Consider a C smooth n-dimensional submanifold M of R and a C distribution D of rank n on R . Let τ(M,D) denote the set of all points z ∈ M such that D(z) is tangent to M at z. We prove that if D is not involutive at every point of M then τ(M,D) has no superdensity points.
The tangency of a C1 smooth submanifold with respect to a non-involutive C1 distribution has no superdensity points / Delladio, Silvano. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 2019, 68:2(2019), pp. 393-412. [10.1512/iumj.2019.68.7549]
The tangency of a C1 smooth submanifold with respect to a non-involutive C1 distribution has no superdensity points
Delladio Silvano
2019-01-01
Abstract
Consider a C smooth n-dimensional submanifold M of R and a C distribution D of rank n on R . Let τ(M,D) denote the set of all points z ∈ M such that D(z) is tangent to M at z. We prove that if D is not involutive at every point of M then τ(M,D) has no superdensity points.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
D37_JournalVersion.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
223.92 kB
Formato
Adobe PDF
|
223.92 kB | Adobe PDF | Visualizza/Apri |
7549.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
193.91 kB
Formato
Adobe PDF
|
193.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione