In this paper we prove that the lack of uniqueness for solutions of the tree dyadic model of turbulence is overcome with the introduction of a suitable noise. The uniqueness is a weak probabilistic uniqueness for all l(2)-initial conditions and is proven using a technique relying on the properties of the q-matrix associated to a continuous time Markov chain.

Uniqueness for an inviscid stochastic dyadic model on a tree / Bianchi, L. A.. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 18:(2013), pp. 1-12. [10.1214/ECP.v18-2382]

Uniqueness for an inviscid stochastic dyadic model on a tree

Bianchi L. A.
2013-01-01

Abstract

In this paper we prove that the lack of uniqueness for solutions of the tree dyadic model of turbulence is overcome with the introduction of a suitable noise. The uniqueness is a weak probabilistic uniqueness for all l(2)-initial conditions and is proven using a technique relying on the properties of the q-matrix associated to a continuous time Markov chain.
2013
Bianchi, L. A.
Uniqueness for an inviscid stochastic dyadic model on a tree / Bianchi, L. A.. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 18:(2013), pp. 1-12. [10.1214/ECP.v18-2382]
File in questo prodotto:
File Dimensione Formato  
BiaUniqueness.pdf

accesso aperto

Descrizione: Versione pubblicata dell'articolo
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 256.83 kB
Formato Adobe PDF
256.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/244022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact