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In this paper we prove that the lack of uniqueness for solutions of the tree dyadic
model of turbulence is overcome with the introduction of a suitable noise. The
uniqueness is a weak probabilistic uniqueness for all l2-initial conditions and is proven
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1 Introduction

The deterministic dyadic model on a tree{
dXj = (cjX

2
 −

∑
k∈Oj

ckXjXk)dt

X0(t) = 0,
(1.1)

was introduced as a wavelet description of Euler equations in [15] and studied in [4]
as a model for energy cascade in turbulence. It can be seen as a generalization with
more structure of the so called dyadic model of turbulence, studied in [7]. As we show
in section 2 this deterministic model (1.1) does not have uniqueness in l2. The aim of
this paper is to prove that we can restore uniqueness with the introduction of a suitable
random noise:

dXj = (cjX
2
 −

∑
k∈Oj

ckXjXk)dt+ σcjX ◦ dWj − σ
∑
k∈Oj

ckXk ◦ dWk, (1.2)

with (Wj)j∈J a sequence of independent Brownian motions. Let’s also assume deter-

ministic initial conditions for (1.2): X (0) = x = (xj)j∈J ∈ l2. The main result of this
paper is the weak uniqueness of solution for (1.2), proven in theorem 7.2.

This paper can be seen as a generalization to the dyadic tree model of the results
proven for the classic dyadic model in [5], but the proof of uniqueness given here relies
of a new, different approach (see also [8]) based on a general abstract property instead
of a trick (see Section 6). The q−matrix we rely on is closely related to an infinitesimal
generator, so the technique is valid for a larger class of models.
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Uniqueness for an inviscid stochastic dyadic model on a tree

The set J is a countable set and its elements are called nodes. We assume for the
nodes a tree-like structure, where given j ∈ J ,  is the (unique) father of the node j,
and Oj ⊂ J is the finite set of offsprings of j. In J we identify a special node, called
root and denoted by 0. It has no parent inside J , but with slight notation abuse we will
nevertheless use the symbol 0̄ when needed.

We see the nodes as eddies of different sizes, that split and transfer their kinetic
energies to smaller eddies along the tree. To formalize this idea we consider the eddies
as belonging to discrete levels, called generations, defined as follows. For all j ∈ J we
define the generation number |j| ∈ N such that |0| = 0 and |k| = |j|+ 1 for all k ∈ Oj .

To every eddy j ∈ J we associate an intensity Xj(t) at time t, such that X2
j (t) is the

kinetic energy of the eddy j at time t. The relations among intensities are those given
in (1.1) for the deterministic model and (1.2) for the perturbed stochastic model. The
coefficients cj are positive real numbers that represent the speed of the energy flow on
the tree.

The idea of a stochastic perturbation of a deterministic model is well established
in the literature, see [6] for the classical dyadic model, but also [11], [9] for different
models. This stochastic dyadic model falls in the family of shell stochastic models. De-
terministic shell models have been studied extensively in [12] while stochastic versions
have been investigated for example in [10] and [16].

When dealing with uniqueness of solutions in stochastic shell models, the inviscid
case we study is more difficult than the viscous one, since the more regular the space
is, the simpler the proof and the operator associated to the viscous system regularizes,
see for example [3] about GOY models, where the results are proven only in the viscous
case.

In (1.2) the parameter σ 6= 0 is inserted just to stress the open problem of the zero
noise limit, for σ → 0. This has provided an interesting selection result for simple
examples of linear transport equations (see [2]), but it is nontrivial in our nonlinear
setting, due to the singularity that arises with the Girsanov transform, for example
in (4.2).

It is worth noting that the form of the noise is unexpected: one could think that the
stochastic part would mirror the deterministic one, which is not the case here, since
there is a j-indexed Brownian component where we’d expect a  one, and there is a
k-indexed one instead of a j one.

One could argue that this is not the only possible choice for the random perturbation.
On one hand we chose a multiplicative noise, instead of an additive one, but this is due
to technical reasons (see [14]). On the other hand, there are other possible choices, for
example the Brownian motion could depend on the father and not on the node itself,
so that brothers would share the same Brownian motion. But the choice we made is
dictated by the fact that we’d like to have a formal conservation of the energy, as we
have in the deterministic case (see [4]). If we use Itô formula to calculate

1

2
dX2

j = Xj ◦ dXj

= (cjX
2
̄Xj −

∑
k∈Oj

ckX
2
jXk)dt+ σcjX̄Xj ◦ dWj − σ

∑
k∈Oj

ckXjXk ◦ dWk,

we can sum formally on the first n+ 1 generations, taking X0(t) = 0:

n∑
|j|=0

1

2
dX2

j = −
∑
|j|=n

∑
k∈Oj

[ckX
2
jXkdt+ σckXjXk ◦ dWk]

= −
∑
|j|=n

∑
k∈Oj

ckXjXk(Xjdt+ σ ◦ dWk),
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Uniqueness for an inviscid stochastic dyadic model on a tree

since the series is telescoping in both the drift and the diffusion parts independently.
That means we have P-a.s. the formal conservation of energy, if we define the energy as

En(t) =
∑
|j|≤n

X2
j (t) E(t) =

∑
j∈J

X2
j (t) = lim

n→∞
En(t).

2 Non-uniqueness in the deterministic case

In [7] it has been proven that there exists examples of non uniqueness of l2 solutions

for the dyadic model if we consider solutions of the form Yn(t) =
an

t− t0
, called self-

similar solutions, with (an)n ∈ l2. Thanks to the lifting result (Proposition 4.2 in [4])
that is enough to obtain two different solutions of the dyadic tree model, with the same
initial conditions.

Following the same idea of self-similar solutions, introduced in [7] and [5] for the
classic dyadic model and in section 5.1 in [4] for the tree dyadic model, we can construct
a direct counterexample to uniqueness of solutions. In order to do this we need an
existence result stronger than the one proven in [4].

Theorem 2.1. For every x ∈ l2 there exists at least one finite energy solution of (1.1),
with initial conditions X(0) = x and such that∑

j∈J
X2
j (t) ≤

∑
j∈J

X2
j (s) ∀ 0 ≤ s ≤ t.

The proof of this theorem is classical, via Galerkin approximations, and follows that
of theorem 3.3 in [4].

Now we recall the time reversing technique. We may consider the system (1.1) for
t ≤ 0: given a solution X(t) of this system for t ≥ 0, we can define X̂(t) = −X(−t),
which is a solution for t ≤ 0, since

d

dt
X̂j(t) =

d

dt
Xj(−t) = cjX

2
 (−t)−

∑
k∈Oj

ckXj(−t)Xk(−t)

= cjX̂
2
 (t)−

∑
k∈Oj

ckX̂j(t)X̂k(t).

We can now consider the self similar solutions for the tree dyadic model, as intro-

duced in [4], Xj(t) =
aj

t− t0
, defined for t > t0, with t0 < 0 and with (aj)j∈J ∈ l2 such

that 
a0̄ = 0

aj + cja
2
̄ =

∑
k∈Oj

ckajak, ∀j ∈ J.

We time-reverse them and we define

X̂j(t) = −Xj(−t) ∀j ∈ J t < −t0,

which, as we pointed out earlier, is a solution of (1.1) in (−∞,−t0), with −t0 > 0. Since

lim
t→+∞

|Xj(t)| = 0 and lim
t→t+0

|Xj(t)| = +∞, ∀j ∈ J

we have
lim

t→−∞
|X̂j(t)| = 0 and lim

t→−t−0
|X̂j(t)| = +∞, ∀j ∈ J.
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Uniqueness for an inviscid stochastic dyadic model on a tree

Thanks to theorem 2.1 there is a solution X̃, with initial conditions x = X̂(0), and this
solution is a finite energy one, so, in particular, doesn’t blow up in −t0. Yet it has the
same initial conditions of X̂, so we can conclude that there is no uniqueness of solutions
in the deterministic case.

3 Itô formulation

Let’s write the infinite dimensional system (1.2) in Itô formulation:

dXj = (cjX
2
 −

∑
k∈Oj

ckXjXk)dt+ σcjXdWj

− σ
∑
k∈Oj

ckXkdWk −
σ2

2
(c2j +

∑
k∈Oj

c2k)Xjdt. (3.1)

We will use this formulation since it’s easier to handle the calculations, while all results
can also be stated in the Stratonovich formulation.

