfaces regularity, up to ambient
dimension 7, 9Q) is then a ¢'!-hypersurface. These last deep and celebrated results on
the regularity of locally area minimising hypersurfaces were pioneered in [DG61] and
later completed in [Alm66] and [Sim67]. See also the comprehensive [HIO1, Regularity
Theorem 1.3] for an account on the regularity of solutions to more general obstacle prob-
lems. We complete this overview on the properties of () pointing out that, by the out-
ward minimising property, the weak mean curvature Hyn- is nonnegative. This readily
follows from the standard first variation argument.

We will actually flow Q* by mean curvature. To this aim, we will invoke [HIO1,
Lemma 5.6], where the authors show that bounded set E with ¢'!-boundary having
nonnegative variational mean curvature can be approximated in ¢! by smooth hyper-
surfaces with strictly positive mean-curvature. These approximating hypersurfaces hap-
pen be boundaries of sets E; that are strictly outward minimising if E was. Moreover,
the Willmore energy of the approximators converges to the Willmore energy (in terms
of the variational mean curvature) of dE. Interestingly, the approximating sequence is
built through an appropriate notion of mean curvature flow starting from such a ¢1!-
hypersurface. Such a result has found many other applications in literature, see for exam-
ple [LW17, Lemma 4.2] in the ambient setting of a Kottler-Schwarzschild manifold, and
the proof of [Sch08, Corollary 1.2]. Moreover, it has been generalised to 4! boundaries in
[HIO8, Lemma 2.6] admitting nonnegative weak mean curvature, and the approximation
is also shown to take actually place in W?7. We include here a general statement that
combines [HI01, Lemma 5.6] and [HIO8, Lemma 2.6].

Lemma 1.66 (Huisken-Ilmanen’s approximation lemma). Let (M, g) be a complete Rieman-
nian manifold, let E C M be a bounded set with €'-boundary and let Fy : 9E < M be its
immersion . Assume that oE has nonnegative weak mean curvature, that is, it admits a nonnega-
tive function H € Li (%) such that

loc

/ divyXdo = / H(X,v) do (1.7.6)
JoE oE
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for any compactly supported vector field X of M. Assume also that OE is not minimal, that is,
there exist a subset K C X of positive measure such that H > 0 on K. Then, there exists a family
of bounded open sets E, with smooth boundaries OE, given by the immersions F(e,-) : 0E — M,
with e € (0, o], such that

(iF(s,x) = —H(e, x)v(e, x)

for any € € (0,¢9], where H(e, x) is the mean curvature of the immersion F(g,-) at point x,
v(e, x) its outer unit normal at point x, and we have

lim F(e,-) = F(:

lim F(e,-) = (")

in €Y N W24 forany 0 < a < 1and q > 1. Moreover, Hyg, > 0 for any € € (0, ¢o], and if E is
strictly outward minimising then so is Es.

We point out that the weak mean curvature of a closed hypersurface X is easily veri-
fied to exist if £ is of class €'\'1. In the following remark we show how through a parabolic
maximum principle the mean curvature flow naturally approximates mean-convex hy-
persurface with strictly mean-convex ones. This behaviour lies at the core of the proof of
Lemma 1.66 given in [HI01], together with fine higher derivative estimates of [EH91].

Remark 1.67. Observe that if X is a (non minimal) closed €7 hypersurface with Hy > 0,
then the approximation of ¥ by means of a family of smooth mean-convex hypersurfaces
{Z¢}e>0 is a straightforward procedure. Indeed, it is sufficient to run the MCF starting
at X for short time (see [Man11] for an account about the classical existence theory), say
until some time g9 > 0. This provides a family of hypersurfaces {Z }.c (g ,), whose mean
curvatures satisfy (see e.g. [HP99, Theorem 3.2]) the following reaction-diffusion equa-
tion,

(,?SH = AH+H (|h[> + Ric (v,v)),

where h is the second fundamental form of the evolving hypersurface and Ric is the
Ricci tensor of the ambient manifold. Then, a standard maximum principle for parabolic
equations (see e.g. Theorem 7 and subsequent remarks in [PW84]) shows that Hy, > 0
for every e € (0, €9], unless Hy, is constantly null. The latter case is excluded by the non
minimality of X.

Finally, we have at hand all the ingredients that allow to completely justify the com-
putations of Subsection 1.7.1 and in turn to prove Theorem 1.60.

Proof of Theorem 1.60. The following argument follows the lines of the proof of [Sch08,
Corollary 1.2]. Let us first suppose that the boundary of 0} is strictly mean-convex, that
is, Hyn > 0. Let {Q },¢(o 1) be a mean curvature flow starting from Q). Then, by Theorem
1.61, for almost any + € [0,T) the boundary 0(); is a smooth submanifold. Let C be
defined as

3 1/2
C = infl = </ H2d0>
2 \Jan

Q) C M bounded set with smooth boundary} . (1L.7.7)
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Then, Theorem 1.62 guarantees that, with the above choice of C, the isoperimetric dif-
ference t — D(t) defined in (1.7.4) is nonincreasing for t € [0, T). Moreover, by Corol-
lary 1.65 D(t) tends to 0 as t — T~ . This implies the inequality

100|372
>
o = ¢

for any () with smooth mean-convex boundary. If this is not the case, take the minimising
hull Q* of Q) (see [HI01, Section 1] for details). As discussed above 9Q)* is a €11 hypersur-
face. Observe that, by the minimising property, [0Q*| < |9Q}|, while trivially |Q*| > |Q)].
Hence, proving a lower bound on the isoperimetric ratio for (O* readily implies that the
same lower bound holds for (). Moreover, again by the minimising property, we have
that Hy > 0 (see also [HIO1, (1.15)]). Also notice that dQ)* cannot be minimal, for other-
wise (M, g) will have a cylindrical end, in virtue of Corollary 1.57, against the Euclidean
volume growth assumption. By Lemma 1.66, we find a sequence bounded sets E. with
smooth and strictly mean-convex boundary approximating dQ* in ¢”. Arguing as above,
we thus obtain the isoperimetric inequality

‘aE€’3/2
| Ee|

> C,

that, through letting e — 07, gives the isoperimetric inequality for Q*, and, in turn,
for any bounded () with smooth boundary. Combining it with our Willmore inequality

(1.4.29), we get
2
3 ( / H dO’)
nfﬂ > inf~9 /7 > AVR(g), (1.7.8)

36m|Q)* ~ 167
where the infima are taken over any bounded () with smooth boundary. We now want
to prove that the equality sign hold in both the above inequalities, as stated in (1.7.1). To
do so, we fix a point O € M and we observe that by the Bishop-Gromov Theorem, we
can find, for every é > 0, a radius R; such that

3
367|B(O, Ry)|

Observe that we can suppose 0B(O, R;) to be smooth. Otherwise, it suffices to consider
in place of B(O, R;) a smooth set whose perimeter and volume approximate [0B(O, Ry)|
and |B(O, Ry)|, respectively (this can be done by standard tools, see e.g. [Mag12, Remark
13.2]). This proves that

0Q?
nf —
367|Q)]

Combining the above inequality with (1.7.8), gives (1.7.1).

Q) C M bounded and smooth} < AVR(g).

To prove the rigidity statement, we assume now that (1.7.2) holds with the equality
sign for a smooth and bounded () C M. In virtue of (1.7.7) and of (1.7.1), we have that

C = /367TAVR(Y),

By the minimising property, ()* satisfies the same equality (recall that we actually proved
the isoperimetric inequality for minimising hulls). We claim that it also holds for any
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approximating E. as above. Indeed, by Lemma 1.66, this family is a smooth mean cur-
vature flow, and then, by the monotonicity of the isoperimetric difference, for any fixed
1 € (0,e0] we have

D(e) > D(e;) > 0

for every ¢ € (0,¢1). Since JE, converges strongly enough to 0Q)* as ¢ — 07, and on
Q* the isoperimetric difference is 0, D(¢) — 01 as ¢ — 07, and thus D(e;) = 0 as well.
Since £1 was arbitrarily chosen, E; satisfies the equality in the isoperimetric inequality for
e € (0,¢&p], as claimed. In particular, from the same computations as in Subsection 1.7.1,
for any fixed € € (0, &o], we have that

dD 1/2 3 1/2
0 = —(e) < (\aEgy H? da> 36TAVR(g) — = ( H? da) < 0.
de 9E, 2 \JaE,
This implies that the equality sign holds in the Willmore inequality for ¥, and thus, by
the rigidity statement in Theorem 1.44, (M \ E,, g) is isometric to the truncated cone

1/2
2 _ (__[9E|
( [rg, +00) X dE., dr @ dr + (r/re) gaEs), where 7, = <47TAVR(g)> .
Hence, it is easily seen that the MCF {0E } . o) is given by totally umbilic hypersurfaces
coinciding with the cross sections of the cone

47tAVR
(M\ E ) 2 ( [re,+00) x 000", dr @ dr + Wﬁgm*) . (1.7.9)

We now claim that the MCF {0E,}.~o does not develop singularities before the ex-
tinction time ¢*. Letting (0, ¢.) be the maximal interval of existence of the smooth MCF,
we claim that e, = €*. In fact, from (1.7.9) one can easily see that the mean curvature
of X is given by (n — 1)/re, and in turn the squared norm of its second fundamental
form is equal to (n — 1) /72. Tt follows then by [Hui86, Theorem 7.1] that e, is such that
re, = 0, and thus coincides with the extinction time of the flow, i.e., ¢ = e.. We have
hence deduced the isometry

(M\{0},) = ((0,400) x 302", dreo dr + TR 20, ),
|0CY*|

for some O € M. In particular, the surface area of the geodesic balls centered at O decays
as 4712 AVR(g), and, since g is smooth at O, this implies that AVR(g) = 1. By Bishop-
Gromov, we infer that (M, g) is isometric to (R?, ¢gs) and 0Q)* is isometric to a sphere.
This implies that () = %, since, otherwise, the mean curvature of 00)* would be null on
the points not belonging to d{) (compare with Theorem 3.14), leading to a contradiction.
We have thus shown that () is a ball, completing the proof. O

Observe that the proof illustrated above works with no modification also without
the Euclidean volume growth assumption, that is with AVR(g) = 0, if one were able to
ensure that a bounded solution to the least area problem with a bounded open set with
smooth boundary exists anyway. Even more weakly, it would suffice to show that there
exists an exhausting sequence of sets with smooth and mean-convex boundaries. The
existence of such a sequence does not seem evident. However, in Chapter 3, Theorem
3.1, we prove that if the volume growth is uniformly superlinear in the sense of (1.7.10)
below, ()* is a well defined set with the properties needed above. Thus, we have actually
proved also the following result.
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Theorem 1.68. Let (M, g) be a complete noncompact Riemannian manifold with nonnegative
Ricci curvature. Assume also that there exists O € M and 1 < b < n and a constant C such that

c s < |B(O,r)] < C# (1.7.10)

for any r > rq for some fixed ro > 0. Then,

|a !3 >
inf inf | Hdo =0, (1.7.11)

Observe that the interest in the above result lies in the second equality of (1.7.11), that
generalises, in the 3-dimensional case, the examples provided at the end of Subsection
1.4.3.

1.7.4 Perspectives and applications of the Isoperimetric Inequalities

We discuss here some topics related to the Isoperimetric Inequality for 3-manifolds with
nonnegative Ricci curvature. Namely, we state it in the equivalent form of Sobolev In-
equality, we show how it yields the sharp constant in the Faber-Krahn Inequality, we
discuss its natural extension to higher dimensions and we compare it with the existence
of isoperimetric sets.

The Sobolev Inequality

Let us first observe how it translates in terms of sharp Sobolev Inequality.

Theorem 1.69 (AVR(g) & Sobolev Constant). Let (M, g) be a complete noncompact 3-manifold
with Ric > 0 and Euclidean Volume Growth. Then

| Ipsl ao
inf = /36T AVR(Q) .

11 2/3
FeWy( </ |f|3/2d0.>

The equivalence between the Sobolev and the Isoperimetric Inequality is very well
known, and seemingly it was first displayed along [FF60, Remark 6.6], where the argu-
ment given actually does not depend on the ambient manifold. We refer also to [Cha84,
Chapter IV, Theorem 4] for a presentation.

Faber-Krahn Inequality

A very famous application of the Euclidean Isoperimetric Inequality is the celebrated
Faber-Krahn inequality, stating that for any bounded () C R" with smooth boundary
there holds

M(Q) > M(Ba), (17.12)

where B is the ball with |Q)] = |Bg|, and A1(Q) is the first Dirichlet eigenvalue of (),
that is the lowest and strictly greater than zero number A such that

{ —Au=Au in Q) (17.13)

u=20 on 9Q)



76 Chapter 1. Geometric inequalities in nonnegative Ricci curvature

admits a solution. Moreover, a rigidity statement characterises the equality case in (1.7.12),
stating that equality occurs only if B = (.

It is also well known that the Faber-Krahn inequality (1.7.12) actually just depends
on the Euclidean Isoperimetric Inequality, and in particular it holds on any Rieman-
nian manifold supporting this structural property. This is carried out in details in the
book [Cha84], see Theorem 2 in Chapter 4. As a consequence, (1.7.12) holds on Cartan-
Hadamard manifolds of dimension 3 and 4, since with this assumptions the Euclidean
Isoperimetric Inequality is known to be true, as proved in [Kle92] and [Cro84]. A sim-
ple generalisation of the argument in the proof of the Faber-Krahn Inequality actually
allowed to provide it in closed Riemannian manifolds with Ricci curvature bounded be-
low by a positive number, by using, in place of the Euclidean Isoperimetric Inequality,
the classical Levy-Gromov Isoperimetric Inequality (see for example [GHLO04, Theorem
4.6]). The details of this version of the Faber-Krahn Inequality in closed manifolds are
worked out in [BM82].

Here, we point out that the Isoperimetric Inequality for 3-manifolds with nonnega-
tive Ricci curvature (1.7.2) yields a Faber-Krahn Inequality on these manifolds. Since the
isoperimetric constant is not the Euclidean one, but it depends on the Asymptotic Volume
Ratio, the same is happening for the constant in the eigenvalue comparison.

Theorem 1.70 (Faber-Krahn inequality for 3-manifolds with nonnegative Ricci curvature
and Euclidean Volume Growth). Let (M, g) be a complete noncompact Riemannian 3-manifold
with nonnegative Ricci curvature and Euclidean Volume Growth. Let () C M be a bounded set
with smooth boundary, and let B C R”" satisfy |Bqo|rr = |Q|. Then, we have

A (Q) > AVR(g)?3A1(Bq), (1.7.14)

where A1 (Q)) is the first Dirichlet eigenvalue of () in M with respect to the metric g and A (Bq)
is the first Dirichlet eigenvalue of Bo in R". Moreover, equality holds in (1.7.14) if and only if
(M, g) is isometric to (R", grn ) and Q) is isometric to Bq.

It is not surprising, in light of the discussion above, that the above result follows
from the Isoperimetric Inequality Theorem 1.60 by adapting the classical argument. We
provide here the details, mainly to clarify how the constant AVR(g) arises in (1.7.14).
It follows from the following fact, that is a slight generalisation of what is known in
literature as Polia-Szego Principle. The argument is exactly that of [Cha84]. We sketch it,
in order to clarify the role played by the isoperimetric constant.

Proposition 1.71 (Generalised Pélia-Szego Principle). Let (M, g) be a Riemannian manifold,
and assume that for any bounded Q) C M with smooth boundary there holds

00"

QT > n"|B"|Ciso (1.7.15)

for some Cig, independent of Q).

Let, for O C M a bounded set with smooth boundary, f € €°(Q) be a positive function
with f = 0 on 9Q). Then, there exists a function F & Wé'Z(BQ), where B C R" is a ball with
|Q = |Bq|rn such that

2

/]Df|2dy2Ci”so/ IDF|%. dpige /fzdy:/ F2dups. (1.7.16)
Q Bn Q Ba

Moreover, equality holds in the inequality above if and only Q) satisfies equality in (1.7.15).

Proof. Let V : [0, T] — R, where T = maXxg f, the function defined by V(¢) = [{f > t}]|.
This function is easily seen to be continuous and actually € on regular values of f.
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Consider By = By, that is, the ball in R" with (Euclidean) volume equal to V' (t). This
defines a bijective function p : [0, T] — [0,0(0)] such that V(t) = |B(p(t))|r", where
B(p(t)) is any ball of radius p(t). Define finally F : Bo — Rby F = p~! or, where r is the
distance from the center of Bq. It is shown exactly as in [Cha84] that with this definition
the identity in (1.7.16) is satisfied. By coarea formula, we have

T T
1
2 _ _ 2
/Q|Df| dy—/ / ]Df|dcfdt2/|{f—t}| / oy 4o (17.17)
0 (=) 0 o

On the other hand, by (1.7.15),

2
n

{f =t} > [{f > 1> n?B"|7CE

1SO

n—1 2
— |Bt i{i’n nz “Bn|%clnso

= |0B;|%.C%/", (1.7.18)

10 7/

where in the last equality we used the fact that balls in IR” satisfy equality in the Isoperi-
metric Inequality. Using that

/ 1 1 1\ 1
P =~ / prde () et =
{f=t}

we get, plugging the outcome of (1.7.18) in (1.7.17) and using again the coarea formula
we obtain

T
/ 2
/Q|Df\2dy > Cfs{,”/ [(p_l)] 10By|rep’ (1) dt = cfsg”/B IDFP. djge,  (1.7.19)
Q
0

as desired.
Assume now that equality holds in the inequality of (1.7.16). Then, we deduce from
(1.7.19) and (1.7.18) that

T
2
/|{f - t}|2 o |aBt’ﬁ?”Cir:lso dt =0,
0

that, by the nonnegativity of the integrand, implies that the sets {f > ¢} satisfy equality
in the Isoperimetric Inequality of (M, g) for any regular value t. Letting t — 07, that is
possible by Sard’s Theorem, we conclude that () satisfy equality in (1.7.15). O

The Faber-Krahn inequality for 3-manifolds with nonnegative Ricci curvature of The-
orem 1.70 now follows as a direct consequence of the Isoperimetric Inequality 1.60 and
the above general principle

Proof of Theorem 1.70. Just recalling that the first Dirichlet eigenvalue minimises the Rayleigh
quotient, we get, applying (1.7.16) to the solution of (1.7.13) with A = A1(Q)), and observ-
ing that by the sharp Isoperimetric inequality (1.7.2) we have AVR(g) = Ciso, we get

_ JolDf P dpe 2/3 J3,|DF o dpis
Jo f2du [5, F2dpgs
that is (1.7.14). If equality holds in (1.7.14), then, equalities hold in (1.7.20), that implies

equality holds in the inequality of (1.7.16). The rigidity statement of Proposition 1.71
then shows that Q) satisfies equality in the Isoperimetric Inequality of (M, g), and then the

A (Q) > AVR(g) > AVR()*%A1(Ba),  (1.7.20)
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rigidity statement of Theorem 1.60 applies, yielding the isometry of (M, g) with (IR?, gs)
and the isometry of () with Bq. O

Expected Isoperimetric Inequality in higher dimensions

The Isoperimetric Inequality for complete noncompact 3-manifolds with nonnegative
Ricci curvature (1.7.2) asserts that the sharp isoperimetric constant is the limit of the
isoperimetric quotient of geodesic balls as the radius tends to infinity. It becomes then
absolutely natural to conjecture that on manifolds with nonnegative Ricci curvature there
holds

0" g
> .
apT 2 n"|B"|AVR(g)
It should also happen that equality is achieved only on metric balls of flat R". Needless
to say that with such an equality at hand, the Faber-Krahn equality

A (Q) > AVR(£)?/"A1(Bq)

would follow by Proposition 1.71 exactly as shown for its 3-dimensional version.

We find interesting to observe that this topic is somewhat parallel to the Cartan-
Hadamard conjecture, stating that the isoperimetric constant of a complete noncompact
simply connected Riemannian manifolds with nonpostive sectional curvature is that of
flat R". As already remarked, this conjecture is proved only in dimensions 3 and 4. Let
us mention however that [GS19] should give the crucial insights for the resolution of
the general case. It is worth pointing out that a Mean Curvature Flow proof of the 3-
dimensional version of the Cartan-Hadamard conjecture is carried out in [Sch08].

The Isoperimetric Inequality and isoperimetric sets

The very strong rigidity statement of Theorem 1.60 in particular implies that in any 3-
manifold with nonnegative Ricci curvature different from flat R? there are no bounded
sets with smooth boundary attaining the equality in the Isoperimetric Inequality. One
could then wonder whether there exists isoperimetric sets, that is, sets minimising the
perimeter under a volume constraint. Actually, the existence of isoperimetric sets in man-
ifolds with nonnegative Ricci curvature is proved in [MN16] if the manifold considered
is also ¢-asymptotically locally Euclidean, that is, satisfying (1.4.37). In particular, these
isoperimetric sets, in dimension 3, do not satisfy equality in our sharp Isoperimetric In-
equality (1.7.2). We bring to the reader’s attention also [CEV17], where a more detailed
description of isoperimetric sets is obtained under the additional assumption of €%*-
asymptotic conicality. To the author’s knowledge, existence result for isoperimetric sets
on manifolds with nonnegative Ricci curvature without similar additional assumptions
on the structure at infinity are not yet available in literature.
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Chapter 2

Minkowski Inequalities and related
results via Nonlinear Potential
Theory

2.1 Structure of the chapter

In the following Section 2.2, we collect some preliminary results, define the relevant quan-
tities and carry out the computations picturing the conformal setting where the core anal-
ysis is realised. Here, we do prove the sharp Kato-type identity for p-harmonic functions
in Proposition 2.5, yielding as a corollary the one for harmonic functions employed in the
previous chapter. In Section 2.3 we prove the effective monotonicity of (the conformal
version of) Ug and UX, discussed in the Introduction, also showing how it improves to
a full monotonicity when no critical points are developed. In Section 2.4 we derive the
Extended Minkowski Inequality and discuss the application to Volumetric Minkowski
Inequality and to the nearly umbilical estimates. In the last Section 2.5, we draw some
additional consequences of the effective monotonicity formulas, such as capacity esti-
mates and sphere theorems, yielding the nonlinear version of results from [AM20] and
[BMM19] and improving inequalities from [Xial7]. In the end of this last section we also
show how to relate with some techniques in overdetermined boundary value problems.

2.2 Effective Monotonicity. Statements and preparatory mate-
rial.

Before giving the precise statements of the Effective Monotonicity Theorems along the
level set flow of the p-capacitary potential, let us give some precise background.
2.21 Preliminaries on p-capacitary potentials

We recall the well known notion of p-capacity, introducing at the same time a normalised
version of it that is suitable for our applications.

Definition 2.1 (p-capacity & normalised p-capacity). Let Q) be a bounded open subset of R"
with smooth boundary.

o The p-capacity of () is defined as

Capp(Q) = inf{/W|Df\”dy ‘ fe€>(R"), f>1on Q}
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o The normalised p-capacity of ) is defined as

BN
C,(Q) = inf{(Z_p)p EE /]Rn|Df\de 'fe%f"(]R”),leonQ}.
(2.2.1)

Through this chapter, we are anyway mostly referring to C(Q)) simply as p-capacity
of ().

The variational structure of the above definition leads naturally to the formulation of
the following problem

Apu=0 in R"\Q,
u=1 on dQ, (2.2.2)
{ u(x) -0 as |x| — co.
It is well known that, for every bounded open set (2 with smooth boundary and every
1 < p < n, problem (2.2.2) admits a unique weak solution. Such a solution is called the
p-capacitary potential associated with (). For the reader’s convenience, we recall that a

function v is a weak solution of A,v = 0 in an open set V if v € Wll.f (V) and

/V <|Dv|”_2Dv ‘ Dlp> dp =0

for any test function ¢ € €°(V). By the important contributions [DiB83; Eva82; Lew83]
and [Ura68], we know that weakly p-harmonic functions are %llo'c"‘.

Note that the uniqueness of the solution to problem (2.2.2) can be easily proved by
suitably applying the Comparison Theorem for weakly p-harmonic functionsfirst pro-
vided in [Tol83] on large balls of radius R, and letting then R — +co. With the same ar-
gument one can also show that the solution u to problem (2.2.2) is such that 0 < u(x) < 1
for every x € R" \ Q. Finally, we recall that such a solution realises the infimum in (2.2.1).
This can be proved using a standard exhaustion scheme (for example the one proposed
in [CS03a]) and invoking the %lz’c"‘ regularity to guarantee the convergence of the scheme
itself. Let us summarise some of these facts in the following statement, a generalised ver-
sion of which is proved in Appendix B. For most of the basics on p-harmonic functions
we employ in this chapter, we refer the reader to the nice lecture notes [Lin17].

Theorem 2.2 (Existence and regularity of p-capacitary potentials). Let () be a bounded open
subset of R" with smooth boundary, and let 1 < p < n. Then, there exists a unique weak solution
u € € (R"\ Q) NE(R"\ Q) to problem (2.2.2), and it fulfils

loc
o p—1yt 1 / )
CP(Q) - (Tl—p) ‘5”71‘ 7’DM’ d.u/
RO
where C,(QY) is the normalised p-capacity of Q) defined in (2.2.1).

The following important result yields the precise asymptotic behaviour of u and ]Du!
at infinity.

Lemma 2.3 (Asymptotic expansions of u and |Dul|). Let Q) be a bounded open subset of R"
with smooth boundary, and let 1 < p < n. Then, the solution u to (2.2.2) satisfies
- np 1
(i) limyy| 400 u(X) [x[77T = Cp(Q)7T,

1

(ii) im0 [Du(x)| [T = (%22) Co(Q)7T,
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where C,(Q)) is the normalised p-capacity of Q) defined in (2.2.1). In particular, Critu is a
compact subset of R" \ Q, possibly with full measure.

For the proof of this lemma we refer the reader to [KV86] (see also the more re-
cent [Pogl8, Lemma 2.3 and (2.2)] for a precise statement). It is also worth mention-
ing [GS99], where similar expansions are employed to infer rotational symmetry of star-
shaped domains supporting a solution to problem (2.2.2) with constant normal derivative
on the boundary.

On the other hand, the classical regularity theory for quasilinear nondegenerate el-
liptic equations (see e.g. [LU68]) ensures that they are analytic around the points where
the gradient does not vanish. Note that since 02 is assumed to be smooth, by the Hopf
Lemma for p-harmonic functions (see [Tol83, Proposition 3.2.1]), we have that |Du| # 0
in a neighbourhood of this hypersurface. In particular, u is analytic in such a neighbour-
hood, and it smoothly extends to d(). Coupling this with the asymptotic expansion of the
gradient given in Lemma 2.3 implies that Critu = {x € R"\ O | Du(x) = 0} is a com-
pact subset of R" \ Q) (generically depending on p), and in turn that u is analytic outside
this set. Finally, it is worth recalling that for p # 2, the set Crit u is a priori allowed to have
full measure. The following characterisation of the p-capacity of () is widely used in the
literature and it is also very useful for our purposes. We include a proof, well suited in
the general framework of p-nonparabolic Riemannian manifolds in Appendix B.

Lemma 2.4. Let () be a bounded open subset of R™ with smooth boundary, and let 1 < p < n.
Then, the solution u to (2.2.2) satisfies

p—T1yrt o1 / N / p1
C,(Q) = (n_p) g/ [Pl do = (n_p) g | 1P,
20 {u=t}

(22.3)
where C,(Q)) is the normalised p-capacity of Q) defined in (2.2.1) for almost any t € (0,1]
including any reqular value t.

In the remaining part of the chapter we will always assume that 1 < p < n, unless otherwise
stated.

2.2.2 A Kato-type identity for p-harmonic functions

We provide the Kato-type identity for p-harmonic functions on a general Riemannian
manifolds, that in particular implies the one stated in Proposition 2.5 for harmonic func-
tions. Similar identities, but without any refinement coming from being solution of an
equation, were important also in [FMV13], see Proposition 1.8 there.

Proposition 2.5 (Kato-type identity for p-harmonic functions). Let (M, g) be a Riemannian
manifold, and let f be p-harmonic function defined on some subset of M , for p > 1. Then, in a
neighbourhood of any point where f is such that |V f|(x) > 0 there holds

vvsp - (1+ E=8) orvsf - sy 2

+ (1—(’;__11)2>]vﬁwy

H
h_n—lg

. (2.2.4)
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where the tangential elements are referred to the level sets of f. Moreovet, if

2

H (x) =0 (22.5)

T
n—lg

-

‘DT|Df|’2 (x) =0 (2.2.6)

forany xin {po < f < p1} and |Df| > 0 in this set, then the Riemannian manifold ({po < f <

01},8) is isometric to the warped product ([po, +01] X {f = po}, dp ® dp + 1*(0) &|{f=po})-

where 11, f and p are related as
-1

P
foo) \ T
0= .
e f'(p)
Proof. We consider on x an orthonormal frame {ey, ..., e,_1, e, = Df/|Df|}. We intro-
duce the notation DD f to denote the tensor

(DDTf>“ — DDf(ei,e)  ij=1,...,n—1.
1
Observe that DD f = |Df|h. We can write the norm of DDf as follows
n—1
IDDf|* = DD f|*+2 Y |DDf(en, )|* + [DDf (en, ) |*. (2.27)
i
Moreover, we can write the first term in the right hand side of (2.2.7) as follows

2

T2 (ATf)z T ATf T
DD fP =22 +’DD fe58 (2.2.8)

where we denote by A’ f the trace of DD . We now exploit the p-harmonicity of f. By

= Ipf a5+ (=29 (15 155 ) ) =

and |Df|(x) # 0, we have

Df Df
A =~ =200/ (1577 i)
The above identity implies
A7f = 8 = DDf(ewex) = ~(p ~DDDF (b o5 ), (229)

that, plugged into (2.2.8), gives

oof (57 \Df\>

We now turn our attention to the second and the third term in (2.2.7). An easy computa-
tion shows

DD f|? = (’; D (2.2.10)

-1

AT
’DDTf— flgT

DDf (en, ¢j) = (D|Df|lej)
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foranyj=1,...,n —1, and thus we have

n—1 2
Y [DDf(en, ¢))[* = )DUDﬂ‘ (2.2.11)
=1
and )
‘DDf(en,en) g <D|Df| ‘ gjj'> . (2.2.12)

Finally, plugging (2.2.10), (2.2.11) and (2.2.12) into (2.2.7) we obtain (2.2.4).

Let us now assume |Df| > 0on {pp < f < p1} and conditions (2.2.5)-(2.2.6) hold
on this set. Then, by the first assumption, we deduce by standard results in differential
geometry (see e.g. [Hir76, Theorem 2.2]) that {py < f < p1} is diffeomorphic to [po, p1) X
{f = po}, and in particular there exist new coordinates {f,®},...,9" '} on {f > po}

such that
_ df®df

- o) y i )
YIE +g1](f,x)d19 W/,

where, i,j range in 1,...,n — 1 and {¢' ?:_11 are coordinates on {f = pp}. Observe now
that by (2.2.5), the function |Df| is constant on each level set of f. In other words, it is a
function of f alone. We can then define a new coordinate by dp = df/|Df| so that the
metric becomes _ .

g = dp®dp+gii(p,x) d¢ @ d¥/,

with some abuse of notation. In this coordinates, standard computations show that the
Hessian is computed as

DDf = f"dp @ dp + f'DDp = f" dp @ dp + % 38 A8 @ b, (2.2.13)

where by f” and f” we denote the derivatives of f with respect to p.

Let us now consider, for any fixed point x € {pg < p < p1} the orthonormal frame
{e1,..., en—1, e, = Df/|Df| = Dp}, already used in the first part of this proof. Then we
have

DDf (en, ¢j) = (DIDf] | ;) =0

. p-1 Df Df
oo = 25 00f (B 5y ) 87

by (2.2.5) combined with (2.2.9). In particular, the Hessian of f can also be computed as
Df Df> p—1 <Df Df> o do)
DDf =DDf | =7, =% | dp®dp — ——=DDf | =&, =7 | &jd?' @ d¥.
7 =0f (15571557 @ 0= 1502 (i o)

A comparison with (2.2.13) then gives the system of ordinary differential equations

by (2.2.6), and

-1
9y log 8ij(p, 8) = —2E—9,10g f'(p), (22.14)

that, integrated, yields

-

f’(po))z"
f'(p)

s

|

7

8ij(0,9) = gij(po, 9) <
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that is, ¢ has the warped product structure claimed. ]

As a corollary of the above Proposition, we record the following refined Kato’s in-
equalities for p-harmonic functions, together with a characterisation of the equality case.
We will not need this corollary in the sequel, but it actually is of some independent inter-
est. Let us also point out that setting p = 2 we recover the well known, and widely used
in the last chapter, refined Kato’s inequality for harmonic functions, whose associated
rigidity statement is discussed in [BC12]. For general p, it is obtained also in [CCW12],
but without discussion of related rigidity statements.

Corollary 2.6 (Refined Kato’s inequalities for p-harmonic functions). Let (M, g) be a Rie-
mannian manifold, and let f be a p-harmonic function on some subset of M, with p € (1,n).

(i) If (p —1)% < n — 1, then , in a neighbourhood of any x such that [Df|(x) > 0

s> (1+ =2 ooy

Moreover, if equality is achieved on {py < f < p1}, and |Df| > 0 in this region, then
({po < f < p1},8) has the same warped product structure as in the rigidity case of
Proposition 2.5.

(ii) If (p — 1)* > n — 1, then, in a neighbourhood of any x such that |Df|(x) > 0,
2
IVVf? > 2‘V|Vf]‘ . (2.2.15)

Moreover, if equality is achieved on {po < f < p1} and |Vf| > 0 in this region,
then ({po < f < p1},8) splits as a Riemannian product ([po, 1] X (0.}, dp ® dp +
S{f=po}) and f is an affine function of p.

(iii) If (p — 1)?> = n — 1, then, in a neighbourhood of any x such that |Df|(x) > 0 it holds
(2.2.15). If equality holds on (2.2.15) at some x with |Df| > 0, then x is an umbilical point
of {f = f(x)}, that in a neighbourhood of x is a smooth hypersurface.

Proof. The assertions in (i) follow straightforwardly from Proposition 2.5. Let now (p —
1)2 > n — 1. Plugging

p7ps||" = [pios| - <V|D,B§||>

into (2.2.4) we obtain (2.2.15), Assume now that equality holds in (2.2.15) for x with
IDf|(x) # 0. Then, by (2.2.4) and the above identity we obtain

Dfh == “(};_—11)2 1) (P \Df\>2 0

If (p — 1) = n — 1, we can only deduce

‘h_ nI;IlgT‘2 B

that is, x is an umbilical point of {f = f(x)}. This shows (iii). If (p — 1) > n — 1, and
equality holds in(2.2.15) on a region {py < f < p1} where |Df| # 0, then we also get

(oo B
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In particular, by the computations performed in the proof of Proposition 2.5, we deduce
that |[DDf| = 0. The isometry claimed follows by Corollary 1.23. O

Observe that in order to deduce Proposition 2.5 from Proposition 2.5 one should re-
move, in the case p = 2 the assumption of nonvanishing gradient. Such an assumption
is added in Proposition 2.5 just to ensure the possibility of taking second derivatives, as
we pointed out in the discussion of the regularity of p-harmonic functions above. The
smoothness of harmonic functions then allows to remove this assumption.

2.2.3 The effectively monotone quantities

We now rigorously state our Effective Monotonicity-Rigidity Theorems. Let us first recall
the definitions of the relevant quantities we just hinted in the Introduction. For (2 C R"
and 1 < p < n, consider u the solution of (2.2.2). Let, for B > 0 the function ub -

p
(0,1] \ u(Crit(u)) — R be defined by

(n—-1)
us(t) = P0G / IDu| D=1 g, (2.2.16)
{u=t}

and the function U%, : (0,1] \ u(Critu) — R be defined by

(2.2.17)

We stress that the above functions are defined just on regular values of u. The following
is the Effective Monotonicity Theorem for U%, when 8 > (n — p)/[(p — 1)(n — 1)].

Theorem 2.7 (Effective Monotonicity of llg). Let O C M be a bounded set with smooth
boundary, and let Ug : (0,1] \ u(Crit(u)) — R be the function defined by (2.2.16). Then, if
B> (n—p)/[(p—1)(n—1)] onany reqular value 0 < t < 1, we have

wye = p t—ﬁ(p—l)(::,)/|Du,(ﬁ+1><p1>1 H— (11—(111)_(;;)—1) Dlogul | do > 0
=)

(2.2.18)
and

1P
tlgg} Ug(t) < Ug(1).

Moreover, equality holds in (2.2.18) for some regular 0 < to < 1 if and only if {u = to} is
isometric to a sphere.

On the other hand, the following is the Effective Monotonicity Theorem for ur.

Theorem 2.8 (Effective Monotonicity of UL). Let QO C M be a bounded set with smooth
boundary, and let UL, : (0,1] \ u(Critu) — (0, 00) be the function defined by (2.2.17). Then, on
any regular value 0 < t < 1 and any reqular T < t we have

Uk, (T) < Uk (t). (2.2.19)

Moreover, on any reqular 0 < t < 1 we have

(n—1) _ d |Du|
H—mlmogu\ (xt) = —(p—l)a—wlog u%(xt) >0, (2.2.20)
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where x; € {u = t} is the point where sup{u:t}|Du]/u(”*1)/(”ﬂ’) is achieved and vy =
—Du/|Du| is the unit normal to {u = t}.

Equality holds in (2.2.19) for reqular T < to or in (2.2.20) for regular ty if and only if
{u = to} is isometric to a sphere.

Observe that, differently from Ug with finite B, the function UL, is easily defined also
on singular values of u, and, as it will be clear from the proof, the value T in (2.2.19) could
be taken also singular.

Analogously to what we did Chapter 1 in proving the Willmore-type inequalities,
the LP-Minkowski Inequality as well as some other inequalities will follow combining

(UgJ ) (1) > 0 with lim;_,o+ Ug(t) < Ug(l). The computation of the latter limit is a

straightforward consequence of Lemma 2.3, that in fact yields

Sy )
lim UL(H) = C,'Ph <”” 151, (2.2.21)

(B+1)(p—1
150+ P p— 1>

Similarly, in the applications of the effective monotonicity of U% we are going to use

: p _ (n—P
tlig}r UL (t) = (p — 1) Cy(O)), (2.2.22)

again following from the asymptotic expansion of u and its gradient.

224 The conformal setting

The heuristics leading to cylindrical conformal change of metric introduced in [AM15]
and [AM20] are formally sustainable also starting from problem (2.2.2). Indeed, when
is a ball, the solution to (2.2.2) is (proportional to ) r~(1=P)/(1=1) where r is the distance
from the center of the ball, and we can define a metric g satisfying

_o 2l 2 2 _
g=u"rgre = (Cr)™* (dr@dr+r°ggi1) = dp @ dp + ggu-1,

where C is a constant depending on the radius of the ball, and p is defined by dp =
(Cr)~1dr. In this case, g is the cylindrical metric on M \ Q, and p is harmonic with
respect to g. Encouraged by this basic observation we devote this section to fully describe
the conformal background where we are going to work.

A conformal reformulation of the boundary value problem

Define, for u a solution to (2.2.2) with 1 < p < n, the metric

p—1
n—=p

§=1u""rggn. (2.2.23)
Let 5
n —
Q=" p(p—l)logu. (2.2.24)

Observe that, in light of the optimal ¢'*-regularity of u, the metric g is not a smooth
Riemannian metric, but just €. For this reason, in the computations that follow those
involving just first derivative of the metric (and equivalently, of ¢) make sense in the
whole of R" \ (), while those involving higher derivatives have to be thought as carried
out in the complement of the critical set of u, that is, on {|Du| # 0}.
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Fixing local coordinates {x*}”_, in M and using standard formulas (that can be found
for example in [Bes08; HE73]) we get

1
Tip = —-— (Waﬁgo + 0509 — 8 Skndy @) (2.2.25)

99950  |DoP—Ag
g apopg Do ? R
Rep = Dubpo+ n—2 n_2 Sub’

(2.2.26)

where Fzﬁ are the Christoffel symbols associated to the metric g, Ri p represents the com-
ponents of the Ricci tensor and V,, the covariant derivative. Moreover,

VaVgw = DyDgw + ﬁ <8aw85q) + 0xpdgw — (Dw|Dg) g%), (2.2.27)
Aqw = = (Aw — (Dw | Dg)) (2.2.28)

for any w € €2, where Ag and A denote the Laplacian with respect to ¢ and gr» respec-
tively. Let T be a vector field. Then,

aT, o=t o (9T
div,T = g (axk I’%le) =u 25*r7g1’1’{n <8xk — kaTl> .
1 1

Using (2.2.25), we get

— D!
rl p_1<5laku+5,au El)

k= " u w8k Ty
and
dive(T)
_ 2k (9T p=lpd p—lp o pep—1 /Dufs
SR ox;, n—p ' u n—pku Kn—p\ u R
2 divg, T+ 2P 1) —(112)_(;;)—1) <Du” T> .
8

where (:|-)gs and (:[-), are the scalar products associated to gr» and g respectively. Set-

ting T = |Du|P~?Du and recalling that A,u = 0 we obtain

divg(|Du|p_2Du) = w <Du‘|Du|p_2Du> (2.2.29)
n—p u g
_ (n=2)(p—1) |Du|P~2
= n—p ” (Du|Du),, .

By the definition of ¢ we immediately get

( —
|DulP~2 =u " |Vu| : (2.2.30)
Using (2.2.30) in (2.2.29) we get

(p=1)(p=2)

dive(u v |Vul} *Vu) =

— — (p-1)(p-2)
(=20 =), e g
n—p
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and so

[Vulg

; (2.2.31)

ASu = dive(|Vulh >Vu) = (p — 1)

Lemma 2.9. Let u be the solution to (2.2.2), let ¢ be defined in (2.2.24) and g the metric defined
by (2.2.23). Then
Ay =0

on (R"\ Q) \ Critu.

Proof. On (R"\ Q) \ Critu the computations performed above are actual. In light of the
definition (2.2.24), it obviously suffices to show that log u is p-harmonic with respect to

p—2
the metric g. Letting f = log u, we have Vf = Y% and \Vf|§_2 = WJ;‘E’Z . Thus,
-2
. -2 . [Vulg™" Vu
Ay f = dive(|VfIE V) = divg ( up_gz u) .
Therefore,
Agf =u'"PASu+ <Vu1_p‘|Vu|§_2Vu>g

=u"PASu+ (1= p)uP|Vul}

and recalling (2.2.31) we get the thesis. O

We now compute the Ricci curvature of g, in order to complete the reformulation of
(2.2.2).

Lemma 2.10. Let u be the solution to (2.2.2), let ¢ be defined by (2.2.24) and g be the metric
defined by (2.2.23). Then,

Ric, ~VVg+ 22940 _ (

T (2.2.32)

Vol p—2VVe(Vg, Vo)
n—2 n-—2 Vo2

on (R"\ Q) \ Critu.

Proof. As in the proof of Lemma 2.9 above, let f = logu. Keeping in mind formulas
(2.2.26) and (2.2.27), recalling that ¢ = —% fand RR} = 0 we obtain

n ap
n— - _ 12
Riﬁ T (112)—(;:71)D“Dﬂf+ e (;f)_(l;)z D Oufopf (2.2.33)

_pr—1 (n=2)(p=1) |2\, 2=
”—P(Af+ n—p IDf )e " 8up

and

-1
DuDyf = VaVf + Z_p (20005 — IV 2805 ) (2.2.34)
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Using (2.2.34) in (2.2.33) we get

RS, —— =2 -1) _5)_(’;_ Dy, var— _(;)_(’;)_2 Do, fasf+ (2.2.35)
- _(nZ)—(r;)_2 Vvt g
B ae gy - MU et
A a:‘lqof’;go + |:i0|2§gw +- L Ze’% (8¢ — Dgl) gup
= V. Vpp - 2P%P |nv j”fm e

where in the last equality we used (2.2.28). Since

-2 -2
0=A5p = Vol Ag¢+<V!W!§ ‘V<P>g

we obtain
VVe(Ve,V
Agp = —(p—2) (II)(WE ?) (2.2.36)
2
)
2 IVolg

Using (2.2.36) in (2.2.35) we can write

9u 0 IVolZ  p—2VVe(Ve, Vo)

g _ I e 4 g P p(Ve, Vo
Rip = VaVpe n—2 +(11—2 n—2 Veol2 8ups

that is (2.2.32). 0

We are finally in position to reformulate problem (2.2.2) as

so-0 in (R1\0)\ Critg
_ deede (|IVel; p—2VVe(Ve, Vo) ; "\ Q) \ Cri
Ricg —VVg+— ——+ = (n—Z 2 Vel g in (R"\Q)\Critg
p=0 on 0Q)
p(x) — +o0 as |x| — oo.
(2.2.37)

We explicitly observe that if p = 2 then (2.2.37) coincides with the problem studied in
[AM15]. We conclude this part by isolating from the computations above the useful rela-
tion between |V¢|; and [Dul:

-2)(p—1) \thll

n—p un-r

Volg = (n (2.2.38)

Observe that involving just u and its gradient, the above is a continuous function of
R"\ Q.
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The geometry of the level sets of u and ¢
Let us consider the ¢R" —unit vector field
v:= —Du/|Du| = Dg¢/|Dg|
and the g—unit vector field
vg := —Vu/|Vulg = Veo/|Vel,.

Accordingly, we consider the second fundamental forms h and h, of the level sets of
u and ¢ with respect to the Euclidean metric g®" and the conformally related ambient
metric ¢ are respectively given by

DDju  DDjp ¢ ViVu Vi

hj = — = , = — =
: [Du|  |Dg| T Vulg [Vl

fori,j=1,...,n—1

Taking the trace of the above expressions with respect to the induced metric we obtain
the following expressions for the mean curvatures in the two settings

Au  DDu(Du,Du)

H=— ,
Du] © T [Duf?

- A9 VVe(Ve, V)
* Vel IVolg

Recalling that A,u = 0 and A§¢ = 0 we have

p —1(D|Du|?|Du) DDu(Du, Du)
H= =p-1)—=F
T T T
and
—1(VIVels Ve
H = P2 < L I _ (- 1)VW’(V¢3’W’)_ (2.2.39)
p Vol IVol3
The second fundamental forms h and h, are related by the following formula:
- _ p—1[Dyl
he(X,Y) = utr (h(x,y) X | Y>>, (2.2.40)

for any X, Y tangent vectors to the level sets of u. Tracing the above identity with respect
to ¢ we obtain the useful relation between the mean curvatures H and H,

i ~1)(p—1)|D
Hy = u" "7 <H— (n (n)_(’;) Hy”‘). (2.2.41)

Relation between the metric-induced measures We recall the relation between the
Lebesgue measure dy and the volume measure dj, induced by ¢ on M

dpg = uP V75 du (2.2.42)
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and the relation between the are elements dog and do induced respectively by ¢ and the
flat metric on smooth hypersurfaces

doy = u?" "V do. (2.2.43)

Bochner formula for solutions of (2.2.37)

As in the last chapter, it is natural to apply the Bochner formula to a solution of (2.2.2).
To do so, we start from the version of the Bochner formula suited for the p-Laplacian
functions that has been worked out and applied in [Vall3], see Proposition 3.1.2 there.
Combining it with the first two equations in (2.2.37), we directly get the following rela-
tion. We do not provide the details, being straightforward.

