In this paper we prove that the lack of uniqueness for solutions of the tree dyadic model of turbulence is overcome with the introduction of a suitable noise. The uniqueness is a weak probabilistic uniqueness for all l(2)-initial conditions and is proven using a technique relying on the properties of the q-matrix associated to a continuous time Markov chain.
Uniqueness for an inviscid stochastic dyadic model on a tree / Bianchi, L. A.. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 18:(2013), pp. 1-12. [10.1214/ECP.v18-2382]
Uniqueness for an inviscid stochastic dyadic model on a tree
Bianchi L. A.
2013-01-01
Abstract
In this paper we prove that the lack of uniqueness for solutions of the tree dyadic model of turbulence is overcome with the introduction of a suitable noise. The uniqueness is a weak probabilistic uniqueness for all l(2)-initial conditions and is proven using a technique relying on the properties of the q-matrix associated to a continuous time Markov chain.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BiaUniqueness.pdf
accesso aperto
Descrizione: Versione pubblicata dell'articolo
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
256.83 kB
Formato
Adobe PDF
|
256.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione