THE TANGENCY OF A C^{1} SMOOTH SUBMANIFOLD WITH RESPECT TO A NON-INVOLUTIVE C^{1} DISTRIBUTION HAS NO SUPERDENSITY POINTS

SILVANO DELLADIO

Abstract

Consider a C^{1} smooth n-dimensional submanifold M of \mathbb{R}^{n+m} and a C^{1} distribution \mathcal{D} of rank n on \mathbb{R}^{n+m}. Let $\tau(M, D)$ denote the set of all points $z \in M$ such that $D(z)$ is tangent to M at z. We prove that if \mathcal{D} is not involutive at every point of M then $\tau(M, D)$ has no superdensity points.

1. Introduction

Let us consider a C^{1} distribution of rank n on an open set $U \subset \mathbb{R}^{n+m}$, that is a map \mathcal{D} assigning an n-dimensional vector subspace $\mathcal{D}(z)$ of \mathbb{R}^{n+m} to each point $z \in U$ and satisfying the following property: If $z \in U$ then there exists a family $\left\{X_{1}^{(z)}, \ldots, X_{n}^{(z)}\right\}$ of vector fields of class C^{1} in a neighbourhood $V^{(z)} \subset U$ of z such that $\left\{X_{1}^{(z)}\left(z^{\prime}\right), \ldots, X_{n}^{(z)}\left(z^{\prime}\right)\right\}$ is a basis of $\mathcal{D}\left(z^{\prime}\right)$ for all $z^{\prime} \in V^{(z)}$. Recall that the distribution \mathcal{D} is said to be involutive at $z \in U$ if $\left[X_{i}^{(z)}, X_{j}^{(z)}\right](z) \in \mathcal{D}(z)$ for all $i, j \in\{1, \ldots, n\}$.

Also recall that the distribution \mathcal{D} can be described through the formalism of differential forms, compare [5, Section 3.2] and [13, Section 2.11]. According to this approach, if $z \in U$ then there exists a family of m linearly independent differential 1-forms of class C^{1} in $V^{(z)}$, that is

$$
\theta^{(j)}=\sum_{i=1}^{n+m} a_{i}^{(j)} d z_{i} \quad(j=1, \ldots, m)
$$

with $a_{i}^{(j)} \in C^{1}\left(V^{(z)}\right)$, such that (for $z^{\prime} \in V^{(z)}$)

$$
\mathcal{D}\left(z^{\prime}\right)=\operatorname{ker}\left(\theta_{z^{\prime}}^{(1)}\right) \cap \cdots \cap \operatorname{ker}\left(\theta_{z^{\prime}}^{(m)}\right)=\left[\operatorname{span}\left\{a^{(1)}\left(z^{\prime}\right), \ldots, a^{(m)}\left(z^{\prime}\right)\right\}\right]^{\perp}
$$

where

$$
a^{(j)}:=\left(a_{1}^{(j)}, \cdots, a_{n+m}^{(j)}\right)^{t}
$$

Observe that, for all $j=1, \ldots, m$ and $i=1, \ldots, n$, the function

$$
f_{j i}^{(z)}: V^{(z)} \rightarrow \mathbb{R}, \quad z^{\prime} \mapsto \theta_{z^{\prime}}^{(j)}\left(X_{i}^{(z)}\left(z^{\prime}\right)\right)
$$

[^0]is identically zero (in that $X_{i}^{(z)}\left(z^{\prime}\right) \in \mathcal{D}\left(z^{\prime}\right)$). Hence, by a well-known formula (compare [5, Theorem 2.3] or [13, Proposition 2.6.6]) one has
\[

$$
\begin{aligned}
\left(d \theta^{(j)}\right)_{z^{\prime}}\left(X_{i}^{(z)}\left(z^{\prime}\right), X_{k}^{(z)}\left(z^{\prime}\right)\right)= & X_{i}^{(z)}\left(z^{\prime}\right)\left(\theta^{(j)}\left(X_{k}^{(z)}\right)\right)-X_{k}^{(z)}\left(z^{\prime}\right)\left(\theta^{(j)}\left(X_{i}^{(z)}\right)\right) \\
& -\theta_{z^{\prime}}^{(j)}\left(\left[X_{i}^{(z)}, X_{k}^{(z)}\right]\left(z^{\prime}\right)\right) \\
= & X_{i}^{(z)}\left(z^{\prime}\right)\left(f_{j k}^{(z)}\right)-X_{k}^{(z)}\left(z^{\prime}\right)\left(f_{j i}^{(z)}\right)-\theta_{z^{\prime}}^{(j)}\left(\left[X_{i}^{(z)}, X_{k}^{(z)}\right]\left(z^{\prime}\right)\right) \\
= & -\theta_{z^{\prime}}^{(j)}\left(\left[X_{i}^{(z)}, X_{k}^{(z)}\right]\left(z^{\prime}\right)\right)
\end{aligned}
$$
\]

whenever $z^{\prime} \in V^{(z)}$, for all $j=1, \ldots, m$ and $i, k=1, \ldots, n$. It follows that \mathcal{D} is involutive at $z^{\prime} \in V^{(z)}$ if and only if

$$
\left.\left(d \theta^{(j)}\right)_{z^{\prime}}\right|_{\mathcal{D}\left(z^{\prime}\right) \times \mathcal{D}\left(z^{\prime}\right)}=0 \quad(j=1, \ldots, m)
$$

for all $j=1, \ldots, m$.
If $\mathcal{N}_{\mathcal{D}}$ denotes the open set of all points $z \in U$ such that \mathcal{D} is not involutive at z, then the classical Frobenius theorem establishes the following fact, compare [13, Section 2.11]: The open set $\mathcal{N}_{\mathcal{D}}$ is empty if and only if for all $z_{0} \in U$ there exists an n-dimensional regular embedded C^{1} submanifold M of U such that $z_{0} \in M$ and $\tau(M, \mathcal{D})=M$, where $\tau(M, \mathcal{D})$ stands for the tangency set

$$
\left\{z \in M: T_{z} M=\mathcal{D}(z)\right\}
$$

of M with respect to \mathcal{D} (see [3]).
In general, if no restriction about involutivity is assumed on \mathcal{D}, the Frobenius theorem cannot be applied and it is natural to look at the number

$$
\rho_{C^{\sigma}}(\mathcal{D}):=\sup \left\{\operatorname{dim}_{H}(\tau(M, \mathcal{D})): M \in \mathcal{M}_{C^{\sigma}}^{n}(U)\right\}
$$

where dim_{H} denotes the Hausdorff dimension and $\mathcal{M}_{C^{\sigma}}^{n}(U)$ is the family of n-dimensional submanifolds of U of class C^{σ}. We note that $\rho_{C^{\sigma}}(\mathcal{D})$ increases as the regularity σ "decreases", e.g., $\rho_{C^{2}}(\mathcal{D}) \leq \rho_{C^{1}}(\mathcal{D})$, but such an obvious observation is too vague to be useful. Far more significant is the upper bound for $\rho_{C^{2}}(\mathcal{D})$ provided in [3, Theorem 1.3] (see also [8] for an alternative proof, based on the implicit function theorem). An interesting example is provided by the horizontal subbundle $H \mathbb{H}^{k}$ of the tangent bundle $T \mathbb{H}^{k}$ to the Heisenberg group \mathbb{H}^{k}, that is the distribution of rank $2 k$ on $\mathbb{R}^{2 k+1}$ defined as

$$
H \mathbb{H}^{k}(z):=\left[\operatorname{span}\left\{-\sum_{i=1}^{k} z_{k+i} e_{i}+\sum_{i=k+1}^{2 k} z_{i-k} e_{i}-e_{2 k+1}\right\}\right]^{\perp} \quad\left(z \in \mathbb{R}^{2 k+1}\right)
$$

where $e_{1}, \ldots, e_{2 k+1}$ denotes the standard basis of $\mathbb{R}^{2 k+1}$. In this case one can assume $V^{(z)}=\mathbb{R}^{2 k+1}$ for all $z \in \mathbb{R}^{2 k+1}$ and

$$
\theta_{z}^{(1)}:=-\sum_{i=1}^{k} z_{k+i} d z_{i}+\sum_{i=k+1}^{2 k} z_{i-k} d z_{i}-d z_{2 k+1} \quad\left(z \in \mathbb{R}^{2 k+1}\right)
$$

so that

$$
\left(d \theta^{(1)}\right)_{z}=2 \sum_{i=1}^{k} d z_{i} \wedge d z_{k+i} \quad\left(z \in \mathbb{R}^{2 k+1}\right)
$$