Proposition 2.11. Let () C IR" be an open bounded subset with smooth boundary. Let ¢ be a

solution to (2.2.37). Then, in a neighbourhood of any x € R™ \ Q such that |V ¢|(x) > 0, we

have

VVIVeP(Ve, Vo)
Veol?

~ Vo \2
= Vgl <|vv(p|2+p<p—z><vw¢| \ |v$|> ) .

AlVel" +(p—2)

n_
— 2LVl | Vo) = (2244)

As we are going to see soon, (2.2.44) will be the key ingredient to show the mono-
tonicity of (the conformal version of) Uk,. An involved processing of it will instead lead
to the vector field with nonnegative divergence encoding the monotonicity of U’g . Here,
we just point out the enhancement of Corollary 1.23 for solutions of (2.2.37)

Lemma 2.12. Let (3 C R" be an open bounded set with smooth boundary. Let ¢ be a solu-
tion to (2.2.37). Assume that |V |, > 0on {s9 < @ < si} for some sy € [0,00), and that
V|V |; = 0on this region . Then, the Riemannian manifold ({so < ¢ < s1}, ) is isometric to
the Riemannian product ([so,s1] X {¢ = so}, dp ® do + §(p—s,}), and ¢ is an affine function

of p.

Proof. 1f V|V ¢ ¢ = 0, then, plugging this information in the relation (2.2.44), we imme-
diately deduce that |[VV¢| = 0on {sp < ¢ < s1}. The result claimed now follows from
Corollary 1.23. O

The conformal version of the Effective Monotonicity Theorems

We start introducing the conformal version of the functions Ug and U}, introduced before.
Let as always 1 < p < n, and let B > 0. For ¢ defined in (2.2.24), let PF - [0, +00) \

B
@|[Crit 9] — R and ®L, : [0, +0) \ ¢[Critg] — R be defined by
®(s) = / Vol $VPD 4, (2.2.45)
{p=s}
and
DL, (s) = sup |Vglg. (2.2.46)
{o=s}

The above functions are defined on regular values of ¢.
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We are now going to state the conformal version of Theorem 2.7. Observe first that
straightforward computations involving (2.2.38) and (2.2.43) show the following relation
between the functions U} and &,

B B
Ug(t) = CDZ( — —(n _(112)—(;:9)_ ) log t)
w 49 (n 2y 1) (2.2.47)
- dtl3 (t) = dtlS (_ (n—p) log t)

and between UL, and ®F,

(n=2)(p—1)
ub(t) = CI>§O< - (n_p)logt>.

With the above relations, it becomes evident that the effective monotonicity of UE and

UL is proved if we prove the substantial monotonicity of @Z and ®%,. The following
statements are the conformal versions of Theorems 2.7 and 2.8.

Theorem 2.13 (Effective monotonicity of P ) Let (3 C M be an open bounded set with

smooth boundary and let g, ¢ and q)g be deﬁned as in (2.2.23), (2.2.24) and (2.2.45). Then, for
any regular value s > 0, we have

(@ —B / Vol Hy doy <0 (2.2.48)
{p=s}
and
Dp(s) < @L(0). (2.2.49)

Moreover, equality holds in (2.2.48) for some regular sy if and only if ({@ > so},g) splits as
([s0, +00) X {¢ = so}, dp ® dp + g{y—s,1) and @, when restricted to {¢p > so}, is an affine
function of p.

On the other hand, the following is the conformal version of Theorem 2.14.

Theorem 2.14 (Effective monotonicity of ®%). Let QO C M be an open bounded set with
smooth boundary and let g, ¢ and ®F, be defined as in (2.2.23), (2.2.24) and (2.2.46). Then, for
any regular s > 0 and any S > s we have

OL(S) < DL (s). (2.2.50)

Moreover, for any reqular s > 0, we have
d
Hg(xs) = =(p = 1)5 -log [Vglg 2 0, (2.2.51)
S

where x; € {¢ = s} is the point where sup,_ |V ¢lg is achieved and vs is the unit normal
Vo/|Velg to {¢ = s}. Moreover, equality holds in (2.2.50) for so < S regular values or in
(2.2.51) at so with sy a regular value if and only if ({¢ > so}, ) splits as ([so, +0) x {¢ =
so}, dp ® do + &(p—s,}) and ¢, when restricted to {¢ > so}, is affine function of p.

It is easy to see from formulas (2.2.47), (2.2.38), (2.2.41) and (2.2.42) that the effective
monotonicity of CDZ and ®F, implies that of Uﬁp and UL, as well as (2.2.48) and (2.2.51)

imply (2.2.18) and (2.2.20). It remains to check that the cylindrical splitting of ({¢ >



2.3. Proof of the Effective Monotonicity Theorems 93

s0},g) implies that the level set of u corresponding to {¢ = s} is isometric to a sphere in
R".

The cylindrical splitting of g implies rotational symmetry of u. As anticipated above, we just
show that the rigidity statements of Theorems 2.13 and 2.14 imply those related to the
effective monotonicity of Ug and UL, Tt suffices to notice that, if ¢ is an affine function of
p, as claimed in the conformal versions of the monotonicity theorems, then \VVQO@ =0.
By means of (2.2.4), this implies that hy = He /(1 — 1) g' . Since, by (2.2.27) together with
(2.2.40) and (2.2.41), we have, after a lengthy computation,

H 2

n—1

H
|V§0|§ hg_ni_glgT h— 8112% L

8Rrn

2 2 _
[0,
(n—p)

where the tangential elements of the left hand side are referred to the level set {¢ = sp},

and the tangential elements in the right hand side are referred to correspondent level set
of u, we deduce that {u = to} = {¢ = so} is totally umbilical, and thus a sphere. O

gT

2.3 Proof of the Effective Monotonicity Theorems

The aim of this section is to give a complete proof of Theorems 2.13 and 2.14. Being much
easier, we will establish first the effective monotonicity of DF.

Since all the computations of this section will be performed in the conformally related
setting, the subscript ¢ will be dropped from the notations.

2.3.1 The Effective Monotonicity of ®F,.

In proving the maximum principle enjoyed by |V ¢| that as in the last chapter roughly
corresponds to the monotonicity of ®F,, we are not using the same argument used for har-
monic functions. Indeed, what we propose is an adaptation to p-capacitary potentials of
the argument used for the sharp estimate on the harmonic Green’s function on manifolds
with nonnegative Ricci curvature provided by Colding in [Col12, Theorem 3.1].

We start by showing that |V ¢|” is a subsolution of the operator . acting on a smooth
function f as

2f =07+ (-2 (b ol ) bV IV, @D

in a neighbourhood of any point x € R" \ () such that |V¢| > 0, with ¢ a solution to
(2.2.37). Observe that it appears on the right hand side of (2.2.44) applied to the function
[VolP.

Lemma 2.15. Let () C IR" be an open bounded set with smooth boundary. Let £ be the differ-
ential operator defined in (2.3.1). Then, a solution ¢ to (2.2.37) satisfies

Z([VyF) >0 (2.32)

in a neighbourhood of any point x € R™ \ Q) such that |V ¢|(x) > 0.
Proof. By (2.2.44), we have

2
Z(IVol’) = pIVe|"~ (IVW! +p(p —2)<V’V(P’ ),gﬁﬂ.’,> ) '
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2
By the standard Kato inequality |VV¢[? > ‘V!V(p[ , we obtain

Z(|Vol?) > pl Vel <|V1V¢!I2+P<P—2><V'V“’" ‘ WZ|> ) /

and, since

Vo \? 2 Vo \?
VIVl +p(p—2 <Vv ‘> = |VT|Vol|| + —12<vv '> >0,
VIVell+plp=2) VIVl | 7 \ | qvl\ (P=17(VIVel g
we get (2.3.2).
m

The following is just a computational lemma yielding a function lying in the kernel
of (2.3.1).

Lemma 2.16. Let () C IR" be an open bounded set with smooth boundary. Let £ be the differ-
ential operator defined in (2.3.1). Let ¢ be a solution to (2.2.37). Then

8% <em3£n¢> —0,
in a neighbourhood of any x € R" \ Q with |V¢|(x) > 0.

n—p

Proof. We compute separately the three terms forming . (e -2 7). First, we have

n—p n_p

A(e(n—Z)(pfl)(p) = 7’1—]0_1) |Vgo|2 + A(p> (2.3.3)

wﬂﬂn¢<
(n=2)(p—1) (n—=2)(p
Using
- Vo Vo
— p-2 — —r v =
o= 190l (a9+ ¢ -29%e (155 57 ) <o

where the last equality follows from the p-harmonicity of ¢, we obtain, from (2.3.3) and
the fact that |[V¢| # 0

AT 1%) = (2.3.4)

_ o p e n—p 2_ (p_ Vo V¢
BCE R [<n—z><p—1>'v“"' (v 2WW<|V¢|’|V¢|>]

n—

The second term to be computed in .Z (e ™ 27-17) is

VV(ewg)(Zn(P)< Vo Vg > _ (”‘pew%&w[”‘iﬂ‘w‘z
n_

Vol [Vl 2)(p—1) (n=2)(p-1)
Vo Vg
*Vv"’(w(m' |w|>]'
(2.3.5)
and the last one is
_n—p n—p _np
Ve 217 | |V >: et |V |2 (2.3.6)
( Vo) = -1 Vol
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By (2.3.4), (2.3.5) and (2.3.6) we get .i”(e@*g;(z*” ?) = 0, as claimed. O

We now apply the above lemmas to trigger the barrier argument in turn leading to
Theorem 2.14.

Proof of Theorem 2.14. We claim that

[Vel(x) < {Sup}Iqul (237)
p=s

for any x € {¢ > s} and any noncritical s. This clearly suffices to prove (2.2.50). Indeed,
forany S > s, (2.3.7) implies

sup [Vo| > sup |[Vo| > sup |[Vg| > sup [Vl
{p=s} {¢>s} {9>5} {9=S}

Let then s be a noncritical value of ¢. By the asymptotic expansions recalled in Proposi-
tion 2.3, the relation (2.2.38) and the continuity of |V ¢| following from the ¢* regularity
of u, it is immediate to deduce that

Vol <C

uniformly on R” \ Q). Consider then, for such a constant C and for an auxiliary S > s
that we suppose to be regular (as usual, this is possible by the compactness of Critg), the
function .
w=|Ve¢|’ — sup |Ve|? _ CPelr i (975)
{g=s}

defined on {s < ¢ < S}. Let then § > 0 such that N5 = {|V¢| <} C {s < ¢ < S}. By
the smoothness of ¢, and in turn of |V¢/|, around the boundary of Nj, we can suppose,
by Sard Theorem, that dN; is a smooth hypersurface. By definition, we have

sup w < 0.
{p=s}U{p=S}UoN;

Moreover, by Lemma 2.15 and 2.16, w satisfies £w > 0 on {s < ¢ < s} \ N;, and
since this operator is uniformly elliptic in this bounded set with smooth boundary, the
Maximum Principle applies and yields

IVolP < sup |Vl + CPem2mm (75, (2.3.8)
{g=s}

on {s < ¢ < S} \ Ns. On the other hand, upon choosing a smaller §, we can clearly
suppose that (2.3.8) is satisfied also on Ny, and thus in the whole {s < ¢ < S}. By
passing to the limit S — oo, this proves (2.3.7).

We now turn to prove (2.2.51). Let then, for s nonsingular, x; € {¢ = s} be the point
where the maximum of |V¢| in {¢ = s} is achieved. By (2.3.7), it is also the maximum
point of {¢ > s}, and in particular

d
Vel (x) <o. (23.9)



96 Chapter 2. Minkowski inequalities via Nonlinear Potential Theory

Using (2.2.39) we get

Vo ___P
(VIV0lr, T80 ) ) = =2 (9 pPH) (5,

where H is the mean curvature of the set {¢ = x,} and inequality (2.2.51) follows.

Assume now that (2.2.50) holds with equality sign for sy < S with sy regular. Then, by
the effective monotonicity just proved we also have ®%,(sg) = @5 (S) with S > sq close
enough to sp so that |[Vg| > 0 on {sy < ¢ < S}. Letting x5 the maximum point of |V ¢|?
on {p = S}, we get in particular that

sup Vol = [Ve|P(x5),
{9=s0}U{p=5+3}
for some & > 0 small enough so that [V¢|? > 0on {syp < ¢ < S+ 6}. Since the point xg
lies in the interior of {sy < ¢ < S + 4}, the Strong maximum principle, in force because
of (2.3.2) ensures that |V ¢| is a positive constant in {sy < ¢ < S+ §}. This fact, combined
with the continuity of |V ¢|, coming from the ¢*-regularity of u, also easily shows that
no singular values bigger than sy can occur. In particular, 6 could be taken arbitrarily
big, showing that |V¢| is constant on the whole {¢ > sy}, and we deduce the claimed
splitting principle from Lemma 2.12.

We are left to show that the same splitting happens if (2.2.51) holds with equality
sign. In this case, in particular, the normal derivative in (2.3.9) vanishes. But since x; is a
global maximum value for |[V¢|f on {s < ¢ < S} for any S > s such that |[V¢| > 0 on
{s < ¢ < S}, and |V¢|? is subsolution of the elliptic equation . f = 0 by (2.3.2), Hopf’s
lemma implies that |[V¢|? is constant on this region. We can deduce arguing as above
that there are no singular values bigger than sy, that then |V ¢| is constant on the whole
{9 > so} and conclude with Lemma 2.12. O

p
B

Foragiven1 < p < n, let us consider the vector field

2.3.2 The Effective Monotonicity of ®

(n—p)
X = e w0 |V (v VolPPV 4+ (p— Z)VHV(pyW-U) (2.3.10)

defined around points where |V ¢| does not vanish. Let us first check the relation between
the vector field X and the derivative of CDZ at a regular value s.

Proposition 2.17. Let () C R" be an open bounded set with smooth boundary. Let (IDZ be the
function defined in (2.2.45) and X the vector field defined in (2.3.10). Then, for any regular value

s > 0, we have
S ) BN 1 V¢
e 2 1° (PPY(s) = —— /<X > do. (2.3.11)
(@55 p=1J N IVel
¢=s

Proof. 1t suffices to show that

@)= [ (ITelr2vITelr
{g=s}

Ve >
—~7 ) do. (2.3.12)
Vol
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Indeed, it is immediately checked that

(n—
¢ T (Ve 2V |V

v =1 o)
Vol p—1 Vol/"

Let us then show (2.3.12). Let 6 > 0 small enough so that s + ¢ is still a regular value. We

can write
|l V
QDZ(S+5)—CI>Z(S): / <V§0‘V§D‘(ﬁ+l)(p 1)-1 |V§0|> do
{p=s+4}
- / <V¢|v¢|(ﬁ+1)(p—1)—1 |§¢|>da

{o=s}

Using the Divergence Theorem, we can write the above quantity as

hs+a)-afe)= [ div(VolVel 2Telr ) d
{s<@<s+d}

Since A, = 0, we get
div (Vo| Vol 2|Veltv) = (VIVelr 1| V) [Vl 2,

and by the coarea formula we obtain

@5+ ) - // ((v1vgo0) p
{p=T1}

By dividing both sides of the above equality by ¢, and letting § — 07, we get (2.3.11) by
the Fundamental Theorem of Calculus provided that the function I mapping
T / <(V!V¢!’“ D)Vl

>

d
’ ’

{()C I}

is continuous. In fact, fixed 7p > 0 we have for any T > 71y close enough to 1, by
Divergence Theorem

>
d d .
| |

11| [ [aiv (Vv ) o2 ap,

{n<p<t}

and the right hand side vanishes in the limit as T — 77 by Dominated Convergence
Theorem. ]

In the next fundamental lemma, we compute the divergence of X.

Lemma 2.18 (Divergence of X). Let X be the vector field defined by (2.3.10). Then, the following
identity holds in a neighbourhood of any point x € R"™ \ Q) such that |V ¢|(x) # 0

(n—p)
divX = e w20 1% Q > 0, (2.3.13)
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where

2
ho

Q :ﬁ(zﬂ—1)|qu|’3(""”+”‘4{IWI2 — 8’

+(p—1) {/H (f}j)] ‘VT|V¢|‘2 (2.3.14)

+(p— 1)2 [5 - (p—(nl)_(;f)—l)] ‘VLWG’)WZ}/

where h and H are respectively the second fundamental form and the mean curvature of the level
sets of ¢ with respect to the unit normal V¢ /|V ¢|.

Proof. For the sake of clearness, we write

(n—p)
X =e W01 (W+2Z),

where

W=|Vel" 2V VeV,
and v v

7 = (p—2)|Vol|t~2 <V Volfr—D (P> Ve
(r=2)[Vel Vol Vol ) Vol
We now compute separately the divergence of W and Z.
The divergence of W. Simple computations give
VIVl = p|Ve|["" V|Vl (2.3.15)

and

VVIVeP(Ve, Vo) = p(p— 1)Vl 2 (V|Ve|| Vo) + p|Ve|/ 'VV|Ve|(Ve, Vo).
(2.3.16)
Moreover, we can write

W= 5<pp‘”|v(p|ﬁ(i’—1>—ZV|v(p|P. (2.3.17)
Using (2.3.15) and (2.3.17) we get
diviv = ﬁ(prjl)|v¢|/3(p—1)—2A|v¢|p

£ (Bp— 1) (Blp —1) —2)[VolPr =4 |V| g
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Plugging (2.2.44) into the above relation, and using identity (2.3.17), we obtain
. n— — —
divW — Z—2(W|Vg) = (B(p—1)) [Vt 10~

< 19992+ (pp 1) =2) |vI7gl]

(p—2)VV|Vg|F(Ve, Vo)
p Veol?

+p(p=2)( VIVl 1 |§§§|>]

that, through (2.3.16), becomes

. _nh—p
divW =-——5 (W, Vo)
2
+B(p—1)|VelfP- Dt [!VW’\Z + [B(r -1 —2||v|Vgl| (2.3.18)

Vo \> VV|Vg|(Ve, Vo)
+(P_2) <<v|v§0|lw> — Vol )]

It is time to insert the Kato-type identity (2.2.4) in (2.3.18). By that and the frequently
used decomposition

Vvl = |vTIVgl[ +|vvell’,

(2.3.19)

we immediately get

: n— )ape 2
div W = ==L (W[ V) + B (p— 1| Velf "7 4{ﬁ<p —1)|V7|Voll

+ [ﬁ(rf —-1)+ (’;__11)2 —1+(p— 2)] )Vi|vgp| )2 (2.3.20)

VVIVe|(Ve, Vo)

- (r-2) Vo }

The divergence of Z. Clearly, by the p-harmonicity of ¢, we have
\Y%
Vol

VO N p(p— 1)Vt V-3(v Vel | Vo),
Vol

divZ = (p—2)|Ve|r2 <v Kv [Vg[Pr—1)

We then write

<V \V(p[ﬁ(p_l)
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and by a straightforward computation

divZ = (p—2)p(p- 1>|w|ﬁ(*“>+v4{ R

+[B(p—1)* = B(p—1) —2(p - 2)] <vyv(py Ve |> (2.3.21)
+(P—2)’VT|V§0|’2},

where we just used the decomposition (2.3.19) and the general fact

VVe(V|Ve| Vo)
Vol

- ‘V|Vq)|‘2.

Completion of the computation. Summing up the expressions (2.3.20) and (2.3.21), and
observing that

W|V9) = 25 (X|Vo),

we finally get
) (n—p) B P H
div (W+2) — 7=y =y (W +2) [ Vo) = B (p = 1)Vl 4{!pr!2 h——— g’
+o=1) g+ (23] [971ve
— 2
+(p-1)° [ﬁ - (p_(nl)(np)_l)] ‘VLIV(PI‘ }
that is clearly equivalent to (2.3.13). O

In absence of critical points, the Divergence Theorem applied to the vector field X on
the open region {s < ¢ < S}, with 0 < s < S, easily yields the inequality

/<X v(p>d0 < / <X V¢>d(7
Vol Vel
{g=s} {9=5}
and in turns, thanks to (2.3.11), (2.3.22) below. In presence of a possibly wild critical set,
this direct argument is no longer working. Fortunately, some of the new ideas introduced
in [AM20] to treat the same issues in the case of harmonic functions are exportable to the
case of p-harmonic functions, where one does not know a priori that the critical set is
(n — 1)-negligible. As a consequence, we are still able to provide an effective version of
the considered monotonicity, showing that (2.3.22) is actually in force, provided s is small
enough and S is large enough. The desired effective inequality (@Z)’ (s) < 0 for nonsin-

gular values s, that is (2.2.48), will follow at once. It will also be clear that (q>§)’ (sp) =0

only if ({¢ > so}, g) splits a Riemannian product.

Remark 2.19 (Asymptotic boundedness of CDE). Before proving the above facts, let us

briefly observe that the function CDZ are asymptotically bounded for any g > 0. Indeed,
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this immediately follows from the smoothness of such function at values s big enough
and the finite limit it achieves at infinity, coinciding with that of Ug computed in (2.2.21).

Theorem 2.20 (First substantial inequality). Let Q) C R" be a bounded set with smooth bound-
ary, and let CIDZ be the function defined in (2.2.45). Then, for all reqular values s < S and any

B> (n—p)/[(n—1)(p—1)], the inequality

(@) _ (@)
(n—p) - (n-p) ¢

e-D(p-1° e (-D(p-1)

(2.3.22)

holds true. In particular, one has that (CIDE)’ (s) < 0 for any nonsingular s > 0, that is (2.2.48).
Moreover, if (CIDZ)’ (so) = 0 for some nonsingular sy > 0, then ({¢ > so},g) is isometric to the

truncated Riemannian cylinder ([so, ), dp ® dp + §{y—s,}, and ¢ is an affine function of p in
{p >0}

Proof. Let € > 0, we consider a smooth nonnegative cut-off-function x : [0, +o0) — R,
such that

x(t) =0 int<le,
() >0 inie<t<3e, (2.3.23)
x(t)=1 int> 3e.

=

Since x(|V¢|P(P~1) = 0 on Critg N {s < ¢ < S} we can apply the Divergence Theorem
to the smooth vector field N
X = x(IVelfrb) x

in the domain {s < ¢ < S}. Observe that, choosing € small enough, we can make sure
that x (|V¢|#?~1)) = 1 on {¢ = s} and {¢ = S}. Having this in mind, we compute

/<x |§ZZ|>da —/<x é;‘;& do :/div)?dy

{o=5} {o=s} (s<p<S}
= [ X9l divx dp + (V) (X| VIVl dn,
{S<(P<S}\N€/2 NSS/Z\Ne/Z

(2.3.24)

where in the last identity we have used the tubular neighbourhood of Critp N {s < ¢ <
S} defined for every 6 > 0as Ny = {|V[f(P=1) < §}. In view of (2.3.11), (2.3.13), (2.3.23)

and (2.3.24), the inequality (2.3.22) is proved if we show that <X ‘ V|Vg0|5(”*1)> > 0on
Nze /2 \ Ng/2. On the other hand, a direct computation gives

(n—p)

<X|V|V(p|ﬁ(lg*1)> = e WA ? |VelP2 [ V| VolB#-D[2+ (p —2)| V4V pr-D

(n=p)
e T (V|2 [ VTVl D[Pt (p — 1) V[Vl

0.