So let’s now introduce the definition of weak solution. A filtered probability space
(Ω,Ft, P ) is a probability space (Ω,F∞, P ) together with a right-continuous filtration
(Ft)t≥0 such that F∞ is the σ-algebra generated by

⋃
t≥0 Ft.

Definition 3.1. Given x ∈ l2, a weak solution of (1.2) in l2 is a filtered probability space
(Ω,Ft, P ), a J -indexed sequence of independent Brownian motions (Wj)j∈J on (Ω,Ft, P )

and an l2-valued process (Xj)j∈J on (Ω,Ft, P ) with continuous adapted components Xj

such that

Xj = xj +

∫ t

0

[cjX
2
 (s)−

∑
k∈Oj

ckXj(s)Xk(s)]ds

+

∫ t

0

σcjX(s)dWj(s)−
∑
k∈Oj

∫ t

0

σckXk(s)dWk(s)

− σ2

2

∫ t

0

(c2j +
∑
k∈Oj

c2k)Xj(s)ds, (3.2)

for every j ∈ J , with c0 = 0 and X0(t) = 0. We will denote this solution by

(Ω,Ft, P,W,X),

or simply by X.

Definition 3.2. A weak solution is an energy controlled solution if it is a solution as in
Definition 3.1 and it satisfies

P (
∑
j∈J

X2
j (t) ≤

∑
j∈J

x2
j ) = 1,

for all t ≥ 0.

Theorem 3.3. There exists an energy controlled solution to (3.1) in L∞(Ω × [0, T ], l2)

for (xj) ∈ l2.

We will give a proof of this Theorem at the end of Section 7. It is a weak existence
result and uses the Girsanov transform.

We’ll prove in the following result that a process satisfying (3.1) satisfies (1.2) too.
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Uniqueness for an inviscid stochastic dyadic model on a tree

Proposition 3.4. If X is a weak solution, for every j ∈ J the process (Xj(t))t≥0 is a
continuous semimartingale, so the following equalities hold:∫ t

0

σcjX(s) ◦ dWj(s) =

∫ t

0

σcjX(s)dWj(s)−
σ2

2

∫ t

0

c2jXj(s)ds∫ t

0

σ
∑
k∈Oj

ckXk(s) ◦ dWk(s) =
∑
k∈Oj

∫ t

0

σckXk(s)dWk(s) +
σ2

2

∫ t

0

∑
k∈Oj

c2kXj(s)ds,

where the Stratonovich integrals are well defined. So X satisfies the Stratonovich
formulation of the problem (1.2).

Proof. We know that∫ t

0

σcjX(s) ◦ dWj(s) =

∫ t

0

σcjX(s)dWj(s) +
σcj
2

[X,Wj ]t,

but from (1.2) we have that the only contribution to [X,Wj ] is given by the−σcjXj◦dWj

term, so
σcj
2

[X,Wj ]t =
σcj
2

[−
∫ t

0

σcjXj ◦ dWj ,Wj ]t = −
σ2c2j

2

∫ t

0

Xjds.

Now if we consider the other integral, we have∫ t

0

σ
∑
k∈Oj

ckXk(s) ◦ dWk(s) =
∑
k∈Oj

∫ t

0

σckXk(s)dWk(s) +
∑
k∈Oj

σck
2

[Xk,Wk]t.

For each Xk we get, with the same computations, that the only contribution to [Xk,Wk]t
comes from the term σckXj ◦ dWk, so that we get

σck
2

[Xk,Wk]t =
σck
2

[

∫ t

0

σckXj ◦ dWk,Wk]t =
σ2c2k

2

∫ t

0

Xjds.

4 Girsanov transform

Let’s consider (3.1) and rewrite it as

dXj = cjX(Xdt+ σdWj)− ∑
k∈Oj

ckXk(Xjdt+ σdWk)− σ2

2
(c2j +

∑
k∈Oj

c2k)Xjdt. (4.1)

The idea is to isolate Xdt+ σdWj and prove through Girsanov’s theorem that they are

Brownian motions with respect to a new measure P̂ in (Ω,F∞), simultaneously for every
j ∈ J . This way (3.1) becomes a system of linear SDEs under the new measure P̂ . The
infinite dimensional version of Girsanov’s theorem can be found in [17] and [13].

Remark 4.1. We can obtain the same result under Stratonovich formulation.