Since

$$
e_{1}-z_{k+1} e_{2 k+1}, e_{k+1}+z_{1} e_{2 k+1} \in H \mathbb{H}^{k}(z)
$$

and

$$
\left(d \theta^{(1)}\right)_{z}\left(e_{1}-z_{k+1} e_{2 k+1}, e_{k+1}+z_{1} e_{2 k+1}\right)=2 d z_{1} \wedge d z_{k+1}\left(e_{1}, e_{k+1}\right)=2
$$

for all $z \in \mathbb{R}^{2 k+1}$, one has $\mathcal{N}_{H \mathbb{H}^{k}}=\mathbb{R}^{2 k+1}$. The result [3, Theorem 1.3] is used in [3, Example 6.5] to prove the following estimate for the Hausdorff dimension of the characteristic set $C(M)=\tau\left(M, H \mathbb{H}^{k}\right)$ of a codimension 1 submanifold M of class C^{2} in \mathbb{H}^{k}

$$
\operatorname{dim}_{H}(C(M))=\operatorname{dim}_{H}\left(\tau\left(M, H \mathbb{H}^{k}\right)\right) \leq k \text {, i.e., } \rho_{C^{2}}\left(H \mathbb{H}^{k}\right) \leq k
$$

which is actually an earlier result by Balogh [2, Theorem 1.2]. Another interesting application of [3, Theorem 1.3] is [3, Theorem 4.5], which generalizes the Derridj's theorem [9, Theorem 1] about the size of tangencies in the context of Hörmander distributions. Further related work on stratified groups can be found in [11, 12].

The size of the tangency set $\tau(M, \mathcal{D})$ for $M \in \mathcal{M}_{C^{1}}^{n}(U)$ has been investigated in [3] in the case when $z=\left(z_{1}, \ldots, z_{n+m}\right) \mapsto \mathcal{D}(z)$ is translation-invariant with respect to the last m variables, i.e., $\mathcal{D}(z)$ does not depend on $\left(z_{n+1}, \ldots, z_{n+m}\right)$. In this special situation, including $H \mathbb{H}^{k}$, it turns out that the following facts hold [3, Proposition 8.2]:

- $\rho_{C^{1,1}}(\mathcal{D})=n$;
- For all $z_{0} \in U$ (in particular for all $z_{0} \in \mathcal{N}_{\mathcal{D}}$) there exists $M_{0} \in \cap_{\alpha \in(0,1)} \mathcal{M}_{C^{1, \alpha}}^{n}(U)$ such that $z_{0} \in M_{0}$ and $\mathcal{H}^{n}\left(\tau\left(M_{0}, \mathcal{D}\right)\right)>0$, hence $M_{0} \in \mathcal{M}_{C^{1}}^{n}(U)$ and $\rho_{C^{1}}(\mathcal{D})=$ $\operatorname{dim}_{H}\left(\tau\left(M_{0}, \mathcal{D}\right)\right)=n$.

In particular, one has $\rho_{C^{1,1}}\left(H \mathbb{H}^{k}\right)=2 k$ and for all $z_{0} \in \mathbb{R}^{2 k+1}$ there exists a surface $S_{0} \in \cap_{\alpha \in(0,1)} \mathcal{M}_{C^{1, \alpha}}^{2 k}\left(\mathbb{R}^{2 k+1}\right)$ such that $z_{0} \in S_{0}$ and $\mathcal{H}^{2 k}\left(\tau\left(S_{0}, H \mathbb{H}^{k}\right)\right)>0$.

So it can happen to bump into tangency sets $\tau(M, \mathcal{D})$ of positive \mathcal{H}^{n} measure (even with $M \subset \mathcal{N}_{\mathcal{D}}$) and indeed we are inclined to think that the second fact above can be proved for any C^{1} distribution of rank n, at least in the following weaker form: For every C^{1} distribution \mathcal{D} of rank n such that $\mathcal{N}_{\mathcal{D}} \neq \emptyset$ and for all $z_{0} \in \mathcal{N}_{\mathcal{D}}$, there exists $M_{0} \in \mathcal{M}_{C^{1}}^{n}\left(\mathcal{N}_{\mathcal{D}}\right)$ such that $z_{0} \in M_{0}$ and $\mathcal{H}^{n}\left(\tau\left(M_{0}, \mathcal{D}\right)\right)>0$.

In this paper we shall prove that a tangency set can never be too dense at the points of $\mathcal{N}_{\mathcal{D}}$, even when it has positive measure. To understand exactly what this means, we recall first of all that $z_{0} \in M$, with $M \in \mathcal{M}_{C^{1}}^{n}(U)$, is said to be a superdensity point of $H \subset M$ if

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash H\right)=o\left(r^{n+1}\right) \quad(\text { as } r \rightarrow 0+)
$$

where $B_{M}\left(z_{0}, r\right) \subset M$ denotes the metric ball of radius r centered at z_{0}, compare Section 2 below. We are finally able to state precisely our main result and its corollaries (where
it is assumed, without loss of generality, that the differential 1-forms $\theta^{(j)}$ describing \mathcal{D} are defined in U):

Theorem 1.1. Let M be an n-dimensional regularly embedded C^{1} submanifold of U and assume that one between conditions (I) and (II) below is satisfied:
(I) Let $z_{0} \in M$ be a superdensity point of $\tau(M, \mathcal{D})$, i.e.,

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})\right)=o\left(r^{n+1}\right) \quad(\text { as } r \rightarrow 0+)
$$

(II) Let $z_{0} \in M$ be an ordinary point of density of $\tau(M, \mathcal{D})$, i.e.,

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})\right)=o\left(r^{n}\right) \quad(\text { as } r \rightarrow 0+)
$$

and let M be locally of class C^{2} at z_{0}.
Then $z_{0} \in \tau(M, \mathcal{D})$ and \mathcal{D} is involutive at z_{0}, i.e.,

$$
\left.\left(d \theta^{(j)}\right)_{z_{0}}\right|_{T_{z_{0}} M \times T_{z_{0}} M}=\left.\left(d \theta^{(j)}\right)_{z_{0}}\right|_{\mathcal{D}\left(z_{0}\right) \times \mathcal{D}\left(z_{0}\right)}=0
$$

for all $j=1, \ldots, m$.

The following corollary follows trivially from Theorem 1.1.
Corollary 1.1. Let M be an n-dimensional regularly embedded C^{1} submanifold of U and let z_{0} be a point of density of $\tau(M, \mathcal{D})$ (hence $z_{0} \in \tau(M, \mathcal{D})$, by Remark 5.1). Moreover assume \mathcal{D} is not involutive at z_{0}, namely there is $j_{0} \in\{1, \ldots, m\}$ such that

$$
\left(d \theta^{\left(j_{0}\right)}\right)_{z_{0}}{\mid T_{z_{0}} M \times T_{z_{0}} M}=\left.\left(d \theta^{\left(j_{0}\right)}\right)_{z_{0}}\right|_{\mathcal{D}\left(z_{0}\right) \times \mathcal{D}\left(z_{0}\right)} \neq 0
$$

Then
(1) z_{0} is not a superdensity point of $\tau(M, \mathcal{D})$;
(2) The submanifold M is not locally of class C^{2} at z_{0}.

Observe that the first statement of Corollary 1.1 can be rephrased as follows.
Theorem 1.2. If M is an n-dimensional regularly embedded C^{1} submanifold of U, then the set $\tau\left(M \cap \mathcal{N}_{\mathcal{D}}, \mathcal{D}\right)$ has no superdensity points. In particular, if $M \subset \mathcal{N}_{\mathcal{D}}$ then $\tau(M, \mathcal{D})$ has no superdensity points.

In particular, as a consequence of Theorem 1.2 and the remarks above, it turns out that $\tau\left(M, H \mathbb{H}^{k}\right)$ has no superdensity points, whatever $M \in \mathcal{M}_{C^{1}}^{2 k}\left(\mathbb{R}^{2 k+1}\right)$, even if one has $\operatorname{dim}_{H} \tau\left(M, H \mathbb{H}^{k}\right)=2 k$.

Finally, let us spend a few words on how the paper is organized. In Section 2 we introduce the notation. In Section 3 we have collected some expected results, including the densitypreserving property of C^{1} embeddings and the description of the tangent space to an
arbitrary set at a point of density. Section 4 is actually the main one, where we prove the hardest part of Theorem 1.1 in the case when M is the image of an injective immersion of class C^{1}. Eventually, Section 5 provides the proof of Theorem 1.1 in its whole generality.

Acknowledgements. I would like to thank Valentino Magnani who brought to my attention [10, 3.2.46], used in Proposition 3.2 below.

2. General notation

The standard basis of \mathbb{R}^{n+m} is denoted by e_{1}, \ldots, e_{n+m}. We will often have to deal with maps from \mathbb{R}^{n} to \mathbb{R}^{m} and with their graphs. Due to this fact and other technical reasons, we distinguish the notation relative to the first n coordinates from the notation relative to the last m coordinates: they are denoted by $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$, respectively. We may write \mathbb{R}_{x}^{n} in place of \mathbb{R}^{n} and \mathbb{R}_{y}^{m} in place of \mathbb{R}^{m}. As one expects, the dual basis of e_{1}, \ldots, e_{n+m} is indicated with

$$
d x_{1}, \ldots, d x_{n}, d y_{1}, \ldots, d y_{m}
$$

Also we need the trivial isomorphism $J: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)^{*}$ mapping every e_{i} to its corresponding member in the dual basis, i.e.,

$$
J\left(e_{i}\right)= \begin{cases}d x_{i} & \text { if } i=1, \ldots, n \\ d y_{i-n} & \text { if } i=n+1, \ldots, n+m\end{cases}
$$

The open ball in \mathbb{R}^{n} centered at p with radius $r>0$ will be denoted by $B(p, r)$. Let M be an n-dimensional regularly embedded C^{1} submanifold of \mathbb{R}^{n+m} and $z_{0} \in M$. Let δ_{M} be the distance defined on each connected component of M by taking the infimum of the length over the joining paths (compare [4, Section 1.6]) and, for $r>0$, let us define

$$
B_{M}\left(z_{0}, r\right):=\left\{z \in M^{\left(z_{0}\right)}: \delta_{M}\left(z, z_{0}\right)<r\right\}
$$

where $M^{\left(z_{0}\right)}$ is the connected component of M containing z_{0}. The tangent space to M at z_{0} is denoted by $T_{z_{0}} M$. According to [3], we also define the tangent space $\operatorname{Tan}_{p_{0}}(E)$ to an arbitrary set $E \subset \mathbb{R}^{h}$ at $p_{0} \in \bar{E}$ as the vector space spanned by

$$
\operatorname{Dir}_{p_{0}}(E):=\left\{u \in \mathbb{S}^{h-1}: u=\lim _{i \rightarrow \infty} \frac{p_{i}-p_{0}}{\left|p_{i}-p_{0}\right|} \text { for some }\left\{p_{i}\right\}_{i=1}^{\infty} \subset E \backslash\left\{p_{0}\right\} \text { with } p_{i} \rightarrow p_{0}\right\} .
$$

Let us now recall a way to define a C^{1} distribution of rank n on an open set $U \subset \mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$ through the formalism of differential forms, compare [5, Section 3.2] and [13, Section 2.11]. Consider a family of m linearly independent differential 1-forms of class C^{1} in U, that is

$$
\theta^{(j)}=\sum_{i=1}^{n} a_{i}^{(j)} d x_{i}+\sum_{h=1}^{m} a_{n+h}^{(j)} d y_{h} \quad(j=1, \ldots, m)
$$

with $a_{i}^{(j)} \in C^{1}(U)$. Then, for $z \in U$, let $\mathcal{D}(z)$ be the set of vectors in \mathbb{R}^{n+m} solving the so-called Pfaffian system of equations

$$
\theta_{z}^{(j)}=0 \quad(j=1, \ldots, m)
$$

namely

$$
\begin{aligned}
\mathcal{D}(z) & :=\operatorname{ker}\left(\theta_{z}^{(1)}\right) \cap \cdots \cap \operatorname{ker}\left(\theta_{z}^{(m)}\right) \\
& =\left[\operatorname{span}\left\{J^{-1}\left(\theta_{z}^{(1)}\right)\right\}\right]^{\perp} \cap \cdots \cap\left[\operatorname{span}\left\{J^{-1}\left(\theta_{z}^{(m)}\right)\right\}\right]^{\perp} \\
& =\left[\operatorname{span}\left\{J^{-1}\left(\theta_{z}^{(1)}\right), \ldots, J^{-1}\left(\theta_{z}^{(m)}\right)\right\}\right]^{\perp}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\mathcal{D}(z)=\left[\operatorname{span}\left\{a^{(1)}(z), \ldots, a^{(m)}(z)\right\}\right]^{\perp} \tag{2.1}
\end{equation*}
$$

where

$$
a^{(j)}:=\left(a_{1}^{(j)}, \cdots, a_{n+m}^{(j)}\right)^{t}
$$

Consider an open set $A \subset \mathbb{R}^{n}, \varphi \in C^{1}\left(A, \mathbb{R}^{n+m}\right)$ and let ω be a differential form of class C^{1} in an open subset of \mathbb{R}^{n+m} including $\varphi(A)$. Then $\left(\varphi^{*} \omega\right)_{a}$ is the pullback of ω under φ at $a \in A$.

The Lebesgue outer measure on \mathbb{R}^{n} and the n-dimensional Hausdorff outer measure on \mathbb{R}^{n+m} will be denoted by \mathcal{L}^{n} and \mathcal{H}^{n}, respectively. A point $p \in \mathbb{R}^{n}$ is said to be a superdensity point of $E \subset \mathbb{R}^{n}$ if $\mathcal{L}^{n}(B(p, r) \backslash E)=o\left(r^{n+1}\right)$ as $r \rightarrow 0+$. The set of all these points p is denoted by $E^{(n+1)}$. One has the following result which generalizes the Schwarz theorem about the equality of cross derivatives, compare $[6,7]$.
Theorem 2.1. Let $F \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ and $f \in C^{1}(\Omega)$, where Ω is an open subset of \mathbb{R}^{n}. If define $K:=\{p \in \Omega: D f(p)=F(p)\}$ and if $p_{0} \in \Omega \cap K^{(n+1)}$ then one has $p_{0} \in K$ and $\left(D F\left(p_{0}\right)\right)^{t}=D F\left(p_{0}\right)$.

The property stated in Theorem 2.1 is false, in general, if one simply assumes that p_{0} is a point of density of K, compare [6, Remark 2.2] where [1, Theorem 1] is used to provide a counterexample. A way to get the symmetry of $D F$ at a point of density of K in Ω is to assume that $f \in C^{2}(\Omega)$, compare Corollary 3.2 below.

3. Some preliminaries

3.1. A result from linear algebra. Define

$$
X:=\mathbb{R}_{x}^{n} \times\left\{0_{\mathbb{R}_{y}^{m}}\right\}, \quad Y:=\left\{0_{\mathbb{R}_{x}^{n}}\right\} \times \mathbb{R}_{y}^{m}
$$

and consider the standard projections $\pi_{X}: \mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{n} \rightarrow X, \pi_{Y}: \mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{n} \rightarrow Y$ defined as follows

$$
\pi_{X}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)
$$

and

$$
\pi_{Y}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=\left(0, \ldots, 0, y_{1}, \ldots, y_{m}\right) .
$$

Recall that e_{1}, \ldots, e_{n} is a basis of X. The following result holds.
Proposition 3.1. Let Z be an n-dimensional vector subspace of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$ such that $\pi_{X}(Z)=X$. Then $\pi_{Y}\left(Z^{\perp}\right)=Y$.

Proof. We first prove that

$$
\begin{equation*}
Z^{\perp} \cap X=\{0\} \tag{3.1}
\end{equation*}
$$

For $i=1, \ldots, n$, let $v_{i} \in Z$ be such that $\pi_{X}\left(v_{i}\right)=e_{i}$. Hence

$$
\varepsilon_{i}:=e_{i}-v_{i} \in Y \quad(i=1, \ldots, n)
$$

Thus, if $u \in Z^{\perp} \cap X=Z^{\perp} \cap Y^{\perp}$, one has

$$
u \cdot e_{i}=u \cdot v_{i}+u \cdot \varepsilon_{i}=0
$$

for all $i=1, \ldots, n$. This yields $u=0$ and concludes the proof of (3.1).
Now consider a basis w_{1}, \ldots, w_{m} of Z^{\perp} and let $c_{1}, \ldots, c_{m} \in \mathbb{R}$ be such that $c_{1} \pi_{Y}\left(w_{1}\right)+$ $\ldots+c_{m} \pi_{Y}\left(w_{m}\right)=0$. Then $\pi_{Y}\left(c_{1} w_{1}+\ldots+c_{m} w_{m}\right)=0$, i.e., $c_{1} w_{1}+\ldots+c_{m} w_{m} \in X$. From (3.1) it follows that $c_{1} w_{1}+\ldots+c_{m} w_{m}=0$, hence the constants c_{i} have to be zero. This proves that $\pi_{Y}\left(w_{1}\right), \ldots, \pi_{Y}\left(w_{m}\right)$ is a basis of Y.
3.2. C^{1} embeddings preserve density-degree. Let V and Ω be open subsets of \mathbb{R}^{n}, let $\Phi: V \rightarrow \Omega$ be a diffeomorphism of class C^{1} and let $a_{0} \in V$. Since $D \Phi$ is continuous in V, we can find a closed proper ball $B \subset V$ centered at a_{0} and a positive constant C such that

$$
\begin{equation*}
\left|\Phi(a)-\Phi\left(a_{0}\right)\right| \leq C\left|a-a_{0}\right|, \text { for all } a \in B \tag{3.2}
\end{equation*}
$$

Analogously, possibly taking a larger C, we can find a closed proper ball $B^{\prime} \subset \Omega$ centered at $\Phi\left(a_{0}\right)$ such that

$$
\begin{equation*}
\left|\Phi^{-1}(x)-a_{0}\right| \leq C\left|x-\Phi\left(a_{0}\right)\right|, \text { for all } x \in B^{\prime} \tag{3.3}
\end{equation*}
$$

The inequalities (3.2) and (3.3) prove that

$$
\begin{equation*}
\Phi\left(B\left(a_{0}, r / C\right)\right) \subset B\left(\Phi\left(a_{0}\right), r\right) \subset \Phi\left(B\left(a_{0}, C r\right)\right) \tag{3.4}
\end{equation*}
$$

provided r is small enough.
Now let A be an open subset of \mathbb{R}^{n} and consider an injective immersion of class C^{1}

$$
\varphi: A \rightarrow \mathbb{R}^{n+m}
$$

so that $S:=\varphi(A)$ is an n-dimensional regularly embedded C^{1} submanifold of \mathbb{R}^{n+m}. Then one has the following result which extends (3.4).

Proposition 3.2. If $a_{0} \in A$ then there exists $C>1$ such that $B\left(a_{0}, C r\right) \subset A$ and

$$
\varphi\left(B\left(a_{0}, r / C\right)\right) \subset B_{S}\left(\varphi\left(a_{0}\right), r\right) \subset \varphi\left(B\left(a_{0}, C r\right)\right)
$$

provided r is small enough.

Proof. Consider the field of inner products $A \ni a \mapsto g(a): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
g(a)[u, v]:=d \varphi_{a}(u) \cdot d \varphi_{a}(v), \quad u, v \in \mathbb{R}^{n}
$$

and recall [10, 3.2.46]. In particular:

- There exist orthonormal base vectors $\varepsilon_{1}, \ldots, \varepsilon_{n}$ of \mathbb{R}^{n} (i.e., with respect to the canonical Euclidean scalar product) such that

$$
d \varphi_{a_{0}}\left(\varepsilon_{i}\right) \cdot d \varphi_{a_{0}}\left(\varepsilon_{j}\right)=0, \text { whenever } i \neq j
$$

- If $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the linear operator defined by

$$
L\left(\varepsilon_{i}\right):=\left|d \varphi_{a_{0}}\left(\varepsilon_{i}\right)\right| \varepsilon_{i} \quad(i=1, \ldots, n)
$$

then

$$
\begin{equation*}
\frac{1}{2}\left|L\left(a-a_{0}\right)\right| \leq \delta_{S}\left(\varphi(a), \varphi\left(a_{0}\right)\right) \leq 2\left|L\left(a-a_{0}\right)\right| \tag{3.5}
\end{equation*}
$$

for all $a \in B\left(a_{0}, r\right)$, provided r is small enough.

Since L is nonsingular, one has

$$
\nu:=\min _{u \in \mathbb{S}^{n-1}}|L u|>0
$$

hence (by (3.5))

$$
\frac{\nu}{2}\left|a-a_{0}\right| \leq \delta_{S}\left(\varphi(a), \varphi\left(a_{0}\right)\right) \leq 2\|L\|\left|a-a_{0}\right|
$$

for all $a \in B\left(a_{0}, r\right)$, provided r is small enough. The conclusion follows by taking $C>0$ satisfying $C \geq 2\|L\|$ and $1 / C \leq \nu / 2$.
Proposition 3.3. Let M be an n-dimensional regularly embedded C^{1} submanifold of \mathbb{R}^{n+m} and let $\varphi: A \rightarrow \mathbb{R}^{n+m}$, where $A \subset \mathbb{R}^{n}$ is open, be an injective immersion of class C^{1} such that $\varphi(A) \subset M$. Moreover let E be a subset of A and let $a_{0} \in A$. Then (for $k>0$)

$$
\mathcal{L}^{n}\left(B\left(a_{0}, r\right) \backslash E\right)=o\left(r^{k}\right) \quad(\text { as } r \rightarrow 0+)
$$

if and only if

$$
\mathcal{H}^{n}\left(B_{M}\left(\varphi\left(a_{0}\right), r\right) \backslash \varphi(E)\right)=o\left(r^{k}\right) \quad(\text { as } r \rightarrow 0+)
$$

Proof. Let $z_{0}:=\varphi\left(a_{0}\right)$. Then from Proposition 3.2 we obtain

$$
B_{M}\left(z_{0}, r\right) \backslash \varphi(E) \subset \varphi\left(B\left(a_{0}, C r\right)\right) \backslash \varphi(E)=\varphi\left(B\left(a_{0}, C r\right) \backslash E\right)
$$

and

$$
B_{M}\left(z_{0}, r\right) \backslash \varphi(E) \supset \varphi\left(B\left(a_{0}, r / C\right)\right) \backslash \varphi(E)=\varphi\left(B\left(a_{0}, r / C\right) \backslash E\right)
$$

provided r is small enough. Hence, by the area formula [10, Theorem 3.2.3]

$$
\begin{equation*}
\int_{B\left(a_{0}, r / C\right) \backslash E} J_{n} \varphi d \mathcal{L}^{n} \leq \mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \varphi(E)\right) \leq \int_{B\left(a_{0}, C r\right) \backslash E} J_{n} \varphi d \mathcal{L}^{n} \tag{3.6}
\end{equation*}
$$

provided r is small enough, where $J_{n} \varphi$ denotes the n-dimensional Jacobian of φ, i.e.,

$$
J_{n} \varphi(a)=\sqrt{\operatorname{det}\left[(D \varphi(a))^{t}(D \varphi(a))\right]}, \quad a \in A
$$

Since φ is an (injective) immersion of class C^{1}, there exists $\nu \geq 1$ such that

$$
\frac{1}{\nu} \leq J_{n} \varphi \leq \nu
$$

in a neighborhood of a_{0}. Then (3.6) implies

$$
\frac{1}{\nu} \mathcal{L}^{n}\left(B\left(a_{0}, r / C\right) \backslash E\right) \leq \mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \varphi(E)\right) \leq \nu \mathcal{L}^{n}\left(B\left(a_{0}, C r\right) \backslash E\right)
$$

provided r is small enough. Hence the conclusion follows immediately.

3.3. The tangent space to an arbitrary set at a point of density.

Proposition 3.4. Let p_{0} be a point of density of $D \subset \mathbb{R}^{n}$, i.e., $p_{0} \in \mathbb{R}^{n}$ and $\mathcal{L}^{n}\left(B\left(p_{0}, r\right) \backslash\right.$ $D)=o\left(r^{n}\right)$ as $r \rightarrow 0+$. Then $\operatorname{Dir}_{p_{0}}(D)=\mathbb{S}^{n-1}$, hence $\operatorname{Tan}_{p_{0}}(D)=\mathbb{R}^{n}$.

Proof. Let $u \in \mathbb{S}^{n-1}$ and consider the open semi-cones

$$
V_{i}:=\left\{p \in \mathbb{R}^{n}:\left(p-p_{0}\right) \cdot u>(1-1 / i)\left|p-p_{0}\right|\right\} \quad(i=1,2, \ldots)
$$

We can prove that

$$
\begin{equation*}
B\left(p_{0}, 1 / i\right) \cap V_{i} \cap D \neq \emptyset \tag{3.7}
\end{equation*}
$$

for all positive integer i, by reductio ad absurdum. Indeed, if this property does not hold then a positive integer i_{0} has to exist such that $B\left(p_{0}, 1 / i_{0}\right) \cap V_{i_{0}} \cap D=\emptyset$, hence $B\left(p_{0}, r\right) \cap V_{i_{0}} \cap D=\emptyset$ for all $r \in\left(0,1 / i_{0}\right]$. Thus

$$
B\left(p_{0}, r\right) \cap V_{i_{0}}=B\left(p_{0}, r\right) \cap V_{i_{0}} \cap D^{c} \subset B\left(p_{0}, r\right) \cap D^{c}
$$

for all $r \in\left(0,1 / i_{0}\right.$], which yields (since p_{0} is a point of density of $\left.D\right)$ the following absurd identity

$$
\lim _{r \rightarrow 0+} \frac{\mathcal{L}^{n}\left(B\left(p_{0}, r\right) \cap V_{i_{0}}\right)}{r^{n}}=0
$$

Now, from (3.7) it follows that for each i there exists $p_{i} \in V_{i} \cap D$ such that $0<\left|p_{i}-p_{0}\right|<$ $1 / i$. It follows that $p_{i} \rightarrow p_{0}$ (as $\left.i \rightarrow+\infty\right)$ and

$$
\left|\frac{p_{i}-p_{0}}{\left|p_{i}-p_{0}\right|}-u\right|^{2}=2-2 \frac{\left(p_{i}-p_{0}\right) \cdot u}{\left|p_{i}-p_{0}\right|} \leq 2-2\left(1-\frac{1}{i}\right)=\frac{2}{i}
$$

hence

$$
\frac{p_{i}-p_{0}}{\left|p_{i}-p_{0}\right|} \rightarrow u \quad(\text { as } i \rightarrow+\infty)
$$

The conclusion follows from the arbitrariness of $u \in \mathbb{S}^{n-1}$.

Corollary 3.1. Let M be an n-dimensional regularly embedded C^{1} submanifold of \mathbb{R}^{n+m}. If z_{0} is a point of density of $R \subset M$, i.e., $z_{0} \in M$ and $\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash R\right)=o\left(r^{n}\right)$ as $r \rightarrow 0+$, then $\operatorname{Tan}_{z_{0}}(R)=T_{z_{0}} M$.

Proof. By assumption, there exist an open set $A \subset \mathbb{R}^{n}$ and an injective immersion φ : $A \rightarrow \mathbb{R}^{n+m}$ of class C^{1} such that $z_{0} \in \varphi(A) \subset M$. Let $D:=\varphi^{-1}(R)$ and observe that

$$
\begin{equation*}
\varphi(D)=R \cap \varphi(A) \tag{3.8}
\end{equation*}
$$

Since $\varphi(A)$ is a relatively open subset of M containing z_{0}, the identity (3.8) implies

$$
B_{M}\left(z_{0}, r\right) \backslash \varphi(D)=B_{M}\left(z_{0}, r\right) \backslash R
$$

provided r is small enough. Then

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \varphi(D)\right)=o\left(r^{n}\right) \quad(\text { as } r \rightarrow 0+)
$$

by assumption. From Proposition 3.3, with $E:=D$ and $k:=n$, we obtain that $a_{0}:=$ $\varphi^{-1}\left(z_{0}\right) \in A$ is a point of density of D. Hence $\operatorname{Tan}_{a_{0}}(D)=\mathbb{R}^{n}$, by Proposition 3.4. Finally

$$
\operatorname{Tan}_{z_{0}}(R)=\operatorname{Tan}_{z_{0}}(\varphi(D))=d \varphi_{a_{0}}\left(\operatorname{Tan}_{a_{0}}(D)\right)=d \varphi_{a_{0}}\left(\mathbb{R}^{n}\right)=T_{z_{0}} M
$$

by [3, Proposition 2.2].