‘ 2

Y

This completes the proof of (2.3.22). We show that it implies (@E)’ (s) < 0. Recalling

that by the asymptotic expansions in Lemma 2.3 any level set ¢(S) is smooth for S big
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enough, say for S > S, it follows at once from (2.3.22) that, for every S > S, it holds

Integrating both sides of the above inequality in the variable S on an interval of the form
(Sp,S), we obtain

(n—p) n—p n—p n—p

NI (®F)'(s) + eI T DL(S,) — T (@P)(5) < e IH-T°PE(S).

p

If by contradiction, (q>§)' (s) > 0, then, letting S — +o0 in the above identity, we would

deduce that <I>§(S ) — oo, against the asymptotic boundedness of CDZ discussed in Re-
mark 2.19.

We are left to show the rigidity statement occurring when (@Z)’ (sp) = 0 for some

so > 0. Let S > s be a regular value close enough to sy so that [V¢| > 0on {sp < ¢ < S}.
Then, the Divergence Theorem and (2.3.11) show that

__(n-p) \V/ \V/
0= (p-ve wHE @ye = [ (x| T8 ) ar - [ (x| go) ao
{9=5}

p=S5 tp=so} (2.3.25)
- / divX dp > 0,

{s<p<S}

and thus divX vanishes on {s9 < ¢ < S}. If B > (n—p)/[(n —1)(p — 1)], then the
expression (2.3.13) implies that |V|V¢|| = 0, and thus by Lemma 2.12 ({so < ¢ < S}, g)
splits a compact Riemannian product. Arguing as in the proof of the rigidity part of
Theorem 2.14, this also implies by the continuity of |V ¢| that no singular values bigger
than sp can exist, and the isometry with the Riemannian product extends to the whole
({¢ > so},g). If on the other hand B = (n — p)/[(n — 1)(p — 1)], then (2.3.25) coupled
with (2.3.13) just implies that (2.2.5) and (2.2.6) holds for ¢. The rigidity statement in
the Kato-type identity Proposition 2.5 implies that ({sp < ¢ < S},g) splits a warped
product, whose cross section are given by level sets of ¢. By the vanishing of (@E)’ (S)
deduced from (2.3.25) together with the second expression in (2.3.11), these level sets are
actually minimal. By the relation (2.2.39), this implies that also V' |V ¢| = 0, and this fact
coupled with (2.2.6) for ¢ implies that |V|Vg|| = 0 on ({so, < ¢ < S},g), and we can
conclude as before. O

As already observed several times, the presence of critical points and critical values
possibly arranged in sets with full measure makes the full monotonicity not expectable
in general. In fact, the lack of a sufficiently strong Sard-type property for the p-capacitary
potentials prevents any kind of straightforward adaptation of the arguments presented
in [AM20]. In other words, there is no hope for deducing the global inequality CIDZ (+o0) <

QDZ(O) from the pointwise inequality (CIJZ)’ (s) < 0 through integration, since the latter
inequality may fail to be true — or even well defined — for too many values of s € [0, +0).
To face this main difficulty, we craft a new family of auxiliary monotonicity formulas. For
agivenl < p <nandagiven0 < A < 1, we consider the vector field

(n—p) —
Y, = (eg(n—Z)(sz)(P _ /\) X — (%) IVg[Pr-D+r-2y (2.3.26)
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where X has been defined in (2.3.10). It is convenient to observe that at a regular value of
@ it holds

(n—p)
et 1° — )\ PY/s) — (n—p) Ple) — 1
( T ) @6 - GO = gy [

{o=s}

Vo >
do,
Vol

(2.3.27)
by the definitions of the vector fields and the functions involved and Proposition 2.17. In
the next lemma, we compute the divergence of Y}, that happens to be nonnegative when
the so is the divergence of X.

Lemma 2.21 (Divergence of Y)). Let Y, be the vector field defined in (2.3.26). Then, the follow-
ing identity holds in a neighbourhood of any point x € R™ \ Q) such that |Ve¢|(x) # 0

(n p)
w217
diVY/\:<e n—p) /\>QZO/
2107

where Q is the quantity defined in (2.3.14).

Proof. By the very definition of Y, we have that

divY, = <e(" e /\> divk + — =P e (x| Ve
(n=2)(p—1)

n— . D)
_ (n_g) div (| Vo FrUr2y ) .

Using the definition (2.3.10) of the vector field X, we compute
__(=p)
(X|Vg) = (p—1)e T[Tl (V|V|| Vg).
Exploiting the p-harmonicity of ¢, we get
div(|qu|/5(P‘1)+”‘2qu) = |Vo|F2 <v|vq)|ﬁ(p—1) | qu> )

We conclude that

(n=p)

] (n—p) e _ )
divY, = (e(" -1 )leX Q,
k4

(n—p)
em-2)(p-1

where in the last equality we made use of the identity (2.3.13). O

Again, in absence of critical points, the Divergence Theorem applied to the vector
field Y) on the open region {s < ¢ < S} easily yields the inequality

war) </ (3|
/<YA \V<P!> = ) ) 4

{g=s} {9=5}
and in turns, thanks to (2.3.27), the inequality (2.3.28) below. As usual, the difficult part is
the treatment of the critical points. However, a quite surprising computation in the spirit
of Theorem 2.20 shows that it is always possible to deduce the second effective inequality,
that is (2.2.49). This fact, together with Theorem 2.22, completes the proof of the Effective

. . Riocidi p
Monotonicity-Rigidity Theorem for ®;.
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Theorem 2.22 (Second effective inequality). Let () C IR" be an open bounded set with smooth
boundary. Then, for every 0 < A < 1 and any couple nonsingular values s < S, the inequality

(n—p)s p (n—p)S [4
-0 — n—p)d(s -1 _ n—rp)dL(S
(e (p;fp)s A ) (qu)/(S) - =) ﬁ( ) < (e :v—p)s & ) (CI>§)’(S) N w
e (n=2)(p-1) (n - 2)(p - 1) e (n=2)(p-1) (n - 2)(p - ]‘)
(2.3.28)
holds true, where q)g is the function defined in (2.2.24). In particular, one has that @Z(S) <

@}(0), that is (2.2.49).

Proof. Let x : [0,+0c0) — R be the same smooth nonnegative cut-off function as in the
proof of Theorem 2.20, so that the properties (2.3.23) are in force. To simplify the notation,

let us also set ,

77/\((17) = (n—p)
e-20-1% _ )

Finally, let us consider the smooth vector field

Vo= x (m(e) Vel ) v,

where Y) has been defined in (2.3.26). Again, choosing ¢ small enough, we can suppose
Yy =Yy on{¢ =s}and {¢ = S}, with for nonsingular s and S and apply the Divergence
Theorem to the smooth vector field Y, on the region {s < ¢ < S}. It yields

Vo N Ve _/ WY du —
/<Y/\ ’vq)’> do /<Y/\ >d0’ = leY/\ d}l =

Vol
{p=5} {p=s} {s<g<S}

= /x(m(fp) [Vel) divYy du +/X(m(qv) Vel) <YA\V (@) VolPr D)) dp,
{S<§0<S}\NE/2 NSE/Z\NS/Z

where this time the tubular neighbourhoods of Crit are defined, for every § > 0, as
Ns = {11(9) [Vo|P(P~1) < §}. Since, as observed in Lemma 2.21, the divergence of Y,
is nonnegative on {s < ¢ < S} \ N,/», where clearly |V¢| # 0, in light of (2.3.27) the
inequality (2.3.28) is proved if we can show that

(| V(@I Velfr 1)) > 0
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on N3/ \ Ne/2. A direct — though not immediately evident — computation, combined
with the definition (2.3.26) of Y), yields

<n

V(«hﬁﬂ>>::e“%W“NV¢w2\vaw“P”f
e 2% A

e T [Vglr2(p — )|V VglPr U

n_ - —
~2(5=F) m(e) [Vel#+10-Y <vyv(pyﬁ<n y

Vo >
Vol

(n—p)
n—p\2 , e 21 ?|Vg|2PP—1)+p
+(n—2> 1i(¢) p—1

__(n—p ‘2

= e <n—2><n)—1>9”|vq)‘p—2 }VT|V¢|ﬁ(p—l)

n—p e(n:(;i%)q)?‘Vq)‘Zﬁ(p—l)—&—p 1/2
(m) m(e)

" (p-1)

2
___(n=p) 1/2
_ <v‘v¢‘ﬁ(p—l) |§2‘;|> ((p—l)e (;z—z)(Z71)9”|vq)|P_2) ]

This completes the proof of the first part of the statement, since the rightmost hand side

is manifestly nonnegative. It remains to show that @Z (S) < CIDZ(O) for any regular S > 0.

Applying the just proved inequality (2.3.28) with s = 0, we get

— , ems— A ,
gt (ohs) - ef0) S-%l—AH®p(m+—(€w%$ws)(@@(@
< —(1-A) (@) (0),

where in the last inequality we used (CIDZ)/ (S) from Theorem 2.20. Letting A — 17, we
get the claimed inequality. O

2.3.3 Full monotonicity in absence of critical points

It directly follows Theorem 2.20 that if [V |, > 0 on the whole R" \ ), then (I)Z is fully
monotone nonincreasing. In particular, in this case, we can infer the full monotonicity of
UE. Since, as already recalled, standard elliptic regularity theory ensures in this case that

u is analytic, from the vanishing of (UE ) atsome 0 < tp < 1 we can deduce that Q) is a

ball. We just write the full statement for U?, leaving the details of its conformal version
to the interested reader.

Theorem 2.23 (Full Monotonicity of Ug in absence of critical points). Let (3 C R" be

an open bounded set with smooth boundary, and let u be the solution to (2.2.2). Assume that

|Du| > 0. Then, the function Ug : (0,1] — R defined by

(n—1

Ul (t) = P05 / [Du| B+ (P~
{u=t}
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is differentiable and satisfies

dut

o - p t—ﬁ(P—l)(H)/’Du‘(ﬁH)(P1)1[H_ (”_(nl)_(’;)_l) |D10gu@ do
=)
2
_ é u2—ﬁ(p—l) (%) |Du’(ﬁ+1)(p71)73 |Du|2 h— igT
t2 {ugt} n—1

+[B(p—1)+p—2] [DDul[
(= 12[p - 5 s | o (1 [ plogul | }
(2.3.29)

In particular, the derivative of Ug is always nonnegative. Moreover (Ug ) (to) = 0 for some
to € (0,1] if and only if QY is a ball and u is rotationally symmetric.

Proof. From the assumptions we have Critu = @, and thus Theorem 2.2.48 and a direct
perusal of the proof of Theorem, 2.20, precisely, by (2.3.24), we get

@)(s) = ~p [ Vel H da,

2
T

= peritt [om i vl v
{p=s}
2
+[Blp=1)+p=2] [V |Vlg,
n— 2
+ (=1 ['B_ (n_(1)<5)_ 1)] WL|V(P|g‘g} dpg -
(2.3.30)

Hg
hg_n—lg

gT

The main identities to be used in order to recover (2.3.29) from (2.3.30) are the following.

H

_1gIR”

7

H
hg — £ 8T

" {(P — L _2)]2142"1—’%2!Du\2
n—1

(n—p)
where in the left hand side the second fundamental form and the mean curvature are

those of the level sets of ¢, in the right hand one they are referred to the corresponding
level sets of u. Moreover

2 _
Volg h——

I Sk

2 (P—l)(”—2)]2 IPYITE N 2
VTV = |77 N "= D'|D n ,
) | qo‘g‘g |: (1’[ _ p) u P ’ u’g]R gIR
and . 2
2 _ . _ B
VIVl = <n_2> W Dy {H_(” 1)_(;7 1) |Du|] |
8 n p (1’1 p> U

If (Ug)’(to) = 0 for some fy € (0,1], then by (2.3.29) all the level sets {u = t} for t < £

are spheres. Let Ry such that {u = to} = dB(O, Ry) for some origin O € R". Let then

=

v(x) = f0<|110|> : /

=

|
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that solves

Apv =0 in IR" \ERO
v=1ty on JBg,
v(x) >0 as |x| — oo.

Since u solves the same problem then by the uniqueness of solutions we get u = v in
R" \ Bg,, and in turn u is rotationally symmetric in this region. Finally, since v can be
extended to R" \ {0}, we have that u and this extension of v are both analytic function
coinciding on an open subset of M, and thus they must coincide on the whole R" \ Q. [

It is natural to wonder whether there are geometric conditions on () ensuring that the
p-capacitary potential u does not develop critical points. To the author’s knowledge, the
only complete result in this direction available in literature is contained in the main the-
orem of [Lew?77], implying that if Q) is strictly convex then |Du| # 0 on R" \ Q). Actually,
[Lew?77] considers the p-capacitary function in convex rings, that in particular entails the
case of the p-harmonic function ug on B(O,R) \ Q with Q & B(O,R) such that u = 1
on dQ) and u = 0 on dB(O, R), and proves that |Dug| > 0. However, it can be checked
that the positive lower bound on |Dug| does not depend on R (see also the more general
[BC18, Lemma B.1] for an explicit computation), and then the limit of ug as R — +oo,
that produces the p-capacitary function u of (), still satisfies |Du| > 0. We refer the reader
to the proof of Theorem B.1 in Appendix B for details on the local ¢-convergence of ug
to u on compact sets.

It is worth pointing out that the strict convexity assumption can be relaxed to strict
starshapedness in the linear case p = 2. This is a well known result, and it can be found
in [Eval0, Theorem 1, Section 9.5]. It is based on the harmonicity of the support function
(x | Du) when u is harmonic, and a straightforward maximum principle argument yields
the result. Finding a suitable elliptic equation solved by the support function when u is p-
harmonic functions does not seem easy, and the validity of this extension to p-capacitary
potentials remains to the author’s knowledge an open problem. It is worth pointing out,
on the other hand, that starshapedness of the level sets of the p-capacitary function of a
starshaped set () is valid, and it is proved in [Sal05], despite the techniques used do not
seem sufficient to infer the strict starshapedness, that would imply the absence of critical
points.

24 Minkowski Inequalities and applications

In the following Subsections, we re going to easily deduce from the Effective Monotonic-
ity Theorem for U;; a LP-version of the Minkowski inequality, that will lead in the limit

as p — 17 to the Extended Minkowski inequality, and analyse some consequences of our
new generalised version of this classical result.

2.4.1 From the LP-Minkowski inequality to the Extended Minkowski Inequal-
ity

The following is the statement of the LP-Minkowski inequality, together with the related
rigidity statement.
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Theorem 2.24 (LP-Minkowski Inequality). Let Q) C IR" be an open bounded set with smooth
boundary. Then, for every 1 < p < n, the following inequality holds

n—p-1 1
Cy(Q) 7 < ’Sn—l‘/
a0

where C,(Q)) is the normalised p-capacity of Q) introduced in Definition 2.1. Moreover, equality
holds in (2.4.1) if and only if () is a ball.

p
do, 2.4.1)

H
n—1

Proof. We let B = 1/(p — 1), and call for simplicity U, = Url,/ P~V The substantial
monotonicity of Uy, proved in Theorem 2.13 yields Uy, (1) > 0 and U,(07) < Up(1),
respectively. The first inequality, combined with the expression for the derivative of U,
at regular values of u, given in (2.2.18) implies that

L_l P < / p—li
/(n—p> |Dlogu|"doe < [ |Du| n—lda'
Ele} a0

Applying the Holder inequality to the above right hand side, with conjugate exponents
a=p/(p—1)and b = p, one is left with

/\Du\Pda < (’;:’f)p/
[9)

a0

p

H 1" 4o (2.4.2)

n—1

Using the inequality U, (0%) < U,(1) in combination with (2.2.21) we get

n—P\P cn-1 n—p-1 .

_— n— e < e p

<p—l) SN Cp(Q) T = lim Uy(r) < Uy(1) /yDu\ dor,
Q)

that coupled with (2.4.2) gives the desired

H p
p— do.

n—p—1 1
Cp(Q) "7 < Ead /
Q)

Assume now that equality holds in (2.24). Then, equality holds in (2.4.2), and conse-
quently U, (1) = 0. The isometry of 0Q with a sphere then follows from the rigidity
statement in Theorem 2.7. O

We are now interested in passing to the limit as p — 17 in the LP-Minkowski Inequal-
ity (2.4.1). The main task here is to compute — and characterise geometrically — the limit
of the variational p-capacity of a bounded set with smooth boundary. This topic will be
discussed in full details and great generality in the next Chapter. The notion of ()* was
anyway outlined in Chapter 1 Subsection 1.7.3. Importantly, the following approxima-
tion of |0Q)*| holds true for an open bounded set Q2 with smooth boundary

lim C, () = 12

= —. 2.4.3
o, 5] (24.3)

We refer the reader to the next Chapter, and in particular to Theorem 3.1, for a rigorous
proof of (2.4.3) and of various other aspects of ()*.

We can now prove the Extended Minkowski Inequality, together with its Corollary 2.26.
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Theorem 2.25 (Extended Minkowski Inequality). If O C R" is a bounded open subset with

smooth boundary, then
2
1

PO\ 11 /

— <

<|S”‘1| B Ea
Q)

where ()* is the strictly outward minimising hull of Q) defined as in (3.2.17). Moreover, the
dimensional constants appearing here are optimal, in the sense that

H
n—1

‘dm (2.4.4)

min \80*|“/|H\da Q € R", with dQ) smooth p = (n—1) |S”’1|ﬁ,
90

and the minimum is achieved on spheres.

Proof. It suffices to pass to the limitas p — 17 in (2.4.1), that is

P
n?1 do. (2.4.5)

n—p—1 1
CP(Q) S 51| /
Q)

Indeed, recalling the relation between p-capacity and normalised p-capacity given in Def-
inition 2.1, the discussion above, or precisely Theorem 3.1, shows that the left hand side
of the above inequality satisfies

n=2
n—1

hm@@ﬂwz(MH),

p—1+ S|

while the right-hand side of (2.4.5) is immediately seen to converge to the right hand side
of (2.4.4). Spheres show the optimality of the estimate since their mean curvature is given
by (n — 1) /R, where R is the radius of the ball they enclose. O

The Extended Minkowski inequality readily yields the known version for outward
minimising sets. We are spending some lines to prove the rigidity statement when the
set considered is actually strictly outward minimising and its boundary is strictly mean-
convex. For this last observation we are going to appeal to the Inverse Mean Curvature
Flow, since we still do not know how to use our (effective) monotonicity formulas to
recover the rigidity statement. The difficulty obviously arises by the need of passing to
p — 17, that makes impossible to use the effective monotonicity result Theorem 2.7.

Corollary 2.26 (Minkowski Inequality for Outward Minimising Sets). If (3 C R" is a
bounded outward minimising open subset with smooth boundary, then

n—2
0 V1 H
< . 4.
<|s"—1| = | /n—l do (2.4.6)
Q)

Moreover, the dimensional constants appearing here are optimal, in the sense that

min |BQ|_5_%/H do | Q € R"outward minimising , with 0Q smooth y = (n—1) ]S”_llnlj ,
a0

and the minimum is achieved on spheres. Viceversa, if the equality holds in (2.4.6) for some
bounded strictly outward minimising open subset with smooth and strictly mean convex
boundary, then Q) is isometric to a round ball.
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Proof. Inequality (2.4.6) immediately follows from the fact that outward minimising sets
with smooth boundary satisfy [0Q)*| = |9Q)| and the mean curvature of their boundaries
is nonnegative (see Remark 3.16).

We are left to consider the equality case in (2.4.6) for some strictly outward minimising
sets with smooth and strictly mean-convex boundary. To this aim, let {00}, 1) be the
evolution of dQ) under smooth IMCE, up to some T > 0. By [HIO1, Lemma 2.4], the
sets E; evolving by weak IMCF starting at d(), whose definition is recalled in Subsection
3.3.2 in the next chapter, coincide with (); in some time interval [0, T*), with T* possibly
smaller than T. In particular, by [HIO1, Lemma 1.4], ) is strictly outward minimising
and strictly mean-convex for every ¢t € [0, T*), and then (2.4.6) holds for every 9Q); with
t € [0, T*). We can then define, for t € [0, T*), the monotonic quantity already discussed
in the Introduction

2(t) = |E)Qt|‘H/H do.

Observe that the inequality (2.4.6) is equivalent to 2(0) > (n — 1)|$" /("1 and as-
suming equality in (2.4.6) is equivalent to 2(0) = |S"~1|'/("~1). By the smoothness of the
flow, the function 2(t) is differentiable for t € [0, T), and then a straightforward compu-
tation involving the standard evolution equations provided e.g. in [HP99, Theorem 3.2]
show that

2'(0) = —|aQM—%/’F“2da <0 (2.4.7)
p— H _— . . .
[e)

However, since we assumed 2(0) = 0, 2/(0) < 0 would imply 2(t) < 0 for some t €
(0, T*) that is equivalent to falsify (2.4.6) for some outward minimising (); with strictly
mean-convex boundary. Then 2'(0) = 0, and by formula (2.4.7) this means that 9Q) is
totally umbilical, and thus a sphere. O

We remark once again that (2.4.6) in particular holds for strictly starshaped sets with
mean-convex boundary, see Proposition 3.25.

Itis not quite clear, at least at first glance, whether one can in fact deduce the Extended
Minkowski Inequality (2.4.4) from its corollary for outward minimising sets. We are able
to show that this is the case if n < 7.

Corollary 2.26 implies Theorem 2.25ifn < 7. Let 3 C RR" be a bounded set with smooth
boundary, and n < 7. Then, as recalled in Subsection 1.7.3 in the previous chapter, ()*
is of class ¥'!. We can then apply, as there, Lemma 1.66 to Q)* to obtain a sequence
of strictly outward minimising sets E. with smooth and strictly mean-convex boundary
approximating Q* in ¥ N Wl!-topology as ¢ — 0*. In particular, for these sets, (2.4.6) is
in force, and then we get, letting e — 07

2
1

PO\ 1 1 / H / H
italnlil § < < T
<|sn1| S ) o190 s g A
a0)*

Q)

where the last inequality is due to the fact that any region of d() with negative mean
curvature is replaced by regions of d()* that are minimal, as immediately deduced from
Theorem 3.14, anticipated by the discussion in Subsection 1.7.3. O

The above argument evidently breaks down when n > 8, due to area minimising
hypersurface regularity issues. Indeed, in this case, nonempty singular sets can appear
in 9Q)*, preventing this boundary to be ¢! and thus making the application of Lemma
1.66 no more possible. We are not aware of other approximation results, strong enough
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to let the L!-norm of the mean-curvature of the approximator converge, holding true for
boundaries with (small) singular sets.
2.4.2 Applications of the Extended Minkowski Inequality

The two applications we give consist in a Volumetric Minkowski Inequality, known in lit-
erature also as Higher Order Isoperimetric Inequality, and in the De Lellis-Miiller nearly
umbilical estimates with sharp constant for outward minimising sets.

Volumetric Minkowski Inequality

An application of the Euclidean Isoperimetric Inequality (see e.g. [Mag12, Theorem 14.1])
immediately yields the following.

Theorem 2.27 (Volumetric Minkowski Inequality). Let (3 C IR" be an open bounded set with

smooth boundary. Then
O\ 1 /
B/ = (s
a0

Moreover, equality holds in (2.4.8) if and only if () is a ball.