Let X be an energy controlled solution: its energy E(t) is bounded, so we can define
the process

Mt = − 1

σ

∑
j∈J

∫ t

0

X(s)dWj(s) (4.2)

which is a martingale. Its quadratic variation is

[M ]t =
1

σ2

∫ t

0

∑
j∈J

X2
 (s)ds.
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Uniqueness for an inviscid stochastic dyadic model on a tree

Because of the same boundedness of E(t) stated above, by the Novikov criterion exp(Mt−
1
2 [M ]t) is a (strictly) positive martingale. We now define P̂ on (Ω,Ft) as

dP̂

dP

∣∣∣
Ft

= exp(Mt −
1

2
[M ]t)

= exp(− 1

σ

∑
j∈J

∫ t

0

X(s)dWj(s)−
1

2σ2

∫ t

0

∑
j∈J

X2
 (s)ds), (4.3)

for every t ≥ 0. P and P̂ are equivalent on each Ft, because of the strict positivity of
the exponential.

We can now prove the following:

Theorem 4.2. If (Ω,Ft, P,W,X) is an energy controlled solution of the nonlinear equa-
tion (3.1), then (Ω,Ft, P̂ , B,X) satisfies the linear equation

dXj = σcjXdBj(t)− σ
∑
k∈Oj

ckXkdBk(t)− σ2

2
(c2j +

∑
k∈Oj

c2k)Xjdt, (4.4)

where the processes

Bj(t) = Wj(t) +

∫ t

0

1

σ
X(s)ds

are a sequence of independent Brownian motions on (Ω,Ft, P̂ ), with P̂ defined by (4.3).

Proof. Now let’s define

Bj(t) = Wj(t) +

∫ t

0

1

σ
X(s)ds.

Under P̂ , (Bj(t))j∈J,t∈[0,T ] is a sequence of independent Brownian motions.
Since

σ

∫ t

0

cjX(s)dBj(s) = σ

∫ t

0

cjX(s)dWj(s) +

∫ t

0

cjX
2(s)ds

σ

∫ t

0

ckXk(s)dBk(s) = σ

∫ t

0

ckXk(s)dWk(s) +

∫ t

0

ckXj(s)Xk(s)ds k ∈ Oj .

Then (4.1) can be rewritten in integral form as

Xj(t) = xj + σ

∫ t

0

cjX(s)dBj(s)− σ
∑
k∈Oj

∫ t

0

ckXk(s)dBk(s)

− σ2

2

∫ t

0

(c2j +
∑
k∈Oj

c2k)Xj(s)ds, (4.5)

which is a linear stochastic equation.

Remark 4.3. We can write our linear equation (4.4) also in Stratonovich form:

dXj = σcjX ◦ dBj(t)−
∑
k∈Oj

σckXk ◦ dBk(t).

Remark 4.4. If we look at (4.4) we can see that it is possible to drop the σ, considering
it a part of the coefficients cj .
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Uniqueness for an inviscid stochastic dyadic model on a tree

We can use Itô formula to calculate

1

2
dX2

j = XjdXj +
1

2
d[Xj ]t (4.6)

= σcjXXjdBj − σ
∑
k∈Oj

ckXjXkdBk

− σ2

2
(c2j +

∑
k∈Oj

c2k)X2
j dt+

σ2

2
(c2jX

2
 +

∑
k∈Oj

c2kX
2
k)dt

= −σ
2

2
(c2j +

∑
k∈Oj

c2k)X2
j dt+ dNj +

σ2

2
(c2jX

2
 +

∑
k∈Oj

c2kX
2
k)dt,

with

Nj(t) = σ

∫ t

0

cjXXjdBj − σ
∑
k∈Oj

∫ t

0

ckXjXkdBk. (4.7)

This equality will be useful in the following.
We now present an existence result also for system (4.4).

Proposition 4.5. There exists a solution of (4.4) in L∞(Ω × [0, T ], l2) with continuous
components, with initial conditions x ∈ l2.

Proof. Fix N ≥ 1 and consider the finite dimensional stochastic linear system
dXN

j = σcjX
N
 dBj(t)− σ

∑
k∈Oj

ckX
N
k dBk(t)

−σ
2

2 (c2j +
∑
k∈Oj

c2k)XN
j dt j ∈ J, 0 ≤ |j| ≤ N

XN
k (t) ≡ 0 k ∈ J, |k| = N + 1

XN
j (0) = xj j ∈ J, 0 ≤ |j| ≤ N.

(4.8)

This system has a unique global strong solution (XN
j )j∈J . We can compute, using (4.6)

and the definition of Nj in (4.7),

1

2
d(
∑
|j|≤N

(XN
j (t))2) =

∑
|j|≤N

(−σ
2

2
(c2j +

∑
k∈Oj

c2k)(XN
j )2dt+ dNN

j

+
σ2

2
(c2j (X

N
 )2 +

∑
k∈Oj

c2k(XN
k )2)dt)

= −
∑
|j|=N

σ2

2

∑
k∈Oj

c2k(XN
j )2dt

= −σ
2

2

∑
|k|=N+1

c2k(XN
k

)2 ≤ 0.

Hence ∑
|j|≤N

(XN
j (t))2 ≤

∑
|j|≤N

x2
j ≤

∑
j∈J

x2
j P̂ − a.s. ∀t ≥ 0.

This implies that there exists a sequence Nm ↑ ∞ such that (XNm
j )j∈J converges weakly

to some (Xj)j∈J in L2(Ω× [0, T ], l2) and also weakly star in L∞(Ω× [0, T ], l2), so (Xj)j∈J
is in L∞(Ω× [0, T ], l2).

Now for every N ∈ N, (XN
j )j∈J is inProg, the subspace of progressively measurable

processes in L2(Ω × [0, T ], l2). But Prog is strongly closed, hence weakly closed, so
(Xj)j∈J ∈ Prog.
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Uniqueness for an inviscid stochastic dyadic model on a tree

We just have to prove that (Xj)j∈J solves (4.4). All the one dimensional stochastic
integrals that appear in each equation in (4.5) are linear strongly continuous operators
Prog → L2(Ω), hence weakly continuous. Then we can pass to the weak limit in (4.8).
Moreover from the integral equations (4.5) we have that there is a modification of the
solution which is continuous in all the components.

5 Closed equation for EP̂ [X
2
j (t)]

Proposition 5.1. For every energy controlled solutionX of the nonlinear equation (3.1),
EP̂ [X2

j (t)] is finite for every j ∈ J and satisfies

d

dt
EP̂ [X2

j (t)] = −σ2(c2j +
∑
k∈Oj

c2k)EP̂ [X2
j (t)]

+ σ2c2jEP̂ [X2
 (t)] + σ2

∑
k∈Oj

c2kEP̂ [X2
k(t)]. (5.1)

Proof. Let (Ω,Ft, P,W,X) be an energy controlled solution of the nonlinear equation (3.1),
with initial condition X ∈ l2 and let P̂ be the measure given by Theorem 4.2. Denote by
EP̂ the expectation with respect to P̂ in (Ω,Ft).

Notice that

EP̂ [

∫ T

0

X4
j (t)dt] <∞ ∀j ∈ J. (5.2)

For energy controlled solutions from the definition we have that P -a.s.∑
j∈J

X4
j (t) ≤ max

j∈J
X2
j (t)

∑
j∈J

X2
j (t) ≤ (

∑
j∈J

x2
j )

2,

because of the behavior of the energy we showed. But on every Ft, P ∼ P̂ , so

P̂ (
∑
j∈J

X4
j (t) ≤ (

∑
j∈J

x2
j )

2) = 1,

and (5.2) holds.

From (5.2) it follows that Mj(t) is a martingale for every j ∈ J . Moreover

EP̂ [
∑
j∈J

X2
j (t)] <∞,

since Xj(t) is an energy controlled solution and the condition is invariant under the

change of measure P ↔ P̂ on Ft and, in particular,

EP̂ [X2
j (t)] <∞ ∀j ∈ J.

Now let’s write (4.6) in integral form:

X2
j (t)− x2

j = −σ2

∫ t

0

(c2j +
∑
k∈Oj

c2k)X2
j (s)ds

+ 2

∫ t

0

dNj(s) + σ2

∫ t

0

(c2jX
2
 (s) +

∑
k∈Oj

c2kX
2
k(s))ds.
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Uniqueness for an inviscid stochastic dyadic model on a tree

We can take the P̂ expectation,

EP̂ [X2
j (t)]− x2

j = −σ2

∫ t

0

(c2j +
∑
k∈Oj

c2k)EP̂ [X2
j (s)]ds

+ σ2

∫ t

0

c2jEP̂ [X2
 (s)]ds+ σ2

∑
k∈Oj

∫ t

0

c2kEP̂ [X2
k(s)]ds,

where the Nj term vanishes, since it’s a P̂ -martingale. Now we can derive and the
proposition is established.

It’s worth stressing that EP̂ [X2
j (t)] satisfies a closed equation. Even more interesting

is the fact that this is the forward equation of a continuous-time Markov chain, as we
will see in the following section.

6 Associated Markov chain

We want to show and use this characterization of the second moments equation as
the forward equation of a Markov chain, taking advantage of some known results in the
Markov chains theory. We follow the transition functions approach to continuous times
Markov chains; we don’t assume any knowledge of this theory, so we will provide the
basic definitions and results we need. More results can be found in the literature, see
for example [1].

Definition 6.1. A non-negative function fj,l(t) with j, l ∈ J and t ≥ 0 is a transition
function on J if fjl(0) = δjl, ∑

l∈J

fjl(t) ≤ 1 ∀j ∈ J, ∀t ≥ 0,

and it satisfies the semigroup property (or Chapman-Kolmogorov equation)

fjl(t+ s) =
∑
h∈J

fjh(t)fhl(s) ∀j, l ∈ J, ∀t, s ≥ 0.

Definition 6.2. A q-matrix Q = (qjl)j,l∈J is a square matrix such that

0 ≤ qjl < +∞ ∀j 6= l ∈ J,∑
l 6=j

qjl ≤ −qjj =: qj ≤ +∞ ∀j ∈ J.

A q-matrix is called stable if all qj ’s are finite, and conservative if

qj =
∑
l 6=j

qjl ∀j ∈ J.

If Q is a q-matrix, a Q-function is a transition function fjl(t) such that f ′jl(0) = Q.

The q-matrix shows a close resemblance to the infinitesimal generator of the tran-
sition function, but they differ, since the former doesn’t determine a unique transition
function, while the latter does. Still this approach can be seen as a generator approach
to Markov chains in continuous times.

Now let’s see these objects in our framework: let’s write (5.1) in matrix form. Let Q
be the infinite dimensional matrix which entries are defined as

qj,j = −σ2(c2j +
∑
k∈Oj

c2k) qj,̄ = σ2c2j qj,k = 1{k∈Oj}σ
2c2k for k 6= j, ̄
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Proposition 6.3. The infinite matrix Q defined above is the stable and conservative
q-matrix. Moreover Q is symmetric.

Proof. It’s easy to check that Q is a stable and conservative q-matrix. First of all qj,j < 0

for all j ∈ J and qj,l ≥ 0 for all j 6= l. Then

qj =
∑
l 6=j

qj,l = qj, +
∑
k∈Oj

qj,k = σ2c2j +
∑
k∈Oj

σ2c2k = −qj,j .

Moreover it is very easy to check that the matrix is symmetric:

qij =

{
σ2c2j l =  ⇔ j ∈ Ol σ2c2j

σ2c2l l ∈ Oj ⇔ j = l σ2c2l

}
= qlj

Since Q is a q-matrix we can construct the process associated, as a jump and hold
process on the space state, which in our case is the tree of the dyadic model. The
process will wait in node j for an exponential time of parameter qj , and then will jump to
̄ or k ∈ Oj with probabilities qj,̄/qj and qj,k/qj respectively. This process is a continuous
time Markov chain that has J as a state space and also has the same skeleton as the
dyadic tree model, meaning that the transition probabilities are non-zero only if one of
the nodes is the father of the other one.

Given a q-matrix Q, it is naturally associated with two (systems of) differential equa-
tions:

y′jl(t) =
∑
h∈J

yjh(t)qhl (6.1)

y′jl(t) =
∑
h∈J

qjhyhl(t),

called forward and backwards Kolmogorov equations, respectively.

Lemma 6.4. Given a stable, symmetric and conservative q-matrix Q, then the unique
nonnegative solution of the forward equations (6.1) in L∞([0,∞), l1), given a null initial
condition y(0) = 0, is y(t) = 0.

Proof. Let y be a generic solution, then

d

dt
yj(t) =

∑
i∈J

yi(t)qij

yj(t) ≥ 0 j ∈ J
yj(0) = 0 j ∈ J∑
j∈J

yj(t) < +∞.

(6.2)

We can consider for every node ŷj =
∫ +∞

0
e−tyj(t)dt, the Laplace transform in 1.

From the last equation of the system above, we have
∑
j ŷj ≤ M , for some constant

M > 0, so in particular we can consider k ∈ J such that ŷk ≥ ŷj , for all j ∈ J .
Now we want to show that y′k(t) is bounded: thanks to the symmetry and stability of

Q we have

|y′k(t)| ≤ | − qkyk(t)|+ |
∑
l 6=k

yl(t)qlk| ≤ qkM + qkM < +∞.
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We can integrate by parts

ŷk =

∫ +∞

0

e−ty′k(t)dt =

∫ +∞

0

e−t
∑
l∈J

yl(t)qlkdt =
∑
l∈J

ŷlqlk

= −ŷkqk +
∑
l 6=k

ŷlqlk ≤ ŷk(−qk +
∑
l 6=k

qkl) = 0, (6.3)

where the last equality follows from the conservativeness ofQ, and we used the stability
and symmetry. Now we have ŷk = 0 and so all ŷj = 0, hence yj(t) = 0 for all j ∈ J , for
all t ≥ 0.

7 Uniqueness

Now we can use the results of the previous section to prove the main results of this
paper.

Theorem 7.1. There is strong uniqueness for the linear system (4.4) in the class of
energy controlled L∞(Ω× [0, T ], l2) solutions.

Proof. By linearity of (4.4) it is enough to prove that for null initial conditions there
is no nontrivial solution. Since we have (5.1), proposition 6.3 and lemma 6.4, then
EP̂ [X2

j (t)] = 0 for all j and t, hence X = 0 a.s.

Let’s recall that we already proved an existence result for (4.4) with proposition 4.5.

Theorem 7.2. There is uniqueness in law for the nonlinear system (3.1) in the class of
energy controlled L∞(Ω× [0, T ], l2) solutions.

Proof. Assume that (Ω(i),F (i)
t , P (i),W (i), X(i)), i = 1, 2, are two solutions of (3.1) with

the same initial conditions x ∈ l2. Given n ∈ N, t1, . . . , tn ∈ [0, T ] and a measurable and
bounded function f : (l2)n → R, we want to prove that

EP (1) [f(X(1)(t1), . . . , X(1)(tn))] = EP (2) [f(X(2)(t1), . . . , X(2)(tn))]. (7.1)

By theorem 4.2 and the definition of P̂ given in (4.3) we have that, for i = 1, 2,

EP (i) [f(X(i)(t1), . . . , X(i)(tn))] =

EP̂ (i) [exp{−M (i)
T +

1

2
[M i,M (i)]T }f(X(i)(t1), . . . , X(i)(tn))], (7.2)

where M (i)is defined as in (4.2). We have proven in proposition 4.5 and theorem 7.1
that the linear system (4.4) has a unique strong solution. Thus it has uniqueness in
law on C([0, T ],R)N by Yamada-Watanabe theorem, that is under the measures P̂ (i), the
processes X(i) have the same laws. For a detailed proof of this theorem in infinite
dimension see [17].

Now we can also include M (i) in the system and conclude that (X(i),M (i)) under
P̂ (i) have laws independent of i = 1, 2, hence, through (7.2), we have (7.1).

We can now conclude with the proof of Theorem 3.3.

Proof of Theorem 3.3. Let (Ω,Ft, P̂ , B,X) be the solution of (4.4) in L∞(Ω × [0, T ], l2)

provided by theorem 7.1. We follow the same argument as in Section 4, only from P̂ to
P . We construct P as a measure on (Ω,FT ) satisfying

dP

dP̂

∣∣∣
FT

= exp(M̂T −
1

2
[M̂, M̂ ]T ),
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where M̂t = 1
σ

∑
j∈J

∫ t
0
X(s)dBj(s). Under P the processes

Wj(t) = Bj(t)−
∫ t

0

1

σ
X(s)ds,

are a sequence of independent Brownian motions. Hence (Ω,Ft, P,W,X) is a solution
of (3.1) and it is in L∞, since P and P̂ are equivalent on FT .
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