From Proposition 3.4 we get also the following simple result related to Theorem 2.1.
Corollary 3.2. Let $F \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ and $f \in C^{2}(\Omega)$, where Ω is an open subset of \mathbb{R}^{n}. If $p_{0} \in \Omega$ is a point of density of $K:=\{p \in \Omega: D f(p)=F(p)\}$, then one has $p_{0} \in K$ and $D F\left(p_{0}\right)$ coincides with the Hessian of f at p_{0}. In particular $\left(D F\left(p_{0}\right)\right)^{t}=D F\left(p_{0}\right)$.

Proof. One has $p_{0} \in K$ in that K is closed relatively to Ω and $p_{0} \in \Omega$.
Let u_{k} be the k-th element of the standard basis of \mathbb{R}^{n}. Then, by Proposition 3.4, there are $p_{1}, p_{2}, \ldots \in K \backslash\left\{p_{0}\right\}$ such that

$$
\begin{equation*}
\frac{p_{i}-p_{0}}{\left|p_{i}-p_{0}\right|} \rightarrow u_{k} \quad(\text { as } i \rightarrow+\infty) \tag{3.9}
\end{equation*}
$$

By the differentiability of F_{h} and $D_{h} f$ at p_{0}, one has also

$$
F_{h}\left(p_{i}\right)-F_{h}\left(p_{0}\right)-D F_{h}\left(p_{0}\right) \cdot\left(p_{i}-p_{0}\right)=o\left(\left|p_{i}-p_{0}\right|\right)
$$

and

$$
D_{h} f\left(p_{i}\right)-D_{h} f\left(p_{0}\right)-D\left(D_{h} f\right)\left(p_{0}\right) \cdot\left(p_{i}-p_{0}\right)=o\left(\left|p_{i}-p_{0}\right|\right)
$$

as $i \rightarrow+\infty$. Since $F_{h}\left(p_{i}\right)=D_{h} f\left(p_{i}\right)$ and $F_{h}\left(p_{0}\right)=D_{h} f\left(p_{0}\right)$, we obtain

$$
D F_{h}\left(p_{0}\right) \cdot\left(p_{i}-p_{0}\right)=D\left(D_{h} f\right)\left(p_{0}\right) \cdot\left(p_{i}-p_{0}\right)+o\left(\left|p_{i}-p_{0}\right|\right)
$$

that is

$$
\left[D F_{h}\left(p_{0}\right)-D\left(D_{h} f\right)\left(p_{0}\right)\right] \cdot \frac{p_{i}-p_{0}}{\left|p_{i}-p_{0}\right|}=\frac{o\left(\left|p_{i}-p_{0}\right|\right)}{\left|p_{i}-p_{0}\right|}
$$

as $i \rightarrow+\infty$. The conclusion follows from (3.9).

Remark 3.1. From Corollary 3.2 it follows immediately the following property: If $f \in$ $C^{2}(\Omega), \omega$ is a differential 1-form of class C^{1} in Ω (where Ω is an open subset of \mathbb{R}^{n}) and $p_{0} \in \Omega$ is a point of density of $K:=\left\{p \in \Omega: d f_{p}=\omega_{p}\right\}$, then one has $(d \omega)_{p_{0}}=0$.

4. The main preliminary result

Theorem 4.1. Let U^{\prime} be an open subset of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$ and let ω be a differential 1-form of the type

$$
\omega=\sum_{i=1}^{n} \beta_{i} d x_{i}-d y_{j}
$$

with $\beta_{i} \in C^{1}\left(U^{\prime}\right)$, for all $i=1, \ldots, n$. Moreover, let Ω be an open subset of \mathbb{R}_{x}^{n} and let $f \in C^{1}\left(\Omega, \mathbb{R}_{y}^{m}\right)$ be such that $\psi(x):=(x, f(x)) \in U^{\prime}$ for all $x \in \Omega$. If define

$$
H:=\left\{x \in \Omega:\left(\psi^{*} \omega\right)_{x}=0\right\}
$$

then one has

$$
\left[\psi^{*}(d \omega)\right]_{x_{0}}=0
$$

for all $x_{0} \in \Omega \cap H^{(n+1)}$.

Proof. Let $x \in \Omega$. Then:

- One has

$$
\left[\psi^{*}(\omega)\right]_{x}\left(e_{h}\right)=\omega_{(x, f(x))}\left(e_{h}+\sum_{p=1}^{m} D_{h} f_{p}(x) e_{n+p}\right)=\beta_{h}(x, f(x))-D_{h} f_{j}(x)
$$

for all $h=1, \ldots, n$, hence

$$
H=\left\{x \in \Omega: D f_{j}(x)=\left(\beta_{1}(x, f(x)), \ldots, \beta_{n}(x, f(x))\right)^{t}\right\}
$$

It follows that

$$
\begin{equation*}
D_{h}\left[\beta_{k}(x, f(x))\right]_{x=x_{0}}=D_{k}\left[\beta_{h}(x, f(x))\right]_{x=x_{0}} \tag{4.1}
\end{equation*}
$$

for all $x_{0} \in \Omega \cap H^{(n+1)}$, by Theorem 2.1.

- If $\langle\cdot ; \cdot\rangle$ denotes the standard inner product in $\Lambda_{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}\right)$, one has

$$
\begin{aligned}
{\left[\psi^{*}(d \omega)\right]_{x}\left(e_{h}, e_{k}\right)=} & (d \omega)_{(x, f(x))}\left(e_{h}+\sum_{p=1}^{m} D_{h} f_{p}(x) e_{n+p}, e_{k}+\sum_{q=1}^{m} D_{k} f_{q}(x) e_{n+q}\right) \\
= & \left\langle\sum_{i=1}^{n}\left(\sum_{r=1}^{n}\left(D_{x_{r}} \beta_{i}\right)(x, f(x)) e_{r}+\sum_{s=1}^{m}\left(D_{y_{s}} \beta_{i}\right)(x, f(x)) e_{n+s}\right) \wedge e_{i} ;\right. \\
& \left.\left(e_{h}+\sum_{p=1}^{m} D_{h} f_{p}(x) e_{n+p}\right) \wedge\left(e_{k}+\sum_{q=1}^{m} D_{k} f_{q}(x) e_{n+q}\right)\right\rangle \\
= & \left\langle\sum_{i, r=1}^{n}\left(D_{x_{r}} \beta_{i}\right)(x, f(x)) e_{r} \wedge e_{i}+\sum_{i=1}^{n} \sum_{s=1}^{m}\left(D_{y_{s}} \beta_{i}\right)(x, f(x)) e_{n+s} \wedge e_{i} ;\right. \\
& \left.e_{h} \wedge e_{k}+\sum_{q=1}^{m} D_{k} f_{q}(x) e_{h} \wedge e_{n+q}+\sum_{p=1}^{m} D_{h} f_{p}(x) e_{n+p} \wedge e_{k}\right\rangle \\
= & \left(D_{x_{h}} \beta_{k}\right)(x, f(x))-\left(D_{x_{k}} \beta_{h}\right)(x, f(x)) \\
& \quad-\sum_{q=1}^{m}\left(D_{y_{q}} \beta_{h}\right)(x, f(x)) D_{k} f_{q}(x)+\sum_{q=1}^{m}\left(D_{y_{q}} \beta_{k}\right)(x, f(x)) D_{h} f_{q}(x)
\end{aligned}
$$

namely

$$
\left[\psi^{*}(d \omega)\right]_{x}\left(e_{h}, e_{k}\right)=D_{h}\left[\beta_{k}(x, f(x))\right]-D_{k}\left[\beta_{h}(x, f(x))\right] .
$$

for all $h, k=1, \ldots, n$.