(2.4.8)

n—l' do

Proof. Applying the Euclidean Isoperimetric Inequality to the left hand side of (2.4.4), we
get

n-2 n;
O\ (YT ey /
B/~ \[B"| ERVAEE
Q)
where the first inequality is just due to (2 C Q). If equality holds in (2.4.8), then by (2.4.9)
()" satisfies equality in the Euclidean Isoperimetric Inequality, and then ()* is a ball up
to negligible sets. Arguing as in the proof of the Isoperimetric Inequality for complete

noncompact 3-manifolds with nonnegative Ricci curvature Theorem 1.7.2, we conclude
that () is thus a ball. O

(2.4.9)

do,
n—l‘ 7

To our knowledge, the above inequality was previously known to hold for domains
with a striclty mean-convex boundary of positive scalar curvature (for short 9Q) € I'J).
On this regard, we refer the reader to the paper [CW13] and the subsequent [Qiul5],
where the inequality was proved with methods based on Optimal Transport.

Nearly umbilical estimates with optimal constant for outward minimising sets.

This subsection is devoted to the proof of an optimal version of the celebrated De Lellis-
Miiller nearly umbilical estimates for outward minimising domains.

Theorem 2.28 (Optimal Nearly Umbilical Estimate). If O C R3 is a bounded outward min-
imising open domain with smooth boundary, then

/’h— = 820

where g0 is the metric induced on Q) by the Euclidean metric of R3, and

@ < 2/\B|2da, (2.4.10)
0

H:][Hda, h—h—EgaQ
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Moreover, the equality is achieved in (2.4.10) by some strictly mean-convex and strictly out-
ward minimising domain Q) if and only if () is isometric to a round ball.

A first main tool we are going to use in order to deduce Theorem 2.28 from Theorem
2.25 is the classical Gauss’ equation for surfaces in R, yielding

Ryn = H2 — |h)?, (2.4.11)

where Rjq, is the scalar curvature of 00} computed with respect to the metric g5 induced
on it by the Euclidean metric of R3. A second main tool we need to recall is the famous
Gauss-Bonnet formula, stating that

/RaQ do = 4ty (0Q)), (2.4.12)
Q)

for any domain with smooth boundary ), where x(9Q}) is the Euler characteristic of the
surface d(). The need of a connected boundary in order to apply (2.4.12) is the reason
behind the assumption of () to be a domain in Theorem 2.28.

We are finally going to show how the Minkowski inequality (2.4.6) for outward min-
imising sets combined with these basic identities in differential geometry give the optimal
nearly umbilical estimate (2.4.10).

Proof of Theorem 2.28. Expanding the squares, it is straightforwardly seen that (2.4.10) is
equivalent to

H
2 2
/(yHy h1?) do < o0
Q)

Invoking Gauss’ equation (2.4.11) and Gauss-Bonnet formula (2.4.12), we then obtain that
(2.4.10) is equivalent to

87x(9Q0) = z/RBQ do = 2/ (IHP2 ~ n[?) do < B'Jaq,
200) 00)
that is, to

J2x (9090 < / %da. (2.413)

[9)

Since obviously x(0Q)) < 2, the inequality (2.4.13) follows from the Minkowski inequality
(2.4.6).

Assume now that equality holds for some outward minimising set () with smooth
and strictly mean-convex boundary. Let {00} }c[o 1) be evolving by IMCF with initial
datum 0Q). By [HIO1, Lemma 2.4], the sets E; evolving by weak IMCF starting at 0()
coincide with Q) for t € [0, T*), for some T* possibly smaller than T. In particular, () is
outward minimising and strictly mean-convex for any ¢t € [0, T*), for some T* > 0, and
then (2.4.10) holds for aQ); for any t € [0, T*). We can then define, for T € [0, T*), the

quantity
. 1 1 2
P(t :/hzda—/<H—/ H> do,
()= [ I de=3 EA

aQt aQt

introduced in [Per11, Chapter 3]. Observe that inequality (2.4.10) is equivalent to &?(0) >
0, and assuming equality in (2.4.10) is equivalent to #2(0) = 0. By the smoothness of the
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flow, the function #(t) is differentiable for t € [0, T), and then [Per11, Lemma 3.4] yields
/ = [ [hP
Z'0)=-H| Sldr<o0 (2.4.14)
a0 H

However, since we assumed #(0) = 0, 2/(0) < 0 would imply Z?(t) < 0 for some
t € (0,T*) that is equivalent to falsify (2.4.10) for some outward minimising (); with
strictly mean-convex boundary. Then &”'(0) = 0, and by formula (2.4.14) this means that
0Q) is totally umbilical, thus a sphere. O

Inequality (2.4.13) in the above proof, that we just showed to be equivalent to the
nearly umbilical estimate (2.4.10), is actually equivalent to the Minkowski inequality for
mean-convex hypersurfaces (2.4.6) if x(9Q)) = 2, that is, if dQ) is diffeomorphic to a
sphere. We want to show, with the following easy proposition, that such a diffeomor-
phism exists each time the right-hand side of (2.4.10) is smaller than 167r.

Proposition 2.29. Let Q) C IR3 be a bounded open subset with smooth and mean-convex bound-
ary. If
do < 8m (2.4.15)

then 0Q) is diffeomorphic to a sphere. In particular, if (2.4.15) holds, then x(Q) = 2, and in
particular the Minkowski inequality (2.4.6) for outward minimising domains is equivalent to the
optimal nearly umbilical estimate (2.4.10) for outward minimising domains.

Proof. 1f (2.4.15) holds, we have, by the classical Willmore inequality [Wil68]

2

H
/‘h— 580 do <81 < ;/sza,
a0
that implies
/ <|H|2 - yh|2) do > 0. (2.4.16)
a0

Moreover, since equality is attained in the Willmore inequality if and only if 02 is iso-
metric to a sphere with the round metric, the same rigidity statement holds if equality
is attained in (2.4.16). On the other hand, applying the Gauss” equation (2.4.11) and the
Gauss-Bonnet formula (2.4.12), (2.4.16) is equivalent to

x(0Q)) > 0.

If x(9Q)) = 0 then by the characterisation of the equality case in the Willmore inequality
0Q) would be even isometric to a sphere, and this is a contradiction. Then x(9Q)) = 2, as
claimed. O

2.5 Other consequences of the Effective Monotonicity Theorems

Here, we illustrate some others consequences and applications of the (effective) mono-
tonicity of Ug for various values of B and of UL,. The following two subsections can be

compared to Subsections 1.5.1 and Subsection 1.5.2 in the previous chapter.
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2.5.1 p-capacitary inequalities and the relations with Willmore-type function-
als

The following sharp inequality for the p-capacity of Q) follows just from (Ug )'(1) > 0.

Theorem 2.30. Let QO C IR" be an open bounded set with smooth boundary. Then

|0Q|
Q) < S <]§Q

Moreover, the above inequality holds with equality sign if and only if () is a ball.

H
n—1

(p-D@+p) /T
da) (2.5.1)

Proof. By (U%)'(1) > 0, and more precisely by (2.2.18) for t = 1, we get

B
/(P—1> Diogu| " VM 4o < /,Du,wn(ﬁﬂ)l H 4o
n—p n—1

Q) a0

Applying the Holder inequality to the right hand side, with conjugate exponents a =
B+D)(p—-1/[(B+1)(p—1)—1]and b= (B+1)(p — 1), we get

/|Du,(ﬁ+1)(p—1) do < (”—P)(ﬁ“)(”l)/
p—1
30 30

(B+1)(p—1)

H do. (2.5.2)

n—1

Applying now the Holder inequality with conjugate exponents f+ 1 and (B+1)/p to
foa|DulP~1do, we get

1

_ p—1 fEs
<Z_§)> |S”_1|CP(Q) = /|DM|I[]_1 do < C/Du(ﬁ‘*‘l)(r’l) dU) ’aQ|5%,
20 O

(2.5.3)
where the first identity follows from (2.2.3) for t = 1. Coupling (2.5.3) with (2.5.2) we are

left with (2.5.1). It is immediately seen that if equality holds in (2.5.1) then (UE)’ (1) =0,

and the rigidity statement follows from that of Theorem 2.7. O

We find particularly interesting in the family of inequalities (2.5.1) the one estimating
the Willmore-type functional, largely discussed in a general Riemannian context in the
last chapter. It is deduced just by choosing p = (n —p)/(p — 1).

Corollary 2.31 (p-capacitary estimates of the Willmore-type functional). Let 3 C R" be
an open bounded set with smooth boundary. Then,

n—p
_q,p-1 Q)| 1
C, (@) 51 < ,!S', (/m

Moreover equality holds if and only if () is a ball.

p—
n

==

n—1
H da> . (2.5.4)

n—1

To our knowledge, the above inequality, as well as those in (2.5.1), were known only
for strictly mean-convex strictly starshaped domains. It has been provided, together with
other inequalities, by J. Xiao in [Xial7, Theorem 3.1] via the Inverse Mean Curvature Flow
and relying on Gerhardt’s long time existence theory for strictly mean-convex strictly
starshaped initial data developed [Ger90].
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The Willmore-type inequality through p — n~

In his just mentioned paper, Xiao also observes that the classical Euclidean Willmore-
type inequality can be deduced by letting p — n~ in (2.5.4). Indeed, letting B(xo,7) C
Q C B(xp,R) one deduces from the obvious monotonicity property of the p-capacity
with respect to set-inclusion and its explicitly computed value on balls that

P < Cp(Q) < R'TP, (2.5.5)
yielding
Cp(Q) =1
as p — n~. Plugging this information in (2.5.4), we are left with the classical Willmore-
type inequality. This alternative proof is interesting in relation of our monotonicity for-
mulas, since it just uses (Ug)’ (1) > 0, that is just a local information. On the other hand,

it is heavily bound to the very special geometry of R”, encoded in the explicit formula
for the p-capacity of balls used in (2.5.5).

The Willmore-type inequality from any value of p.

We observe that, algebraically, there was nothing special about the value p = 2 for achiev-
ing the Willmore-type inequality. Indeed, let as for Corollary 2.31 = (n —p)/(p — 1)
and observe that from lim; .o+ Ug(t) < Ug(l) we get

n—1
<1’l P) |Sn71| < /|Du’n1 d(f,
p—1

o)

that, coupled with (Ug )'(1) > 0 through Holder inequality as in (2.5.3) leaves us with
the classical Willmore-type inequality. In spite of this, p = 2 is anyway the most con-
venient value to use if one is interested in the Willmore-type inequality, both for the
easier algebraic computations and primarily for the wonderful regularity properties of
harmonic functions, that we employed successfully in the more general geometric frame-
work treated in the last Chapter.

2.5.2 Spherical symmetry under pinching conditions

Now, we finally give some applications of the substantial monotonicity of UL,. They con-
stitute the nonlinear versions of the main results obtained in [BMM19], where a different
geometric construction named spherical ansatz was employed.

Theorem 2.32. Let (O C R" be an open bounded set with smooth boundary. Then, if the mean

curvature of Q) satisfies
1 \77 _ H 1 \"r
n—p n—p
— | =—— < < 2.5.
(gm) =512 (gm) 2260

on every point of 9Q), then Q) is a ball.

Proof. By means of the global aspect of the substantial monotonicity of Uk, (2.2.19), the
computation of its limit in (2.2.22) and the local aspect of the substantial monotonicity
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(2.2.20) we deduce

lim UL (t) = 7P\ ¢ (Q)_"lfp < sup|Du| < n-p sup H

=0t p—1)7" T a0 T\p—1) % In—1]
with equality achieved in any of the above inequalities if and only if () is a ball, by the
rigidity statement in Theorem 2.8. In particular, this happens if (2.5.6) is satisfied. O

As a consequence of the above argument we get

(cl) <
—_ Su
c,) =°5F

Letting p — 171, we get, by (2.4.3), the following completely geometric consequence.

— ’ . (2.5.7)

Corollary 2.33. Let () C IR" be an open bounded set with smooth boundary. Then, the following

inequality holds
1
Sn—l n—1 H
<|\BQ* ||) < s;;p 1l (2.5.8)
In particular, it holds
1
|Sn71| n—1 H
< . .
<]80| _s;;)p — (2.5.9)

If equality in (2.5.8) is achieved on a strictly outward minimising set with strictly mean-convex
boundary, then ) is a ball.

Proof. Letting p — 17 in (2.5.7) and using (2.4.3), we get, coupling it with |[0Q)*| < [0Q)],

we get
1 1
’Snfll n—1 ‘Snfl‘ n—-1 H
< < .
( pal ) ~\paf) “SFu-1

We now have to justify the rigidity statement. Actually, in the case of outward min-
imising sets, it is immediately seen that inequality (2.5.8) also follows directly from the
Minkowski Inequality (2.4.6), and equality is achieved only if it is achieved in the Minkowski
inequality. In particular, if Q) is strictly outward minimising with strictly mean-convex
boundary, the claimed rigidity statement follows from the rigidity statement of Theorem
2.26. t

We observe that if () is not outward minimising, (2.5.8) is strictly stronger than (2.5.9).
Moreover, in general (2.5.8) does not seem to be implied by the Extended Minkowski
Inequality, if ) is not outward minimising.

2.5.3 Relations with a classical overdetermined problem

Here, we discuss how the monotonicity of Uk, constitutes a new interpretation of a max-
imum principle for for [Du|/u("=1/("=P) that is, up to a multiplicative constant, |V ¢|g,
widely used in literature to establish symmetry results for overdetermined boundary
value problems. Such a function, known in literature as P-function, together with re-
lated maximum principles, was first conceived by Payne-Philippin in [PP79] for har-
monic functions. Its generalisation to p-harmonic functions on rings first, and then on
exterior domains was treated respectively in [Sar98], that generalised the results and the
techniques of [Phi90] for the harmonic case, and [GS99].
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The overdetermined boundary value problem considered is the following

Aju=0 in R"\Q,
u=1 on d0,

u(x) -0 as |x| — o0

Dul =c on 9Q,

(2.5.10)

for some positive constant ¢ > 0. It is well known that the above problem admits a
solution if and only if () is a ball. This was first provided by Reichel in [Rei%96] for
bounded sets Q) with ¢>-boundary using the moving planes method, and later showed
by Garofalo-Sartori in [GS99] through the P-function approach for starshaped sets with
no a priori smoothness assumptions. Reichel’s result was recently recovered in [Pog18]
building on Garofalo-Sartori maximum principle for the P-function but concluding the
proof with a very interesting integral formula involving the torsion function of () pro-
vided in [MP19]. We are coming back to this point in a while.

Our Substantial Monotonicity Theorem for UL, actually yields a new interpretation,
with a new proof, of the main maximum principle for the P-function. Indeed, (2.2.20)
yields for the p-capacitary potential u of ()

H(x) > (”_(nl)_(’;)_l)mu\(x), (2.5.11)

where x € d() is the point where |Du| achieves its maximum on d(2, and actually where
the P-function |Du|/u("~1/(=P) achieves its maximum on R” \ Q. If u is also assumed
to satisfy the additional condition of |Du| = ¢ on 9Q), then in particular (2.5.11) holds for
any x € dQ). In particular, since by an easy computation (see [Pog18, Lemma 2.4])

_ (n=p) [99]
n(p—1) [0

we deduce that

(n—1) |0}
> =72
oY

on dQ). The above estimate was the main outcome of the maximum principle for the
P-function worked out in [GS99]. Moreover, in light of the rigidity statement for U, in
Theorem 2.8, equality holds in (2.5.12) at some point of d() if and only if ) is a ball. The
symmetry of () under the existence of a solution to (2.5.10) is then established if we can
prove that equality holds somewhere on dQ). This was accomplished in [GS99] using
integral identities valid under the starhapedness of (). In [Pogl8], this was obtained
without the starshapedness assumption by means of the sharp inequality, valid for any
bounded () with smooth boundary,

(n—1) |0}
/(H— - |Q|> |Dof>do <0, (2.5.13)

(2.5.12)

where v is the torsional function of (), that is solving

Av=n in Q,
v=0 on 9.

The inequality (2.5.13) is actually a corollary of the remarkable integral identity [MP19,
Theorem 2.2]. In particular, the combination of (2.5.12) and (2.5.13) implies that equality
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is achieved in (2.5.12), and we can thus conclude. We find this interplay between the
exterior problem for the p-capacitary potential and the interior problem for the torsion
quite intriguing, and somehow reminiscent of the proof of the Isoperimetric Inequality
worked out in the previous Chapter, where an exterior boundary value problem was
exploited in combination with a shrinking flow.
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Chapter 3

On strictly outward minimising hulls
and p-capacity in Riemannian
manifolds

3.1 Main result and structure of the chapter

The main goal of this chapter is to prove the following result, already vastly discussed in
the Introduction.

Theorem 3.1. Let (M, g) be a complete noncompact Riemannian manifold satisfying at least one
of the following two conditions.

(i) (M, g) satisfies an Euclidean-like Isoperimetric Inequality, namely, there exists Ciso > 0
such that

[0Q2]"
W > Ciso (311)

for any bounded set Q) with smooth boundary.

(ii) (M, g) has nonnegative Ricci curvature and the superlinear uniform volume growth
condition holds
C—l

vol

r’ < |B(O,r)| < Cyqr " (3.1.2)
forsome b > 1and Cyy > 0, for any r > R for some R > 0.

Let QO C M be an open bounded set with finite perimeter. Then, its strictly outward minimising
hull OO is an open bounded maximal volume solution to the least area problem with obstacle ).
Moreover, if () has smooth boundary, then

lim Cap,(Q)) = [0Q)*|. (3.1.3)
p—1t b
It is well known that the validity of the Euclidean-like Isoperimetric Inequality (3.1.1)
is equivalent to that of the L!-Sobolev Inequality, that is, (3.1.1) is equivalent to the valid-

ity of
(n—1)/n
(/ Fr/ =) dy) SCSOb/ |V fldu
y M

for any f € C5°(M) and some positive constant Cg,p,. We briefly point out that condition
(3.1.2) can actually be weakened or replaced. We are discussing it in Remark 3.28, after
having discussed the difficulties in removing it. Still, we preferred the above presented
form for the sake of geometric clarity.

This chapter is structured as follows. Section 3.2, after proving basic properties of
(strictly) outward minimising sets, is mostly committed to show the equivalence, in a



120 Chapter 3. On strictly outward minimising hulls and p-capacity

general complete noncompact Riemannian manifold, among the existence of a maximal
volume solution to the least area problem with obstacle, the property of (* to be such
a solution and the existence of an exhausting sequence of strictly outward minimising
sets. This is summarised in Theorem 3.13. Examples of Riemannian manifolds where
these equivalent properties are not satisfied are worked out in Examples 3.8 and 3.9.
The last part of the section precisely recalls the regularity properties of ()*, that were
important also in the previous chapters. Here, these properties are important in order
to apply an exterior approximation result due to [Sch15], see Theorem 3.17 below. In
Section 3.3, we prove the first part of Theorem 3.1, that is the well-posedness of the strictly
outward minimising hull (O* under assumptions (i) or (ii). When dealing with (ii) in
Subsection 3.3.2, we recall the notion of Weak Inverse Mean Curvature Flow, yielding, in
relation with that some insights including a proof of the outward minimising property
of starshaped sets with smooth mean-convex boundary, not necessarily strictly mean-
convex. Finally, in Section 3.4 we infer (3.1.3) under the assumptions of Theorem 3.1.

3.2 The strictly outward minising hull of a set with finite perime-
ter

3.2.1 Preliminaries

The main sources are Maggi’s book [Mag12]. Miranda’s [Mir64] and Caraballo’s com-
prehensive paper [Carll]. Clearly, although these references deal only with the case
M = RR", the notions and results that we recall in this Subsection are adapted with no
effort to a Riemannian ambient (M, ).

Let A C M be an open set. Then, we let P(E, A) denote the De Giorgi’s relative
perimeter of Lebesgue-measurable set E in A. It is defined as

P(E,A) :sup{/diVTd‘u } T €T(A), sup|T| < 1},
E A

where by I'.(A) we denote the class of vector fields with compact support in A.

When A = M, we just talk about the perimeter of E and we denote it by P(E). Given
a set E with finite perimeter it is well known [Mag12, Proposition 12.1] the existence of a
vector-valued Radon measure g satisfying (and actually defined by)

/EdivT — /M (T| dpig)

forany T € I'.(M). Denoting by |ug/| the total variation measure of yig, one actually has
P(E,A) = |ug|(A) for any open set A C R". With the notion of perimeter measure g at
hand, De Giorgi’s reduced boundary 0*E of a set with finite perimeter E can be defined as

* . HE(B(X,T)) . n—l}
J0"E =<{x €su lim ———"""2 exists and belong to 5 .
{ PPEE |50 Tuel (B(x, 1) &
In fact, one has (see [Mag12, Remark 15.3]) supp yg = 0*E.

We define now the measure theoretic interior of a measurable set E as the points of
density one for E, namely

Int(E) = {x eM ‘ lim W =1 } (3.2.1)
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It follows from Lebesgue Differentiation Theorem (see [Mag12, Theorem 5.16] that
|[EAInt(E)| = 0. (3.2.2)

Importantly, a set with finite perimeter E satisfies,

dInt(E) = o°E, (3.2.3)

that is, the topological boundary of the measure theoretic interior of a set with finite
perimeter coincides with the closure of its reduced boundary. We address the reader to
[Car11, Theorem 10] for a proof of this nice property.

3.2.2 Basic properties of outward minimising sets

We recall, according to [HI01], the notion of outward and strictly outward minimising sets.

Definition 3.2 (Outward minimising and strictly outward minimising sets). Let (M, g) be
a complete Riemannian manifold. Let E C M be a bounded set with finite perimeter. We say that
E is outward minimising if for any F C M with E C F we have P(E) < P(F). We say that
E is strictly outward minimising if it is outward minimising and any time P(E) = P(F) for
some F C M with E C F we have |F \ E| = 0.

We observe at once that the notions of outward minimising and strictly outward min-
imising are stable under zero-measure modification. We give a proof of this basic yet
fundamental fact.

Lemma 3.3. Let (M, g) be a complete Riemannian manifold. Let N C M be a null set, that is
IN| = 0. Then, a bounded set E C M with finite perimeter is (strictly) outward minimising if
and only if E U N is (strictly) outward minimising.

Proof. We first show that if E is (strictly) outward minimising then E U N is strictly out-
ward minimising. Let F be a set with finite perimeter such that EU N C F. In particular,
E C F. Then one has, by the invariance of the perimeter under measure zero modifica-
tions and since E is outward minimising

P(EUN) = P(E) < P(F). (3.2.4)

thatis, E U N is outward minimising. Assume now that E is strictly outward minimising,
and assume P(F) = P(E U N). Then equalities hold in (3.2.4), and thus |F \ E| = 0, that
obviously implies |F \ (EUN)| = 0, thatis, E U N is strictly outward minimising.

Assume now that EU N is outward minimising, and let F be a set with finite perimeter
containing E. Then, since E U N is contained in F U N we have

P(E) = P(EUN) < P(FUN) = P(F), (3.2.5)

that is, E is outward minimising. Assume now that E U N is strictly outward minimising,
and assume that P(F) = P(E). Then, (3.2.5) and E U N being strictly outward minimising
imply that [(FUN) \ (EUN)| = 0, that immediately implies |F \ E| = 0. O

It is well known that locally area minimising sets satisfy upper and lower density
estimates. It is then not surprising to realise that outward minimising sets, that can be
thought as one sided minimisers, satisfy upper density estimates. We include a proof,
inspired by that of [Mag12, Theorem 16.14].
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Lemma 3.4. Let (M, g) be a complete Riemannian manifold, and let E C M be an outward
minimising set. Then, there exists ro > 0 such that for any 0 < r < ro and x € 0*E there holds

|[ENB(x,7)]
—mo o <C
|B(x,7)]|

for some constant 0 < C < 1 independent of x

Proof. Consider E¢ = M \ E. Then, for any F C M such that E C F it is immediately seen
from the outward minimising property of E that

P(E) = P(E) < P(F) < P(F°). (3.2.6)

Let x € 9*E and r > 0, and choose F = (E°\ B(x,7))¢ D E. Then, for s > r, we have,
applying (3.2.6)

P(E®,B(x,s)) + P(E°, M\ B(x,s)) = P(E°) < P(F°) = P(F‘,B(x,s)) + P(F°, M\ B(x,s)).