The conclusion follows from (4.1) and (4.2).

Now consider an open subset U of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$ and a family of m linearly independent differential 1-forms of class C^{1} in U, that is

$$
\theta^{(j)}=\sum_{i=1}^{n} a_{i}^{(j)} d x_{i}+\sum_{h=1}^{m} a_{n+h}^{(j)} d y_{h} \quad(j=1, \ldots, m)
$$

with $a_{i}^{(j)} \in C^{1}(U)$. Then let \mathcal{D} be the C^{1} distribution of rank n on U determined by the Pfaffian system of equations

$$
\theta^{(j)}=0 \quad(j=1, \ldots, m)
$$

compare Section 2.
Define the vector fields $(j=1, \ldots, m)$

$$
a^{(j)}:=\left(a_{1}^{(j)}, \ldots, a_{n+m}^{(j)}\right)^{t}, \quad a_{Y}^{(j)}:=\left(a_{n+1}^{(j)}, \ldots, a_{n+m}^{(j)}\right)^{t}
$$

and the matrix fields

$$
M:=\left(\begin{array}{ccc}
a_{1}^{(1)} & \cdots & a_{1}^{(m)} \\
\vdots & \ddots & \vdots \\
a_{n}^{(1)} & \cdots & a_{n}^{(m)}
\end{array}\right), \quad N:=\left(a_{Y}^{(1)}|\cdots| a_{Y}^{(m)}\right)=\left(\begin{array}{ccc}
a_{n+1}^{(1)} & \cdots & a_{n+1}^{(m)} \\
\vdots & \ddots & \vdots \\
a_{n+m}^{(1)} & \cdots & a_{n+m}^{(m)}
\end{array}\right)
$$

$$
P:=\left(a^{(1)}|\cdots| a^{(m)}\right)=\left(\begin{array}{ccc}
a_{1}^{(1)} & \cdots & a_{1}^{(m)} \\
\vdots & \ddots & \vdots \\
a_{n+m}^{(1)} & \cdots & a_{n+m}^{(m)}
\end{array}\right)
$$

Moreover let A be an open subset of \mathbb{R}^{n} and let

$$
\varphi: A \rightarrow U
$$

be an injective immersion of class C^{1}. Then $S:=\varphi(A)$ is an n-dimensional C^{1} submanifold of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$.

The following very simple fact holds.
Proposition 4.1. Let

$$
\begin{equation*}
K:=\left\{a \in A:\left(\varphi^{*} \theta^{(j)}\right)_{a}=0 \text { for all } j=1, \ldots, m\right\} . \tag{4.3}
\end{equation*}
$$

Then

$$
\varphi(K)=\tau(S, \mathcal{D})=\left\{z \in S: T_{z} S=\mathcal{D}(z)\right\}
$$

Proof. Recall that, for all $a \in A$, one has

$$
\left(\varphi^{*} \theta^{(j)}\right)_{a}=\theta_{\varphi(a)}^{(j)} \circ d \varphi_{a}, \quad d \varphi_{a}\left(\mathbb{R}^{n}\right)=T_{\varphi(a)} S
$$

Hence $a \in K$ if and only if

$$
T_{\varphi(a)} S \subset \mathcal{D}(\varphi(a)), \text { i.e., } T_{\varphi(a)} S=\mathcal{D}(\varphi(a))
$$

The conclusion follows trivially.
Theorem 4.2 (main lemma). Let $a_{0} \in A \cap K^{(n+1)}$, where K is the set defined in (4.3). Then $a_{0} \in K$ and

$$
\left[\varphi^{*}\left(d \theta^{(j)}\right)\right]_{a_{0}}=0 \quad\left(\text { i.e. }\left.\left(d \theta^{(j)}\right)_{\varphi\left(a_{0}\right)}\right|_{T_{\varphi\left(a_{0}\right)} S \times T_{\varphi\left(a_{0}\right)} S}=0\right)
$$

for all $j=1, \ldots, m$.

Proof. One has $a_{0} \in K$ in that K is closed relatively to A and $a_{0} \in A$. Without loss of generality, we can assume that

$$
\operatorname{det}\left[D\left(\varphi_{1}, \ldots, \varphi_{n}\right)^{t}\left(a_{0}\right)\right] \neq 0
$$

hence there exists an open neighborhood V of $a_{0} \in \mathbb{R}^{n}$ such that

$$
\Phi:=\left.\left(\varphi_{1}, \ldots, \varphi_{n}\right)^{t}\right|_{V}: V \rightarrow \Omega:=\operatorname{Im}\left(\left.\left(\varphi_{1}, \ldots, \varphi_{n}\right)^{t}\right|_{V}\right)
$$

is a diffeomorphism of class C^{1}. It follows that $\varphi(V)$ is the graph of the C^{1}-function

$$
f:=\left(\varphi_{n+1}, \ldots, \varphi_{n+m}\right)^{t} \circ \Phi^{-1}: \Omega \rightarrow \mathbb{R}_{y}^{m}
$$

One obviously has $a_{0} \in K$, hence

$$
\mathcal{D}\left(\varphi\left(a_{0}\right)\right)=T_{\varphi\left(a_{0}\right)} S
$$

by Proposition 4.1. It follows that (with the notation of Section 3.1)

$$
\pi_{X}\left(\mathcal{D}\left(\varphi\left(a_{0}\right)\right)\right)=X=\mathbb{R}_{x}^{n} \times\left\{0_{\mathbb{R}_{y}^{m}}\right\}
$$

Then (by replacing V with a smaller neighborhood of a_{0}, if need be) we can assume that

$$
\pi_{X}(\mathcal{D}(\varphi(a)))=X=\mathbb{R}_{x}^{n} \times\left\{0_{\mathbb{R}_{y}^{m}}\right\}
$$

for all $a \in V$. Thus

$$
\pi_{Y}\left(\operatorname{span}\left\{a^{(1)}(\varphi(a)), \ldots, a^{(m)}(\varphi(a))\right\}\right)=Y=\left\{0_{\mathbb{R}_{x}^{n}}\right\} \times \mathbb{R}_{y}^{m}
$$

for all $a \in V$, by Proposition 3.1 and (2.1), which is equivalent to

$$
\operatorname{span}\left\{a_{Y}^{(1)}(\varphi(a)), \ldots, a_{Y}^{(m)}(\varphi(a))\right\}=\mathbb{R}_{y}^{m}
$$

for all $a \in V$. This proves that the matrix $N(\varphi(a))$ is invertible, for all $a \in V$. Thus there must be an open subset U^{\prime} of U such that $\varphi\left(a_{0}\right) \in U^{\prime}$ and $N(z): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is invertible for all $z \in U^{\prime}$.