(3.2.7)
Since E¢ \ F¢ € B(x,s), we actually have P(F,R" \ B(x,s)) = P(E‘,R" \ B(x,s)), so we
deduce from (3.2.7), the definition of F and basic set operations for the perimeter (see e.g.
[Mag12, Theorem 16.3])

P(E¢,B(x,s)) < P(F¢,B(x,s)) = P(E°\ B(x,r), B(x,s))
= |Int(E°) N B(x,r)| + P(E°, B(x,s) \ B(x,7)),

that, upon letting s — r*, yields
P(E°,B(x,r)) < |[Int(E°) N B(x,1)|. (3.2.8)
Recalling again from basic set operations for the perimeter that
P(E¢,B(x,r)) + |Int(E°) N B(x,r)| = P(E°N B(x,71)),
we deduce from (3.2.8) the estimate
P(E°NB(x,r)) < 2|Int(E®) N B(x,7)|.

For r small enough, but uniform as x ranges in the compact 9*E, we can apply an Euclidean-
like type inequality to left hand side of the above inequality, leading to

C1(n,r0) < |ES N B(x,7)|"1/" < 2|Int(E°) N B(x, 7)] (3.2.9)

for any r € (0,rp). The constant C;(n,7g) can be seen to approach n|B"| as rp — 07, see
e.g. [BM82, Appendice C]. Define, for 0 < r < ry the function m(r) = |E° N B(x,r)]|.
Applying the coarea formula (see [Mag12, Theorem 13.1 and Remark 13.4]), one gets that
m is an absolutely continuous function satisfying m’(r) = |Int(E®) N B(x,r)| for almost
any r € (0,1p), and thus (3.2.9) gives

Ci(n,r)m(r)"=1/" < 2m () (3.2.10)

for almost any r € (0,7y). Moreover, since x € 9*E = supp ug, we have, by [Magl12,
Proposition 12.19], that m > 0 and tends to 0 as r — 0. Integrating (3.2.10), and taking
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into account that for small r we can approximate |B(x, )| with |B"|#", we then easily get

|EC N B(x,7)|

>
Bl =

for some constant 0 < Cp(n,79) < 1 that approaches 27" as ryp — 07. This immediately
gives

|EN B(x,7)]
—r i < C(n,r),
[B(x,7)|
with 0 < C(n,79) < 1forany 0 < r < rg, as claimed. O

In [Car11, Theorem 6, (i)], the author showed that if a set with finite perimeter satisfies
relaxed density estimates then its measure theoretic interior and exterior are open. We
report (a part of) his argument, in order to clarify that an upper density estimate suffices
to get the openness of the measure theoretic interior.

Lemma 3.5. Let (M, g) be a complete Riemannian manifold. Let E C R" be a set with finite
perimeter, and suppose that for any x € 0*E

lim |[ENB(x,7)|

<do<1 3.2.11
r—0+  |B(x,7)] ( )

uniformly on 0*E. Then Int (E) is open.

Proof. Let y € Int(E). First observe that y ¢ 0*E, since otherwise (3.2.11) would con-
tradict the condition (3.2.1) defining Int(E). We now construct a ball centered at y fully
contained in Int(E). Let d = dist(y, 9*E). By the definition (3.2.1) of Int(E),

|[ENB(y,7)|
[B(y,7)|

for some ' € (0,d). Then we can deduce

>0

[((M\ENB(y,r")|
By, 1")]

since, otherwise, the relative isoperimetric inequality [Mag12, Proposition 12.37] would
yield [0*E N B(y,7")| > 0, in turn resulting in the contradiction dist(y,9*E) < d. Observe
that such inequality clearly holds for small balls also in Riemannian manifolds, and it
can be shown just by performing the computations in a local chart. The above argument
in particular works up to eventually choose a suitable, uniform 4’ smaller than d. By
(3.2.12), for any y € B(y,r’"), we have

=0, (3.2.12)

|[ENB(z,r")| 1
B(z,r")|
for any r” € (0,7' — dist(z,y)). This clearly implies that B(y, ') C Int(E). O

As a direct consequence of (3.2.2), Lemma 3.4 and Lemma 3.5, we obtain the remark-
able property of outward minimising sets to have an open representative.

Proposition 3.6. Let (M, g) be a complete Riemannian manifold. Let E C M be outward min-
imising. Then Int(E) is open.
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3.2.3 Maximal volume solutions to the least area problem with obstacle in
Riemannian manifolds

Let (M, g) be a complete noncompact Riemannian manifold of dimension n > 2. We are
interested in the existence of a bounded open set with finite perimeter E solving the least
area problem with obstacle (), where () C M is a bounded open set with finite perimeter.
We say that E solves the least area problem with obstacle () if it is a bounded set containing
Q) satisfying

P(E) =inf{P(F) | Q C F,Fbounded set with finite perimeter} (3.2.13)

A solution to (3.2.13) could could clearly be non-unique. We can try to select among these
solutions a set E’

|E'| =sup{|E| | E solves the least area problem with obstacle Q}. (3.2.14)

We refer to a bounded set E' with finite perimeter containing (), that solves both (3.2.13)
and (3.2.14) as maximal volume solutions of the least area problem with obstacle ()

Remark 3.7. Observe that bounded solutions to the least area problem with obstacle () are
outward minimising, as well maximal volume solutions are strictly outward minimising.
In particular, outward minimising sets E are characterised by being solutions to the least
area problem with obstacle E itself. Interestingly, it is immediately seen that E is strictly
outward minimising if and only if it is also a maximal volume solution to the least area
problem with obstacle E.

In the Euclidean case, the existence of a maximal volume solution to the least area
problem with obstacle () is an easy consequence of the Direct Method (compare with
[BT84] and [SWZ93]). In a general noncompact Riemannian manifold, minimising se-
quences could fatally be unbounded, as the following examples show.

Example 3.8 (Cuspidal manifolds). Let (M, g) be a complete noncompact Riemannian
manifold whose metric splits as ¢ = dp ® dp + e %ggi1 on M\ B = [1,400) x "1
for some precompact set B C M. Then, the area of d{p < r} decays as e”’, and in partic-
ular enveloping a bounded set Q) with {p < r}, for bigger and bigger r, we see that

P(E) =inf{P(F) | Q C F,Fbounded set with finite perimeter} = 0.

In particular, there cannot exist a solution to the least area problem with obstacle ().
Observe also that (M, g) has finite volume, and thus it does not support a L!-Euclidean-
like Sobolev inequality by [PST14, Proposition 3.1] nor the Ricci curvature is nonnegative,
and thus coherently the assumptions of Theorem 3.1 are not satisfied.

Example 3.9 (Manifolds with a cylindrical end). Let (M, g) be a complete noncompact
Riemannian manifold whose metric splits as § = dp ® dp + gg-1 on M\ B = [1, +00) X
§"~1 for some precompact set B C M. Let Q) be any bounded set with finite perimeter
containing B. Then, any set of the form BU {p < r} containing () solves the least area
problem with obstacle (), since the sets {p = r} are even area minimising, but since
o = m2}l = I{p = n}l and [BU{p < n}| = [BU{p < n}|+ (ro—n) for any
rp > 11 > 1, we see at once that

sup{|E| | E solves the least area problem with obstacle ()} = +oo.

In particular, it cannot exist a maximal volume solution to the least area problem with
obstacle (). Observe that (M, g) has linear volume growth, and therefore by [PST14,
Proposition 3.1] the L!-Euclidean-like Sobolev inequality cannot hold nor (3.1.2) holds.
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In the following basic result, we isolate as a necessary and sufficient condition for ob-
taining a maximal volume solution to the least area problem with obstacle in a complete
noncompact Riemannian manifold the existence of an exhausting sequence of bounded
strictly outward minimising sets. Observe that, in R", such a sequence is trivially given
by balls.

Theorem 3.10 (Existence of maximal volume solutions to the least area problem in Rie-
mannian manifolds-abstract criterion). Let (M, g) be a noncompact Riemannian manifold.
Let O € M. Then, for any R > 0 there exists a (strictly) outward minimising set Sg with
B(O,R) € Sg if and only if there exists a maximal volume solution to the least area problem with
obstacle Q) for any bounded () C M with finite perimeter.

Proof. One direction is almost trivial. Indeed if for any bounded () C M with finite
perimeter there exists a maximal volume solution to the least area problem with obstacle
O, then, taking a sequence of geodesic balls B(O, R;) with R; — co and considering the
bounded maximal volume solution to the least area problem with obstacle B(O, R;) yields
the desired sequence of strictly outward minimising sets (compare with Remark 3.7).
Observe that B(O, R;) can be assumed to be of finite perimeter substantially by coarea
formula, and that maximal volume solutions are obviously strictly outward minimising.
Let O C M be a bounded set with finite perimeter. Let {F; }jci be a minimising sequence
for the least area problem with obstacle (). Define

m = inf{P(F) | Q C F,Fbounded set with finite perimeter}.

Then, for any € > 0, there exists j. € IN such that
m < P(Fj) <m+e

for any j > j.. Let S be an outward minimising set containing (), that exists by assump-
tion. By a standard set-theoretical property of the perimeter (see e.g. [Magl2, Lemma
12.22]), we have

P(F,NS) < P(F;)) +P(S) — P(F;US).

Since S is outward minimising, we have P(S) < P(F;), and then we deduce that
P(F;nS) < P(F). (3.2.15)
In particular, since QO C (F; N S) we have
m< P(FNS)<m+e

forany j > je, thatis, the sets F; N S form an equibounded minimising sequence. Then, the
Compactness Theorem [Mag12, Theorem 12.26] yields a bounded set of finite perimeter
F such that xrns — xr in L', possibly along a subsequence. Moreover, by the lower
semicontinuity of the perimeter [Mag12, Proposition 12.15], the set F is a minimiser for
the minimisation problem (3.2.13). We are left to show that we can modify F in order
to obtain a set E containing () with P(E) = P(F). Actually, it suffices to define E =
FU(Q\F). Clearly ) C E. Moreover, since ) C F;N S for any j, and xpns — Xr in
L!, we have |Q\ F| = 0. Since De Giorgi’s perimeter is defined up to null sets, we have
P(E) = P(F).

Let now {E;};en be a sequence of bounded sets with finite perimeter containing ()
with

|Ej| — sup{|E| | E solves the least area problem with obstacle ()} (3.2.16)
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as j — +oo. In particular, P(E;) = m for any j. Let S be a bounded strictly outward
minimising set containing Q). Then, as in (3.2.15), we have P(E;NS) < P(E;). We thus
have

Since S is strictly outward minimising, we deduce that |E; \ (E; N'S)| = 0 for any j. This
implies |E;| = |E; N S| for any j, and then we can consider E; N S in place of E; in (3.2.16).
The Compactness Theorem for sets with finite perimeter then yields a bounded set E’
realising the supremum in (3.2.16). Up to a zero-measure modification as before, we can
also suppose () C E’. By the lower semicontinuity of the perimeter we also have

m =liminf P(E;NS) > P(E") > m.

We showed that P(E’) = m and its volume realises the supremum in (3.2.16), that is, E’ is
a maximal volume solution to the least area problem with obstacle (2. O

3.2.4 The strictly outward minimising hull of a set with finite perimeter

Once we know that maximal volume solutions to the least area problem exist, we are
interested in a specific representative, that will naturally arise as level set of the Weak
Inverse Mean Curvature Flow. We thus define the strictly outward minimising hull of a set
with finite perimeter.

Definition 3.11 (Strictly outward minimising hull). Let (3 C M be a bounded open set with
finite perimeter. We define the strictly outward minimising hull of () as

Q" = Int (1 Int(E)|, (3.2.17)
EESOM (Q)

where
SOM (Q)) = {E C M |Q C Eand E is strictly outward minimising }.

The following is the main result of this section.

Theorem 3.12. Let (M, g) be a complete noncompact Riemannian manifold admitting an ex-
hausting sequence of bounded strictly outward minimising sets. Let () C M be a bounded set
with finite perimeter. Then, (Y* is an open, bounded, maximal volume solution to the least area
problem with obstacle ). In particular () is strictly outward minimising.

Proof. We split the proof in several steps.

Step 1. We prove that that finite intersections of strictly outward minimising sets
are strictly outward minimising. It clearly suffices to prove that the intersection of two
strictly outward minimising sets E; and E; is outward minimising. We do it by first
showing that it is outward minimising. This preliminary passage is carried out in the
proof of [BT84, Proposition 1.3], but we include the argument, since it will be important
also in the sequel. Let F C M such that E; N E; C F, and define L = F \ (E; N Ey). Then,
applying the already recalled well known property holding for sets with finite perimeter

P(FNG)+ P(FUG) < P(F) + P(G)

to the couples of sets F = (EyNE;)ULand G = E;, F = (E;NEy) U(LNE;) and G = Ey,
give respectively

P((El NE)U(LN El)) +P(EjUL) < P((E1 NE)U L) + P(Ey) (3.2.18)
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and
P(E;NEy) + P((E1 AL)U Ez) < P((E1 NE)U(LN E1)> + P(Ea). (3.2.19)

Combining (3.2.19) with (3.2.18) we obtain at once the following chain of inequalities

P(EiNE) < P((ExNE) U(LNE)) + P(E;) — P((EiNL)UE,)
< P((E1NE2) U (LNE))
(3.2.20)
gP((ElﬂEZ)U ) P(E;) — P(E;UL)
gP((ElﬂEz)U> P(F)

where the second and fourth inequality are due to the property of E; and E; to be outward
minimising. Assume now that that P(E; N E;) = P(F) for some F O E; N Ey. Then, the
second and the last inequality in (3.2.20) become equalities, yielding respectively
P(Ey) = P((E1 NL)U E2> (3.2.21)
P(E1)

P(E;UL). (3.2.22)
Since E; is strictly outward minimising, we can deduce from (3.2.22) that
|(EtUL)\ Eq1| =|L\ E4] = 0. (3.2.23)

On the other hand, by (3.2.21) and by E; being strictly outward minimising we obtain
‘ (El NL)U Ez) \ E2’ =0. (3.2.24)

By the definition of L it is easily seen that the sets (E; N L) U E; and E; are disjoint, and
then (3.2.24) actually reads
|[E;NL|=0. (3.2.25)

Combining (3.2.25) with (3.2.23) we obtain
[F\ (E1NEy)| = |L] = [L\ B[+ [LNEy| =0,

that is, Eq N E; is strictly outward minimising, as claimed.

Step 2. We prove that )* is strictly outward minimising. Let {E; },cn be a sequence of
set realising ()* as a countable intersection, that is

O =Int <ﬁ Int (Ei)>
i=1

By (3.2.2) and Lemma 3.3, it suffices to show that O = (N2, Int (E;) is strictly outward
minimising. First, [BT84, Proposition 1.3] ensures that ()%, is outward minimising. As-
sume then that P(Q)) = P(F) for some F C M containing Q. Clearly, F is outward
minimising. Let F’ be a maximal volume solution to the least area problem with obstacle
F, that exists by Theorem 3.10. Then F’ is strictly outward minimising (compare with
Remark 3.7) and P(F’) = P(F), being F outward minimising. For ease of notation, as-
sume E; = Int(E;) for any i € IN. By (3.2.2) and Lemma 3.3, this will result in no loss of

generality. Let A; = ﬂ;{zl Ey. Since F' is strictly outward minimising, by Step 1 Ajn F’
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is strictly outward minimising. In particular, since Aj;1 N F' C A;jNF' C F', we have
P(Aj4y1 NF') < P(AjNF') < P(F'). Then, by the lower semicontinuity of the perimeter,
the definition of Q) and the just observed monotonicity of P(A; N F) as j increases we get

P(F') = P(Q) < liminf P(A;NF') < P(A¢NF') < P(F')

]—00

for any k € IN, where the last inequality is again due to the fact that Aj is outward
minimising. In particular P(A; N F’) = P(F’) for any k. Since Ay N F’ is in fact strictly
outward minimising, we deduce that |[F"\ (Ax N F')| = |F"\ Ax| = 0 for any k. Since we
have |A; \ Q) — 0 as k — oo, we conclude that [F/ \ Q*| = limy 0| F" \ Ag| = 0. Smce
F C F' this trivially implies |F \ Q)| = 0. We have shown that ), and consequently Q*, i
strictly outward minimising, as claimed.

Step 3. We show that ()* is a maximal volume solution to the least area problem with
obstacle Q). Let E’ be any solution to (3.2.14). We want to show that P(Q)*) = P(E) and
|QY*| = |E'|. Since O)* is an admissible competitor for (3.2.13), we have

P(E') < P(QY). (3.2.26)

Clearly E' is strictly outward minimising. Letting Q be defined as in Step 2, we thus get
by definition () C Int(E’), and thus, since () is outward minimising and differs from Q*
by a set of measure zero, we get also

P(Q") = P(Q) < P(E),

that, combined with (3.2.26), implies P(Q)*) = P(E’). The set ()" becomes in particular a
valid competitor in (3.2.14), giving immediately

Q) = |Q*| < |E'| = |Int(E)]. (3.2.27)

However, since P(Q)) = P(Int(E’)), and Q C Int(E’), the strict inequality sign in (3.2.27)
would contradict the fact that Q)" is strictly outward minimising. It follows that |Q)*| =
|E’| proving the claim.

Step 4. We are left to observe that ()* is open. Since ()* is outward minimising by Step
2, and by definition Int(Q)*) = Q)*, this follows at once from Proposition 3.6. O

Let us summarise Theorem 3.10 and Theorem 3.12 in the following general statement.

Theorem 3.13. Let (M, g) be a complete noncompact Riemannian manifold. Then, the following
are equivalent.

(i) (M, g) admits an exhausting sequence of bounded strictly outward minimising sets.

(ii) For any bounded () C M with finite perimeter, there exists a bounded maximal volume
solution to the least area problem with obstacle Q).

(iii) Let Q) C M be a bounded set with finite perimeter. Then, (3* is an open, bounded, maximal
volume solution to the least area problem with obstacle (). In particular QO is strictly
outward minimising.

Regularity and approximations of the strictly outward minimising hull

We recall a fundamental regularity result for solutions of the least area problem with
obstacle, under an additional ¥ assumption on the regularity on 9Q). This is the main
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result of [SZW91].According to the comprehensive [HI01, Theorem 1.3], it applies also to
general Riemannian ambient settings. By Theorem 3.13, we can apply it directly to ()*.

Theorem 3.14 (Regularity of the strictly outward minimising hull). Let (M, g) be a com-
plete noncompact Riemannian manifold admitting an exhausting sequence of bounded strictly
outward minimising sets. Let O C M be a bounded set with ¢* boundary. Then

(i) 0QY* is a €Y' hypersurface in a neighbourhood of any point in 9Q0* N QL.

(ii) 0QY* is area minimising in 0QY* \ 9Q. In particular there exists a singular set Sing C
00" \ 0Q) with Hausdorff dimension at most n — 8 such that 0Q0* \ 9Q) is a real analytic
hypersurface in a neighbourhood of any point in (0Q)* \ 9Q)) \ Sing.

Remark 3.15. In [SZW91], the authors in fact consider a representative E satisfying 0E =
0*E. However, since, by our definition Int(QQ*) = QF, this condition is automatically
satisfied due to (3.2.3).

From now on we are now going to deal just with set with sets with 42 boundary. In
fact, for simplicity, we will always assume 02 to be a smooth hypersurface.

Let us record, for future references, two direct and easy consequences of the above
regularity result.

Remark 3.16. Theorem 3.14 implies [0*()*| = [0Q)*|. In particular, taking into account
Remark 3.7, we can characterise outward minimising sets as those satisfying

Q| = [2Q"]. (3.2.28)

Observe that, by Theorem 3.13, we always have [0Q)*| < [0Q)|. Checking condition
(3.2.28) then amounts to check that |[9Q)| < [9QY*|.

Moreover, let us also point out that, by a very standard variational argument, the
weak mean curvature (see (1.7.6)) of dQ)* is nonnegative.

We finally state the following nice one sided approximation result due to Schmidt [Sch15],
that we are going to use in the p-capacitary approximation of |[9Q)*|. It asserts that
a bounded set with finite perimeter admit a one sided approximation in perimeter by
bounded sets with smooth boundary if P(Q)) = |0Q}|. This is clearly the case for O, due
to Theorem 3.14. The arguments being purely local, Schmidt’s result applies straight-
forwardly in Riemannian manifolds. Observe also that although in [Sch15] just interior
approximation is worked out, an analogous exterior approximation obviously follows as
well.

Theorem 3.17 (Exterior approximation of Q*). Let (M, g) be a complete noncompact Rieman-
nian manifold admitting an exhausting sequence of bounded strictly outward minimising sets. Let
Q) C M be an open bounded set with smooth boundary, and Q)" is strictly outward minimising
hull. Then, there exists a sequence of bounded sets { QY }ren with smooth boundary such that

Q* C Oy, ’an| — |80*]

3.3 Families of manifolds admitting the strictly outward min-
imising hull
Here, we show that in the assumptions of Theorem 3.1 the notion of strictly outward

minimising hull recalled in Definition 3.11 gives a well posed open bounded maximal
volume solution to the least area problem with obstacle.
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3.3.1 Euclidean-like isoperimetric inequality and strictly outward minimis-
ing hull

The following result affirms that a maximal volume solution to the least area problem
with obstacle exists on any Riemannian manifold where an Euclidean-like Isoperimetric
Inequality is available, that is, satisfying (3.1.1) for any bounded (2 C M with smooth
boundary. In particular, by Theorem 3.10 any bounded Q) C M with finite perimeter ad-
mits a strictly outward minimising hull. We express our gratitude to Prof. G.P. Leonardi
for having outlined the core of the following argument.

Proposition 3.18. Let (M, §) be a complete noncompact Riemannian manifold satisfying admit-
ting a constant Ciso > 0 such that

Q) |1/ (n=1)

e = Cu @3.1)
for any bounded set Q) with smooth boundary. Then, for any bounded (3 C M with finite perime-
ter there exists a maximal volume solution to the least area problem with obstacle ().

Proof. The main goal is showing that the Isoperimetric Inequality (3.3.1) forces a min-
imising sequence for the least area problem to stay uniformly inside a ball, and then
to conclude by compactness and lower semicontinuity as in the proof of Theorem 3.10.
Let then F; be a minimising sequence for the least area problem with obstacle made of
bounded sets with finite perimeter. Clearly, we can suppose P(F;) < P(Q)), and thus the
well known local compactness-lower semicontinuity properties of the perimeter (namely,
the combination of [Mag12, Corollary 12.17] with [Mag12, Proposition 12.15]) yield a set
F such that a subsequence (relabeled as usual) of the F;’s locally converges in L! to F and

P(F) < liminf P(F;),
J—=+o
so that F realises the infimum in the least area problem with obstacle (). We claim that, up
to null sets, F C B(O, r) for some r > 0. Assume then by contradiction |F \ B(O,r;)| > 0
for some sequence r; — +00 as r; — +oco. In particular, this implies that |[F \ B(O,r)| > 0
for any r big enough. The assumed Isoperimetric Inequality (clearly in force, by approx-
imation, for any set with finite perimeter) yields

n—1
n

C.” |F\B(O,R)|"* < P(F\B(O,r)) = P(F,B(O,r)") + [dB(O,r) N E| (3.32)

180
for any r such that 0B(O, r) has a (n — 1)-negligible singular set. In particular, (3.3.2)
holds for almost any r > 0. In the above inequality, as in the following arguments, we are
possibly considering a representative for F. Observe that by coarea formula the function
m(r) = |F \ B(O,r)| is absolutely continuous, with derivative m’(r) = —|dB(O,r) N F|
for almost any r > 0. We claim that

P(F,B(O,r)) < |aB(O,7) N F|, (3.3.3)

in order to deduce from (3.3.2) a differential inequality leading in turn to a contradiction.
This is accomplished through an argument similar to the classic one used in the proof of
Lemma 3.4, relying on the minimising property of F. Let L = F\ B(O,7)", and observe
that for R big enough we have () C L. By the minimising property of F, we thus get, for
s<r

Cc Cc

P(F,B(O,s)°) + P(F,B(O,s)) = P(F) < P(L) = P(L,B(O,s)) + P(L, B(O, s)).
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Since clearly P(L, B(O,s)) = P(F,B(O,s)), we deduce

P(F,B(O,s)") < P(L,B(O,s)"). (3.3.4)

On the other hand, observe that, as usual up to representatives

c JE—

P(L,B(O,s)) = P(E, B(O,r) \ B(O,s)) +|9B(O,R) N F|.

Letting s — 7, the first term in the right hand side above vanishes and thus plugging
this information into (3.3.4) leaves us with the claimed (3.3.3). Inserting (3.3.3) into (3.3.2)
yields, as explained above, the differential inequality

n—1

Crom(r) = < —=2m'(r),

holding true for almost any r big enough, with m(r) = |E \ B(O,r)|. Integrating it, we
get
1 (n—1)/n

ECiSO (rp—r1) <n [m(rl)% — m(rz)ﬂ

for any r, > rq big enough. Letting rp, — +o0 the right hand side converges to nm(r;)
since the other summand vanishes by the property of E to have finite volume, while the
left hand side cleary diverges. This contradiction arose from |E \ B(O, ;)| > 0 for some
diverging sequence of r}s, and thus we proved that there exists a ball B(O, R) containing,
up to a null set, the solution F to the least area problem with obstacle ().

1/n
7

It remains to show that that we can find a bounded maximal volume solution to
the least area problem. To see this, let E; be a maximising (for the volume) sequence
of bounded solutions to the least area problem with obstacle (). Then, by the compact-
ness property used in the first part of this proof, such a sequence converges locally in L!
to a set with finite perimeter E, that by lower semicontinuity is still a possibly unbounded
solution to the least area problem with obstacle (). The same argument as above involv-
ing the Isoperimetric Inequality then shows that, up a to null sets, E is contained in some
ball, completing the proof. O

For future reference, let us state the following immediate Corollary of Proposition
3.18 and Theorem 3.13.

Corollary 3.19. Let (M, g) be a complete noncompact Riemannian manifold satisfying the as-
sumption (i) in the statement of Theorem 3.1. Then, for any bounded 3 C M with finite perime-
ter, the strictly outward minimising hull (Y* is an open bounded maximal volume solution to the
least area problem with obstacle ().

3.3.2 Weak Inverse Mean Curvature Flow and strictly outward minimising
hulls

In this Subsection we show that the existence of a proper solution to the Weak Inverse
Mean Curvature Flow naturally yields an exhausting sequence of strictly outward min-
imising sets, and that the strictly outward minimising hull of a bounded set () with
smooth boundary is simply given by the interior of the the zero-level set of such a solu-
tion. This is substantially the content of [HI01, Lemma 1.4], but here we want to empha-
sise and fully detail the relation between the existence of the strictly outward minimising
hull and that of the Weak Inverse Mean Curvature Flow.
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Let us recall the notion of Inverse Mean Curvature Flow, as well as its weak for-
mulation introduced by Huisken-Ilmanen in [HIO1]. Let (M, g) be a complete noncom-
pact Riemannian manifold, and let (3 C M be a bounded subset with smooth boundary
given by the immersion Fy : dQ) — R". Assume in addition that the mean curvature
of Q) is strictly positive. Then, we say that the hypersurfaces {00 },c[o,r), for some
T > 0 are evolving by IMCF with initial datum () if they are given by immersions
F(t,-) : 90 — R" satisfying

0 1
—F(t,x) = =(t, x)v(t, x), F(0,x) = Fo(x) (3.3.5)
ot H
where v is the exterior unit normal to the hypersurface d(); and H is its related mean
curvature. It is well known that the IMCF of a strictly mean-convex hypersurface enjoys
existence in some time interval [0, T), see e.g. the comprehensive [HP99, Theorem 3.1].

The weak formulation of the IMCF actually regards the degenerate elliptic problem
solved by the function whose level sets evolve by inverse mean curvature. Namely, look-
ing at the evolving hypersurfaces 0(); as level sets {w = t} of a smooth function, it is
easily seen that w must satisfy the equation

) Dw

in the region foliated by the evolving hypersurfaces. In particular, if there exists a smooth
solution to (3.3.5) made of embedded closed hypersurfaces, then it is well defined the
smooth function w with nonvanishing gradient solving (3.3.6).

A weak solution to (3.3.6) starting from (), that we will call Weak Inverse Mean Cur-
vature Flow starting from ), will be a function w € Lip, (M) satisfying the following
conditions.

(i) For every v € Lip, (M) with {w # v} € M\ Q) and any compact set K C M\ Q
containing {w # v},
Jo(w) < Jo(0)

where
J5(0) = [ Dol + olDw] .
K

(ii) The set Q) is the O-sublevel set of w, that is

Q= {w < 0}.

Remark 3.20 (Properness of the Weak IMCF). We say that the Weak Inverse Mean Curva-
ture Flow is proper if w is a proper function. In the rest of this note, we will always con-
sider Weak Inverse Mean Curvature Flows that are proper. Observe that if w(x) — +o0
as d(O,x) — +oo, then w is proper. The validity of this condition is assumed as defini-
tion of properness in [KIN09]. However, there may exist a proper Weak IMCF w such that
w /+ 400 at infinity (see Example 3.29 below).

It is definitively convenient to rephrase (i) in the definition of Weak Inverse Mean
Curvature Flow in terms of the level sets of the solution.
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(i-bis) For any t > 0, the sets {w < t} satisfies
Jo({w < t}) < I (F)

for any F C M with locally finite perimeter satisfying {w < t}AF € M\ Q) and any
compact K C M\ Q) containing {w < t}AF, where

IK(F) = |0°F N K| +/ IDw| dy.
FNK

We refer the reader to [HIO1, Lemma 1.1 and Lemma 2.2] and the discussion thereafter for
the proof of the equivalence between conditions (i) and (i-bis). One can then deduce from
the fundamental Minimizing Hull Property Lemma 1.4 in [HI01] that the sets Int{w < t}
are strictly outward minimising. In particular, the condition of having an exhausting
sequence of strictly outward minimising sets is fulfilled every time there exists the Weak
IMCE, and the analysis of the preceding section allows then to define the strictly outward
minimising hull of Q). It finally turns out that O* = Int{w < 0}. Let us carefully prove
this fact, for the reader’s sake.

Proposition 3.21. Let (M, g) be a complete noncompact Riemannian manifold. Assume that for
any bounded () C M with smooth boundary there exists a proper weak IMCF w starting from (),
then the strictly outward minimising hull O)* is an open bounded maximal volume solution to the
least area problem with obstacle (). Moreover, Int{w < 0} = Q*.

Proof. Let w be the Weak IMCF emanating from the bounded open set with smooth
boundary Q. By [HIO1, Lemma 1, 4, (ii)], the set Int{w < 0} is bounded and strictly
outward minimising. In particular, if w exists for any such (), taking an exhausting se-
quence of bounded open sets with smooth boundary yields an exhausting sequence of
bounded strictly outward minimising sets, that allows us to use Theorem 3.13 to show
that (O defined in Definition 3.11 is an open bounded maximal volume solution to the
least area problem with obstacle Q). By Proposition 3.6, the set Int{w < 0} is also open. By
definition, we have Q* C Int{w < 0}. Then, by properties (i-bis) and (ii) in the definition
of the Weak IMCEF recalled above, we have, up to a suitable choice of K,

P({w <0}) + / Dw|du < P(QY").
Int{w<0}\Q

In particular the set Int{w < 0} contains () and satisfies P(Int{w < 0}) = P({w < 0}) <
P(Q)*), where we used (3.2.2). This implies in fact that P(Int{w < 0}) = P(Q*), since by
Theorem 3.13 the set ()* solves the least area problem with obstacle (). Since by the same
result )" is also strictly outward minimising, we deduce in turn |(Int{w < 0}) \ Q*| = 0.
Since, by Theorem 3.14, the volume measure of d()* is zero, we also have that the open set
(Int{w < 0}) \ O* is null, but by openness this is possible only if Int{w < 0} = Q*. O

In [MRS19], the authors showed that under the assumptions of (ii) in Theorem 3.1,
any bounded set with smooth boundary can be evolved through a proper weak solution
to the Inverse Mean Curvature Flow. In particular from this fact and Proposition 3.21 we
get that under these assumptions ()* satisfies the desired properties.

Corollary 3.22. Let (M, g) be a complete noncompact Riemannian manifold satisfying the as-
sumptions of (ii) in Theorem 3.1. Then, for any open bounded Q) with smooth boundary, the set
O)* is an open bounded maximal volume solution to least area problem with obstacle C).
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Other aspects of strictly outward minimising sets and IMCF

Here, we observe that a smooth solution to the Inverse Mean Curvature Flow of a bounded
open set () contained in a complete Riemannian manifolds never completely leaves ()%,
if the latter is an open bounded maximal volume solution to the least area problem with
obstacle (). In particular, this holds under the assumption of Theorem 3.1. This phe-
nomenon is substantially a direct corollary of the outward minimising property of the
hypersurfaces evolving by IMCEF, that was observed in [HI01, Smooth Flow Lemma 2.3].
We add a proof of this fact, because it implies, together with the long time existence
theory for strictly starshaped sets with smooth and strictly mean-convex boundary, that
the latters are strictly outward minimising. A simple approximation argument involving
the Mean Curvature Flow will also yield that any mean-convex strictly starshaped set is
outward minimising.

Proposition 3.23 (No Escape from Q). Let (M, g) be a complete noncompact Riemannian
manifold satisfying one of the equivalent conditions in Theorem 3.13. Then, for (O C M a bounded
open set with smooth boundary, let {0 }c(o.1) be evolving by IMCF with initial datum 0Q).
Then, if QO € Q for some t € (0,T], then Q) is strictly outward minimising and we have
Q=0

Proof. Let w : Qr — R such that {w = t} = 9}, so that w classically satisfies the level
set equation (3.3.6). Then

Dw
< — 1 -
0< / |Dw| du / div <|Dw\> du

0\Q o\Q
Dw Dw | Dw (3.3.7)
-/ <er| ”a*“*>d“‘/<mw\ uawr>d”
00)
< |aQ*| — [2Q) <0,

0*()*

where in the second equality vy« is the measure theoretic unit normal to the reduced
boundary 9*()* and in the last inequality we used the Divergence Theorem for sets of
finite perimeter coupled with [0Q)*| = [0*(}*|. In particular, (3.3.7) implies that |Q* \
Q| = 0. By openness, that follows from (3.6), this implies that QO = Q* and in particular
it is strictly outward minimising. O

The celebrated result of Gerhardt [Ger90] and Urbas [Urb90], asserting that strictly
starshaped shaped sets of R” with smooth and strictly mean-convex boundary admits
an immortal solution to their Inverse Mean Curvature Flow immediately combines with
Proposition 3.23 to show that these sets are in fact strictly outward minimising. Let us re-
call that in IR a bounded set (2 with smooth boundary is strictly starshaped with respect
to some point xg € Q) if and only

(x —xo|v) >0
for any x € 0Q), where v is the outward unit normal to the boundary of Q.

Corollary 3.24. Let 3 C R" be a bounded strictly starshaped set with smooth strictly mean-
convex boundary. Then, ) is strictly outward minimising.

A simple approximation argument based on the Mean Curvature Flow, that we actu-
ally already used in the proof of the Isoperimetric Inequality in Chapter 1, yields that the
strict mean-convexity can be relaxed to mean-convexity, that is, the mean curvature H of
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dQ) is allowed to satisfy H = 0 on some point of 0Q2. However, in this case, we just show
that ) is just outward minimising.

Proposition 3.25 (Starshaped mean-convex sets are outward minimising). Let () C IR" be
a strictly starshaped bounded open set with smooth mean-convex boundary. Then ) is outward
minimising.

Proof. Let Fy : 02 — R" be the immersion of dQ) in R". Evolve this hypersurface by Mean
Curvature Flow defining time dependent immersions F : [0,6) x dQ) — R satisfying

aai(s,x) = —H(F(s,x)) v(s, x), F(0,x) = Fy(x), (3.3.8)
where v is the exterior unit normal to the hypersurface d()s given by the immersion
F(s,-) : 00 — R", and H is its related mean curvature. The standard short-time ex-
istence theory for geometric evolution equations (see e.g. [HH’99, Theorem 3.1]) ensures
the existence of a & > 0 such that a solution F to (3.3.8) is well-defined. In other words, we
have defined a sequence of bounded open sets {Q)s};c[g,5) With smooth boundary evolv-
ing by Mean Curvature Flow (3.3.8). It is well known (see e.g. [HP99, Theorem 3.2]) that
the mean curvature of these boundaries evolves by

IH=aAH +H|h[?,

ds

where by h we denote the second fundamental form that, as the other quantities appear-
ing in the equation above, is to be understood with respect to the evolving metric on 9();.
In particular, the standard Maximum Principle for parabolic equations implies that the
mean curvature of 9Q)s for s € (0,9) is strictly positive. Since, by the smoothness of the
flow, the sets () are still strictly starshaped for small s, we can conclude by Corollary
3.24 that these approximating sets (), are strictly outward minimising. Observe now that
since the mean curvature H of the initial datum 02 is nonnegative, the flow (3.3.8) is ac-
tually a shrinking flow, and thus (s C (O C *. Then, by the minimising property of ()
we have [0Q);| < |0Q)*|, that, upon letting s — 07, implies [0Q)] < |0Q)*|. This means, by
Remark 3.16, that ) is outward minimising. O

We conclude by pointing out that in literature there are many generalisations of Gerhardt-
Urbas results in non-flat ambient manifolds, for a suitable notion of starshapedness. We
mention in particular the work of Brendle-Hung-Wang [BHW16] that covers a consider-
able variety of warped product ambient manifolds and, outside rotationally symmetric
ambients, the work of Pipoli [Pip16] in the Complex Hyperbolic Space. It is easy to see
that, thanks to these results, the above argument shows that the theses of Corollary 3.24
and Proposition 3.25 hold in these ambient manifolds too.

3.4 Convergence of p-capacities to [0Q)*|

Aim of this section is to show that in the relevant classes of manifolds satisfying the
assumptions of Theorem 3.1 we can recover the value of |0Q)*| as limit for p — 17 of the
p-capacity of dQ), thus completing the proof of the latter Theorem. Before doing so, we
recall some notation and the basic existence result of p-capacitary potentials.
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3.4.1 p-nonparabolicity and p-capacitary potentials

Let (M, g) be a complete noncompact Riemannian manifold, and let p > 1. We define the
variational p-capacity of a bounded set with smooth boundary () C M as

Cap,(@) = int{ [ [DfPdn | £ = xor f € GRY}. (41

Letnow p > 1. Then (M, g) is said to be p-nonparabolic if there exists a positive p-Green’s
function G : (M x M) \ Diag(M) — R, that is, satisfying

/ (IDG(0,)["?DG,(0,) | Dg) dp = 9(0) (3.4.2)
M

forany ¢ € CZ(M). Relation (3.4.2) is the weak formulation of the equation —A,G(O, -) =
d0, where 6§ is the Dirac delta centered at O. Moreover, when referring to the p-Green’s
function of a p-nonparabolic manifold we mean the minimal one.

One can show that if M is p-nonparabolic and G, — 0 at the infinity of any end then,
for any open bounded (2 C M with smooth boundary there exists a unique weak solution
u, € W (M\ Q) to

Apu=0 in M\Q,
u=1 on 0Q, (3.4.3)
{ u(x) -0 as d(0O,x) = oo,

where we can suppose O € (), generalising the correspondent existence theorem for har-
monic functions on 2-nonparabolic manifolds Theorem 1.14 that we proved in Chapter 1.
Moreover, the integral of [Du,|” on M \ Q) realises the p-capacity. Since a complete and
self-contained proof of this general result does not seem be easy to find in literature, we
included a proof in Appendix B. Here, we just note that the self-contained argument used
in Theorem 1.14, cannot evidently be directly exported to our case. Instead, an adapta-
tion of the argument used for [CS03b] together with the deep %!*-estimates holding true
up to the boundary of [Lie88] work also in the general p-nonparabolic case.

Theorem 3.26. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold. Let
Q) C M be an open bounded set with smooth boundary, and let O € M. Assume also that the p-
Green'’s function G, satisfies G, (O, x) — 0as d(O, x) — oo. Then, there exists a weak solution
up to (3.4.3). Moreover, it holds

p _

/ |Du|P du = Capp(Q). (3.4.4)
M\O

Remark 3.27. It is worth pointing out that, by [Hol99], the above general result fully de-

scribes the nonnegative Ricci curvature case in terms of growth of the volume of geodesic
balls. Indeed, we know that if (M, ) has nonnegative Ricci curvature and

+o00 ¢ 1/(p-1)
/1 <\B(O,t)|> dt < 400 (3.4.5)

for any O € M, then [Hol99, Proposition 5.10] gives the p-nonparabolicity of (M, g), and
the decay estimate for the positive p-Green’s function G, allows to conclude that G, — 0
at infinity. This is observed in [Bia+18, Corollary 2.6].
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On the other hand, if the integral in (3.4.5) diverges, by [Hol99, Proposition 1.7] (M, g)
is p-parabolic (actually regardless of curvature conditions), this in particular implies that
Capp(Q) = 0 (see e.g. [Hol99, (1.5)]) for any bounded (2 C M with smooth boundary
and in particular the thesis of Theorem 3.26 cannot hold true.

We are finally in position to complete the proof of Theorem 3.1. Namely, we are
going to show that under the assumptions of this theorem the variational p-capacity of
() approximates the area of ()*. In the most important and original step in the proof
(namely, Step 3 below), the arguments we use are different depending on the validity
of assumption (i) or (ii) in Theorem 3.1. In presence of an Euclidean-like Isoperimetric
Inequality, an argument inspired by [Xu96] allows to show that

Cap,(Q) < Gy Capp(Q)/

for some constant C,, ,, fulfilling C,, = lasp — 1.

On the other hand, if (M, g) is a manifold with nonnegative Ricci curvature satisfying
the superlinear uniform volume growth condition, we are still able to prove (3.1.3) by
exploiting a decay estimate of the p-Green’s function of (M, g) with an explicit depen-
dence on p. This estimate originated in [Hol99, Proposition 5.7], where it was proved for
any point on the boundary of an end, and it has been applied in [MRS19] together with
the assumed (3.1.2) to obtain an analogous inequality holding true on any point outside
some compact set (see [MRS19, Theorem 3.8]). In this regard, we observe that being able
to work out Holopainen’s inequality without the restriction of lying in the boundary of
an end would allow to relax the assumption (3.1.2) in [MRS19], and consequently in the
present theory, to

+o0 t
——dt < 400, 34.6
/1 1B(0, 1)) (3.46)

that is, roughly speaking, a strictly superlinear volume growth assumption.
Remark 3.28. We point out that in [MRS19] the authors actually assumed

IB(O,1)] £\?
o =< () 47

for any t > s > 0 and some constant C > 0 to provide the inequality described above. In
turn, (3.4.7), that is implied by (3.1.2), is used to invoke the technical [Min09b, Proposi-
tion 2.8], allowing to control that the size of the bounded components of the complement
of M\ B(O, R) for big R > 0 are not too big. In fact, the desired decay estimate on the
p-Green’s function, and in turn, the validity of Theorem 3.1 is ensured on any Rieman-
nian manifold with nonnegative Ricci curvature satisfying (3.4.6) such that for any R big
enough M \ B(O, R) does not have bounded components.

Proof of Theorem 3.1. Let (M, g) be a complete noncompact Riemannian manifold satis-
fying the lower bound (1.2.19) on the Ricci curvature. Then, if (i) or (ii) hold, then by
Corollary 3.19 and Corollary 3.22 respectively, for any bounded () with finite perimeter
the strictly outward minimising hull (O* is an open bounded maximal volume solution
to the least area problem with obstacle ().

We aim at proving that

|00Y*| < Cap,(Q2) < limingapp(Q) < limsup Capp(Q) < |oQY*|. (3.4.8)
p—1 p—17+

We divide the proofs in several steps.
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Step 1. The first and easiest inequality to show in (3.4.8) is
|0QY*| < Cap,(Q). (3.4.9)

It suffices to observe that for any f € €°(M) with f > xn we have, by co-area formula,
1
/|Df\ dy > / [{f =1}|dt > inf {|oE| |  C E, 3E smooth} > [aY"|.
0
M

In particular, taking the infimum over any such f, we get (3.4.9).

Step 2. Now, we prove
lim sup Cap,,(Q2) < [0Q"]. (3.4.10)
p—1+
Let E be any open and bounded set in M with smooth boundary such that () C E. Define,
for x € M, the function dg(x) = dist(x, E). Moreover, let us introduce a smooth cut-off
function Y. fulfilling

xe(t) =1 int<e,
—l<x() <0 ine<t<2e (3.4.11)
Xe(t) =0 int > 2,

and let us set 77.(x) = xe(de(x)). Choosing ¢ small enough, it is easily seen, by the
regularity of dg in a neighbourhood of E (first observed for IR"” in [GT01, Lemma 14.6],
see [Man, Proposition 5.17] for a self contained proof in a general ambient manifold), that
the function 7 is an admissible competitor in (3.4.1). Then,

Cap,(Q) < /\Dnsl”du
M

forany p > 1. Letting p — 17, we get

2¢
timsup Cap, (€) < [ [Dyeldu = [Ix:(1)| [{de = 1} t,
M €

p—1*

where in the last equality we applied the coarea formula combined with the fact that
|Ddg| = 1 in a neighbourhood of E. By the Mean Value Theorem, there exist 7, € (g, 2¢)
such that the above right hand side satisfies

/!Xe(f)\ [{de = t}| dt = e|Xe(re)[[{de = re}| < {de = e},

where the last inequality is due to the second condition in (3.4.11). Since, as r, — 0", we
clearly have
[{de = re}| — |9E]|,

we conclude that
lim sup Capp(Q) < |0E]|
p—1t
for any bounded open set E with smooth boundary containing (). In particular, con-
sidering a sequence of bounded sets () with smooth boundary containing (2* and with
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|0QY| — [0Q)*| as k — oo, provided in Lemma 3.17, we get (3.4.10).

Step 3. The most involved step in the proof of (3.4.8) is inequality

Cap,(Q) < lim infCapp(Q). (3.4.12)

p—1t

To do this, we treat separately the cases when (M, g) satisfies an Euclidean-like Isoperi-
metric Inequality and the case where (M, g) has nonnegative Ricci curvature and satisfies
(3.1.2).

Case 1. (M, g) satisfies an Euclidean-like Isoperimetric Inequality. Let Csyp be the L!-
Sobolev constant, that is

(n—1)/n
( / fr/ =) du) < Csop / V| du (3.4.13)
M M

for any nonnegative f € 4;°(M). Itis well known and easy to check that applying (3.4.13)
to f = yields the LP-Sobolev inequality

(n—1)/
(/ fP"dy) < C /|Df|”dy (3.4.14)
M
with Con( 3
Cyp= SObn_p}, 3.4.15
4 { (n—p) (B415)
and np
p = m

for any 1 < p < n. In particular, by [PST14, Theorem 3.2], (M, g) is p-nonparabolic for
p in this range The argument yielding the key estimate (3.4.18) below is inspired by the
proof of [Xu96, Theorem 3.2]. By the definition of 1-capacity and Holder inequality we
get, for any g > 0,

Cap, (Q /IDf"!du—q/f”’ 1\Df!du<q</ FOD 1dﬂ> e </ !Df\pdpt)l/;-?

(3.4.16)
Choose then

1
gy =1+ p*(pp) (3.4.17)

and observe that g, > 1. Then, applying the LP-Sobolev inequality (3.4.14) we obtain

R (1-1)/(1-p)
Cap, (Q) < 4, C} (M/ Dfpdu) = 4y Coy "7 ([ IDsI7an) .

Taking the infimum in the rightmost hand side of the inequality above over any f €
€>° (M) we are left with

Cap,(Q) < g, Cyp, P~V/PCap (), (3.4.18)

Letting p — 17 in the above inequality, and observing that from the expressions (3.4.15)
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and (3.4.17) both g, and C,, , tend to 1, we get (3.4.12) under the validity of an Euclidean-
like Isoperimetric Inequality.

Case 2. (M, g) has nonnegative Ricci curvature and satisfies (3.1.2). The superlinear vol-
ume growth following from (3.1.2) guarantees that Holopainen’s condition

/+oo f dt < +
—_— o
1 [B(O,1)]

is satisfied, and in particular his [Hol99, Theorem 5.10] guarantees that (M, g) is p-
nonparabolic for 1 < p < b. Moreover, [MRS19, Theorem 3.8] gives the following decay

estimate for G,,
Cl/(p-1) [oo ¢ 1/(p-1)
6005 G o o] @

for any x € M\ B(O,R;) for some R; > 0. This estimate in particular allows to ap-
ply Theorem 3.26 that yields a p-harmonic function u, € W*(IR" \ Q) realising (3.4.4).
We claim that the same type of estimate holds for u,. Indeed, choosing O € (), a triv-
ial comparison argument immediately yields u,(x) < G,(O, x)/(infyn G,). Moreover, it
follows from the convergence results in [MRS19] that the function —(p — 1) log G, (O, -)
converges locally uniformly to a continuous function (more precisely to a solution of
the IMCF with initial condition O) and in particular —(p — 1) log G,(0O, -) is uniformly
bounded in the compact set 90} uniformly in p small enough. This implies that (infyn G,) >

C;/ "= for some C, independent on p. Combining it with the above comparison we thus

C31/(P—1) /00 |: t :| 1/(P—1)
Uy () < =4 _ dt.
") S0 o LTBOD)

outside some ball. The volume growth condition |B(O,t)| > Cyq t!, following from
(3.1.2), improves the above estimate to

obtain

1 Ci/(lﬂ—l)
(b—p) (p—1)

where we denoted r(x) = d(O, x), outside some big ball and for a positive constants C4
uniforminpasp — 1.

Extend now u, to be equal to # on M \ ), and equal to 1 on (, for simplicity with the
same name. We claim that u,,% is in W'1(M), for p close enough to 1, where g, is defined
in (3.4.17). Clearly, (3.4.19) implies that u,% € L'(M) for p close enough to 1, and also so
is up. Applying Holder inequality as in (3.4.16) we also get

, . (p-1)/p 1/p
/ [Duy’ | dp < g, (/ Up dl“) / _[Dup[P du
M M M\Q
R (p=1)/p
- < / ! dy> Cap, (00)!/" , (3.4.20)
M

(r—1)/p y
<on( [ ) Ep

where the equality is (3.4.4), and the last inequality is due to u, < uﬁ* following from
0 < u < 1land p* > 1. Since u, € L'(M) uniformly in p close to 1, and so does the
p-capacity of Q as p — 1% by (3.4.10) in Step 2, (3.4.20) implies that u}y € W'!(M)

r(x) 0P/, (3.4.19)

uy(0,x) <
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uniformly as p — 17. Since the class of competitors for Cap, (Q2) can be easily relaxed
to the class of W' (M) without changing the infimum (see e.g. [HKMO06, Chapter 2]), we
can estimate Cap; (Q) from above with uZ” and get, from (3.4.20), that

(p=1)/p
Cap,(Q) < gy < /M iy dy) Cap,(Q)"/7. (3.4.21)

We focus on the first round bracket in the rightmost hand side of (3.4.21). Let us decom-

pose M in B(O,R) U (M \ B(O, R)). We obtain, with the aid of (3.4.19),

- 1 Cl/(Pfl) , .
/Mu,, du < |B(O,R)| + o) (;_1) / r= =P/ (=1 gy, (3.4.22)
M\B(O,R)

We estimate the integral in the right had side above as follows. We have

/ =D/ gy — 3 / 6P/ (1) g

M\BOR) =1 B02jR)\BOR)

—+o0
< Y (jR)71E=/ =01 |B(0,2jR)| - [B(O, jR)| |
j=1

—+o0

< |B"|2" R (=) (=) Z]'"—[(b—P)/(P—l)] < CgR"[b=p)/(p-1)]
=1

(3.4.23)

where we used Bishop-Gromov to estimate |B(O,2jR)| < |B"|(2jR)", and, in the last
step, the convergence of the series, that holds true for p close to 1 with a value that is
uniform in p. Resuming, we have, plugging the outcome of (3.4.23) into (3.4.22),

; 1 c, 1V
<
J < [PO R+ R G55 [
for any R big enough. Choose then R"“7 > Cg for any p close enough to 1 to see that,
with this choice, the second summand in the above right hand side vanishes in the limit
as p — 17. In particular, letting p — 17 in (3.4.21) we infer

Cap,(Q) < liprr_ljrngapp(Q),
also under the assumption of nonnegative Ricci curvature with uniform volume growth
(3.1.2).

Arranging (3.4.9), (3.4.10) and (3.4.12) into (3.4.8) completes the computation of the
limit of Cap,,(Q) as p — 17, O

In light of Theorem 3.1, one could wonder whether the existence of a well posed (in
the sense of Theorem 3.13) strictly outward minimising hull implies a p-capacitary ap-
proximation of |dQ)*| in the sense of (3.1.3). The following example, inspired in part by
[KNO9, Section 4], provides a manifold admitting an exhausting sequence of strictly out-
ward minimising sets but such that Cap,, (Q)) = 0 for any ) C M with smooth boundary.

Example 3.29. Consider, for n > 2 the complete noncompact Riemannian manifold (M, g)
whose metric splits as g = dp ® dp + tanh?(p)gg:—1 on [0, +-c0) x §"~1. For n = 2, this is
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the celebrated Hamilton’s cigar soliton [Ham88]. The Riemannian manifold (M, g) has
linear volume growth and nonnegative Ricci curvature. In particular,

/ LTS
- — 0,
1 |B(O,1)]

and by [Hol99, Proposition 1.7] (M, g) is p-parabolic for any p > 1. In particular, it is
well known (see e.g. [Hol99, (1.5)]) that Capp(Q) = 0 for any open bounded () C M
with smooth boundary. However, the level sets of p are strictly outward minimising, and
so they provide the exhausting sequence (in fact a foliation) required in Theorem 3.13
for the well-posedness of (3*. To check this last assertion, we invoke again the level set
formulation of the Inverse Mean Curvature Flow, and the minimising properties of such
level sets discovered in [HIO1]. Let indeed B = {p < 1}, and consider on M \ B the

function N
w=(n—1)log (tan P>

tanh 1

extended with continuity at 0 on B. The function w is immediately seen to satisfy the
level set equation (3.3.6) in M \ B. Since the level set of w sweep out the whole M as
p — oo, [HIO1, Smooth Flow Lemma 2.3] implies that w is also a Weak Inverse Mean
Curvature Flow in the sense recalled in Subsection 3.3.2. Observe also that w is proper,
although w /4 400 as p — +oo (compare with Remark 3.20). In particular by [HIO1,
Minimizing Hull Property 1.4, (ii)], the bounded sets Int{w < t} = {w < t} are strictly
outward minimising for any ¢t > 0. Theorem 3.13 applies and yields a well posed strictly
outward minimising hull to any bounded open set () C M with smooth boundary, but
its area cannot be recovered by p-capacities, that vanish for any p > 1.
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Appendix A

Comparison with Colding’s
monotonicity formulas

In this section, we provide a comparison between our monotonicity formulas and those
obtained by Colding and by Colding-Minicozzi in [Col12] and [CM13], respectively. To
start with, let u be a solution of (8) in a nonparabolic Riemannian manifold (M, g) with
Ric > 0, for a bounded subset (2 C M with smooth boundary, and set

b= u iz, (A.1)

Note that b = 1 on dQ) and that b — +oco at infinity. Associated with the level sets of
b, consider the family of functions {Ag}, where Ag : [1,+00) — [0, 400) is defined for

every B > 0 as .
Ap(r) = rn_l/yDbW“ do.

{b=r}
Now, replacing u be a minimal Green'’s function G(O, -), for some pole O € M, the above
defined Ap is exactly the quantity considered in [CM13, formula (1.1)]. Note that in
Colding’s setting, the level sets {b = r} are considered for every r > 0, since b(q) — 0 as
d(0,q) — 0.
Our aim is to see how the monotonicity of our functions ®j translates in terms of that
of Ag. First of all, it is straightforward from (1.3.9)~(1.3.11) and (A.1) that

Volg
n—2"

b = erz, IDb| =

do = b" 'dog, (A2)

and in turn that
Dy(s) = (n— 2)ﬁ+1A5 (ensfz), for every s > 0. (A.3)

We look at the derivative (1.3.22) of ®4 and at its equivalent expression (1.3.23). In par-
ticular, the volume integral (1.3.23) contains the following terms.

2
Ric(Ve, Vo) = <”22> Ric(Db?, Db?), (A4)



144 Appendix A. Comparison with Colding’s monotonicity formulas

and

2 2 n—2\? Ab?2 |2
IVVol,+(B-2)|VIVelsl; = ( 5 > {‘DDbz—ng’

+(p—2) D7 Db
+ (B —2) |pp?)? [H —(n— 1)\Dlogb}}(zzs}.5)

which have been expressed in terms of the function b and of the metric ¢ via some com-
putations (compare with the proof of (1.3.4)) . Differentiating both sides of (A.3) and
writing expression (1.3.23) in terms of b and g through formulas (A.2), (A.4) and (A.5),
we obtain

dA (n—2)"F do®
By — Fltn—
5 (r) = - % ((n—2)logr) (A.6)
2 2
= P IDb|P~% Ric(Db? Db?) + [DDb* — A6
4 g
{b>r} n

+(—2) D" |Dy|

+(B-2) \DbZ\Z[H— (n— 1)\Dlogb\r} b~ du < 0.

Setting b = 2 in the above formula, we obtain exactly the integrand of the right hand side
of [Col12, (2.106)], that, arguing as in the conclusion of the present Theorem 1.25, leads to
the monotonicity of A;. For a general > (n —2)/(n — 1), in [CM14b, Theorem 1.3] the
monotonicity of Ag is inferred grouping the terms in (A.6) in a different way. Observe
indeed that for B < 2 the volume integral in (A.6) does not evidently carry a sign. On the
other hand, (A.5) combined with Kato’s inequality immediately show the nonnegativity
of the expression.

We close this appendix by showing how our methods can be applied also to obtain
the Monotonicity-Rigidity Theorem for the Green’s function, obtaining a new (conformal)
proof of Colding-Minicozzi's [CM14b, Theorem 1.3]. Indeed, let (M, g) be a nonparabolic
Riemannian manifold with Ric > 0, let G be its minimal Green’s function and consider
the new metricon M \ {O}

. 2
§ = G(O,)2g,

for some point O € M. Set
¢ = —logG(O, ).

Then, we have that the triple M, g, ¢ satisfies the system

Agp = 0 in M\ {O}

VYol|2
d(”%gq’ = ’n_q)lzg—i—Ric in M\ {0}

¢p(y) — +oo as d(O,y) — +oo
p(y) — —oo as d(O,y) — 0.

Rng —VVQD +
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We denote by d the distance with respect to g. Define the function ®5 : R — R given by

1
@5(5) = [ [Volf™ dog
{g=s}
All the theory developed in Section 3 holds with trivial modification for ®g as above,

and immediately yields a conformal Monotonicity-Rigidity Theorem for the Green’s func-
tion.

Theorem A.7. Let (M, g) be a nonparabolic Riemannian manifold with Ric > 0. Let G be its
minimal Green’s function. Then, with the notations above, we have

v es/ Volf *(Ric(Ve, Vo) + [VVol: + (B=2)|VIVelg; ) i
ds e? g
{9=s}

In particular, CD% is alway nonpositive. Moreover, (d®g/ ds)(sg) = 0 for some sp € R and
some p > (n—2)/(n—1) if and only if {¢ > so} is isometric to the Riemannian product
([s0,00) x {@ = so}, do @ dp + &{jp=sp})-

The above Theorem clearly translates in terms of (M, g) and G, exactly as Theorem
1.19 was deduced from Theorem 1.25.
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Appendix B

Existence of p-capacitary potentials

The following comprehensive statement contains both the thesis of the existence theorem
for the p-capacitary potential on p-nonparabolic complete noncompact Riemannian man-
ifolds recalled in Theorem 3.26 as well as the identification of the variational p-capacity of
a bounded set with smooth boundary with a boundary integral. These properties hold in
particular on R" and they were largely employed in Chapter 2. In particular, we furnish
a proof of Theorem 3.26 and Lemma 2.4. Despite seemingly well known, it is not easy
to find in literature a complete and in particular self-contained proof of these basic facts.
Anyway, no original arguments appear below, and we are collecting stuff mainly from
[H0190], [HKMO06] and [PST14].

Theorem B.1. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold. Let
Q) C M be an open bounded set with smooth boundary, and let O € M. Assume also that the
p-Green’s function G, satisfies G,(O,x) — 0as d(O, x) — co. Then, there exists a unique weak
solution uy to (3.4.3) attaining smoothly the boundary value on dQ). Moreover, it realises

Cap,(Q) = /|Du|”dy: /|Duyr’—1da (B.2)
M\Q {up=t}

for almost any t € (0, 1] including any reqular value t. In particular, (B.2) holds at t = 1, that is

Cap,(Q) = / |DulP~tdo (B.3)
a0

Proof. Let B(O, R) be a geodesic ball containing ). Let ¢ € €°(B(O,R)) satisfy ¢ =1
on ). Then, we can find a solution to the Dirichlet problem for the p-laplacian with
boundary values 1 on 9Q) and 0 on dB(O, R), namely a weakly p-harmonic function ug
on B(O,R) \ Q) satisfying u — ¢ € Wg’p(B(O,R) \ Q). It is immediately deduced from
Tolksdorf’s Comparison Principle for p-harmonic functions (see for example [HKMO06,

Lemma 3.18] that if il is another such function relative to another ¢ € W&’p (B(O,R)) then
u =iion B(O,R) \ Q. Defining the p-capacity of Q) relative to B(O, R) as

Cap,(0,5(0,R) =inf{ [ [DfPdn | £ 2 xo, f € 6=(BO,RD ], B

we immediately see through a very standard argument that ug can be approximated in
W7 by a sequence of admissible competitors in (B.4), and thus

Cap, (, B(O,R)) < / IDug|? dy. (B.5)

B(O,R)\Q)
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On the other hand, observing that in the definition of weakly p-harmonic functions on
B(O,R) \ Q) the class of tests can easily be relaxed to Wol’p (B(O,R)\ Q)), we get

/ |Dug|? du = / {|Dug|P~*Dug | Dug) du = / {|Dug|P~*Dug | Dy) dy,
B(O,R)\OQ B(O,R)\OQ B(O,R)\Q
(B.6)
where the last equality is deduced from the definition of weak p-harmonicity with u —
P e W& ?(B(O,R) \ Q) as test function. Applying the Holder inequality to the right hand
side of (B.6), we are immediately left with

/ IDug|? dy < / Dy [P du (B7)

B(O,R)\O B(O,R)\Q

for any ¢ € €°(B(O,R)) satisfying iy = 1 on Q). Since, clearly, a sequence of func-
tions satisfying the same assumptions on 1 suffices to realise the relative p-capacity of (2
(see for example [Maz11, (2.2.1)] for details), we get passing to the limit through such a
sequence in (B.7) that we can also take the opposite inequality sign in (B.5), obtaining

Cap, (02, B(O,R)) = / Dug|? dy. (B8)
B(O,R)\OY

Let us finally show that passing to the limit as R — +oco yields a solution to (3.4.3).
In what follows, we are frequently extending ur to 0 outside B(O, R) without explicitly
mentioning it The deep ‘Kl})‘f‘ -estimates for p-harmonic functions give, for any compact
set K of M\ ), a constant C so that

ur(x) —ur(y)| < Cd(x,y)

and
IDug|(x) — [Dur| ()] < Cd(x,v).

The constant C depends on the dimension, on p, on smooth quantities related to the
underlying metric g on K and on the WP norm of ug on K. By the Maximum Principle for
p-harmonic functions, 0 < ug < 1on K. Moreover, by (B.8) and the obvious monotonicity
of the Cap,, (2, B (O, R)) as R increases, we have

/|DuR|” dp < / |Dug, |V du (B.9)
K B(O,Ry)

for any Ry > 0 such that K € B(O,Rp) and any R > Ry. In particular, the constant C
is uniform in R, and by Arzela-Ascoli applied to the sequence of ug and the sequence
of the gradients we deduce that, up to a subsequence, the sequence ug converges in 4. _
to a ¢! function u. Moreover, as it is immediately seen from the weak formulation of
p-harmonicity, such u is p-harmonic. Observe that, since the (ﬁ})’c’"-estimates of [Lie88]
are valid up to the boundary, K was allowed to contain portions of (2, and thus the
convergence takes place also on d(), where then the sequence obviously converges to
1. Moreover, since by Tolksdorf’s Hopf lemma for p-harmonic functions |Du| > 0 on
dQ), the continuity up to the boundary of the gradient ensures that [Du| > 0 in a neigh-
bourhood of d(2, where thus the solution is a smooth classical solution by quasilinear
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elliptic regularity, and in particular it attains smoothly the datum on dQ). To complete
the existence part of the proof, we just have to check that u vanishes at infinity. This is
immediately deduced from the vanishing at infinity of G,. Indeed, since G, is positive,
a straightforward comparison argument for the approximators ug yields a constant C
independent of R so that 0 < ug < C GP(O, -), that by the convergence shown above,
implies, sending R — 400,

0 <ur <CGy(O,-). (B.10)

This last estimate clearly implies the vanishing at infinity of u.

Briefly, we show uniqueness. Let v be any other solution to (3.4.3), and let k € IN.
Let Ry be such that u < v+ 1/k on (a smoothed out approximation of) dB(O, R¢). Such
a radius surely exists by the vanishing at infinity of u. Then, since u and v achieve the
same value on d(), the Comparison Principle for p-harmonic functions applied to u and
v+ 1/k on B(O,Ry) \ Q shows that u < v+ 1/k on this set. Letting k — +oc0 we obtain
u < von M\ Q. Exchanging the roles of u and v gives the opposite inequality, showing
that u = v, that is uniqueness.

Now, we check that u realises the p-capacity of (). This again will come from the
properties of the approximators. Since g — u as R — oo pointwise, and [i |[Dug|? dy is
uniformly bounded in R for any compact K € M \ Q by (B.9), we can invoke the basic but
very useful [HKMO06, Lemma 1.33] to infer that u € L¥(M \ Q) and that Dug converges
weakly to Du. In particular, by lower semicontinuity of the norm we have

/ |Du|P du < lilgninf / |Dug|” du,
—00
M\O M\O

and since the righthand side is uniformly bounded again by (B.9), we conclude that u €

WLP(M\ Q). Since it vanishes at infinity, it actually belongs to WS P(M\ Q). We can thus
argue exactly as done for (B.8) to show that u realises the p-capacity of (), that is the first
equality in (B.2).

It remains to show the second equality in (B.2). We first show that

IDu|P~1do = /yDu\Plda (B.11)
{u=t} {u=t1}

for almost any 0 < t; < t, < 1. To see this, observe first that obviously, by density, if u is
p-harmonic we have

/ <\Du\p_2Du ) D¢> dp =0 (B.12)
M\Q

for any ¢ € Lip_(M \ Q). Consider then (1) with

0 fors e (0,1 —e) U (f2+¢1),
s—(t1 —¢)
Pols) = oF forse [ —¢t; +¢)
8 (B2 =5 forse(ty—ehte
J¢ or s 2 £, 12 €

1 fOI'SE[t1—|—£,t2—€].
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Then, since the function u, € %%(M\ 0), we have §(u,) € Lip (M 0). Plugging
Pe(up) into (B.12), we get

o)t [ Dul?do - 29" | DulP do = 0.
{t1—€§u§t1+€} {t2—8§u§t2+8}

Since u is Lipschitz, the coarea formula applies and yields

t1+e tr+e
) Du|F~ " dodt — (2¢) Du|lF~*dodt = 0.
2¢) ! r~ldod 1 r~ldod

b {u=t} e {u=t}

Letting ¢ — 0" we obtain (B.11) for almost any 0 < #; < f, < 1 by Lebesgue’s Differ-
entiation Theorem. Observe that, by the continuity of |Du/|, this holds for any regular
value t;, where it suffices to apply the Fundamental Theorem of Calculus. In particular,
by combinining by Hopf’s Lemma for p-harmonic functions with the ¢’ regularity of u
up to the boundary as done above, any value close enough to 1 is regular. Passing to the
limitas t — 1~ we get, again by the Holder gradient boundary regularity of u, that (B.11)
holds for t, = 1. We then get, again by coarea formula,

1
Capp(Q): /‘Du‘pd‘u:// ’Du’pfldadt: / ’Du’pfldo,’
fu=r)

M\Q 0 {u=t}

for almost any 0 < ¢t < 1, that is the second equality in (B.2), for any regular value and in
particular for t = 1, that is (B.3), completing the proof. ]

We conclude with one last remark concerning an even more general situation.

Remark B.13. If (M, g) is just assumed to be p-nonparabolic, without knowing that the
p-Green’s function vanishes at infinity, the very same argument used in the proof above
to show existence of a solution to (3.4.3) yields a p-harmonic function attaining smoothly
the value 1 on the smooth boundary of an open set () together with a sequence of points
xj with d(O,xj) — o0 as j — oo such that lim;_, ,, u(x;) — 0" as j — +-oco. Every-
thing works unchanged, except for this last point. It comes from the fact that on any
p-nonparabolic manifold G, (O, -) vanishes at infinity along such a sequence x;. This im-
mediately follows from the construction of G, carried out in [Hol90], implying, by the
basic barrier argument (B.10), that so does u.

On the other hand, we remark how, in spite of the finiteness of the p-Dirichlet energy
of u, at least apparently (B.2) does not follow immediately from the arguments above,

since 1 — 1 does not in general belong to WS’F(M \ Q) if ¢ is a test function vanishing at
infinity and assuming unit value on Q).
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