Now let $z \in U^{\prime}$. Then one has

$$
\begin{equation*}
P(z) \times\left[-N(z)^{-1}\right]=\binom{M(z)}{N(z)} \times\left[-N(z)^{-1}\right]=\binom{M(z) \times\left[-N(z)^{-1}\right]}{-I_{m}} \tag{4.4}
\end{equation*}
$$

where I_{m} is the identity matrix of size m. If $\alpha_{h j}(z)$ and $\beta_{i j}(z)$ denote the (h, j)-entry of $-N(z)^{-1}$ and the (i, j)-entry of $M(z) \times\left[-N(z)^{-1}\right]$, respectively, then (4.4) shows that

$$
\begin{equation*}
\sum_{h=1}^{m} \alpha_{h j}(z) \theta_{z}^{(h)}=\sum_{i=1}^{n} \beta_{i j}(z) d x_{i}-d y_{j} \quad(j=1, \ldots, m) \tag{4.5}
\end{equation*}
$$

Observe that all the functions $z \mapsto \alpha_{h j}(z)$ and $z \mapsto \beta_{i j}(z)$ are in $C^{1}\left(U^{\prime}\right)$. Hence, in particular, the differential 1-forms

$$
\omega^{(j)}:=\sum_{i=1}^{n} \beta_{i j} d x_{i}-d y_{j} \quad(j=1, \ldots, m)
$$

are of class C^{1} in U^{\prime}.
Now on, without loss of generality, we can suppose that $\varphi(V) \subset U^{\prime}$. Consider the map $\psi: \Omega \rightarrow \mathbb{R}_{x}^{n} \times \mathbb{R}_{y}^{m}$ of class C^{1} defined as

$$
\psi(x):=(x, f(x)), \quad x \in \Omega
$$

so that $\psi \circ \Phi=\left.\varphi\right|_{V}$. By recalling (4.5), we find

$$
\begin{equation*}
\Phi^{*}\left(\psi^{*} \omega^{(j)}\right)=\left(\left.\varphi\right|_{V}\right)^{*} \omega^{(j)}=\sum_{h=1}^{m}\left(\left.\alpha_{h j} \circ \varphi\right|_{V}\right)\left(\left.\varphi\right|_{V}\right)^{*} \theta^{(h)} \quad(j=1, \ldots, m) \tag{4.6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left[\Phi^{*}\left(\psi^{*} \omega^{(j)}\right)\right]_{a}=0, \text { for all } a \in K \cap V \quad(j=1, \ldots, m) \tag{4.7}
\end{equation*}
$$

namely

$$
\left(\psi^{*} \omega^{(j)}\right)_{x}=0, \text { for all } x \in \Phi(K) \cap \Omega \quad(j=1, \ldots, m)
$$

which is equivalent to

$$
\begin{equation*}
\Phi(K) \cap \Omega \subset \bigcap_{j=1}^{m} H_{j}, \text { with } H_{j}:=\left\{x \in \Omega \mid\left(\psi^{*} \omega^{(j)}\right)_{x}=0\right\} . \tag{4.8}
\end{equation*}
$$

Moreover, since $a_{0} \in K^{(n+1)} \cap V$ and recalling (3.4), one has

$$
\begin{equation*}
\Phi\left(a_{0}\right) \in \Phi(K)^{(n+1)} \cap \Omega=[\Phi(K) \cap \Omega]^{(n+1)} . \tag{4.9}
\end{equation*}
$$

From (4.8) and (4.9) we obtain

$$
\Phi\left(a_{0}\right) \in\left(\bigcap_{j=1}^{m} H_{j}\right)^{(n+1)} \subset \bigcap_{j=1}^{m} H_{j}^{(n+1)}
$$

hence

$$
\left[\psi^{*}\left(d \omega^{(j)}\right)\right]_{\Phi\left(a_{0}\right)}=0 \quad(j=1, \ldots, m)
$$

by Theorem 4.1. Then

$$
\begin{equation*}
\left[\left(\left.\varphi\right|_{V}\right)^{*}\left(d \omega^{(j)}\right)\right]_{a_{0}}=0 \quad(j=1, \ldots, m) \tag{4.10}
\end{equation*}
$$

Since $a_{0} \in K \cap V$ one has also

$$
\begin{equation*}
\left[\left(\left.\varphi\right|_{V}\right)^{*} \omega^{(j)}\right]_{a_{0}}=0 \quad(j=1, \ldots, m) \tag{4.11}
\end{equation*}
$$

by (4.7).
Now, for $z \in U^{\prime}$, let $\nu_{i j}(z)$ be the (i, j)-entry of $-N(z)$ and observe that the functions $z \mapsto \nu_{i j}(z)$ belong to $C^{1}\left(U^{\prime}\right)$. From (4.4) or (4.5) we obtain

$$
\left.\theta^{(j)}\right|_{U^{\prime}}=\sum_{h=1}^{m} \nu_{h j} \omega^{(h)} \quad(j=1, \ldots, m) .
$$

Thus

$$
d\left(\left.\theta^{(j)}\right|_{U^{\prime}}\right)=\sum_{h=1}^{m} d \nu_{h j} \wedge \omega^{(h)}+\sum_{h=1}^{m} \nu_{h j} d \omega^{(h)} \quad(j=1, \ldots, m)
$$

hence

$$
\left[\varphi^{*}\left(d \theta^{(j)}\right)\right]_{a_{0}}=\sum_{h=1}^{m}\left[\left(\left.\varphi\right|_{V}\right)^{*} d \nu_{h j}\right]_{a_{0}} \wedge\left[\left(\left.\varphi\right|_{V}\right)^{*} \omega^{(h)}\right]_{a_{0}}+\sum_{h=1}^{m} \nu_{h j}\left(\varphi\left(a_{0}\right)\right)\left[\left(\left.\varphi\right|_{V}\right)^{*} d \omega^{(h)}\right]_{a_{0}}
$$

for all $j=1, \ldots, m$. The conclusion follows at once from (4.10) and (4.11).
Remark 4.1. From (4.6) it follows that $a \in K \cap V$ if and only if

$$
\left(\psi^{*} \omega^{(j)}\right)_{\Phi(a)}=0 \quad(j=1, \ldots, m)
$$

Moreover, for all $x \in \Omega$, one has

$$
\begin{aligned}
\left(\psi^{*} \omega^{(j)}\right)_{x} & =\sum_{i=1}^{n} \beta_{i j}(\psi(x))\left(\psi^{*}\left(d x_{i}\right)\right)_{x}-\left(\psi^{*}\left(d y_{j}\right)\right)_{x} \\
& =\sum_{i=1}^{n} \beta_{i j}(x, f(x)) d x_{i}-\left(d f_{j}\right)_{x} \\
& =\sum_{i=1}^{n}\left[\beta_{i j}(x, f(x))-D_{i} f_{j}(x)\right] d x_{i} .
\end{aligned}
$$

Then

$$
\Phi(K \cap V)=\left\{x \in \Omega: D f(x)=\beta^{t}(x, f(x))\right\}
$$

where β denotes the matrix whose (i, j)-entry is $\beta_{i j}$, i.e., $\beta:=-M \times N^{-1}$. In particular, in the special case when \mathcal{D} is translation-invariant along \mathbb{R}_{y}^{m}, namely if the coefficients $a_{i}^{(j)}$ do not depend on y (hence also the $\beta_{i j}$ do not depend on y), then the problem of determining a local integral surface of \mathcal{D} is reduced to the problem of determining a mapping with locally prescribed Jacobian matrix. This fact and [2, Theorem 4.1] have been used in [3] to prove the following result: If \mathcal{D} is translation-invariant along \mathbb{R}_{y}^{m} and $z_{0} \in U$, then there exists an n-dimensional regularly embedded submanifold M_{0} of U of class $\cap_{\alpha \in(0,1)} C^{1, \alpha}$ such that

$$
\begin{equation*}
z_{0} \in M_{0}, \quad 0<\mathcal{H}^{n}\left(M_{0}\right)<+\infty, \quad \mathcal{H}^{n}\left(\tau\left(M_{0}, \mathcal{D}\right)\right)>0 \tag{4.12}
\end{equation*}
$$

Compare [3, Proposition 8.2]. We observe that if one is interested only in an n-dimensional regularly embedded submanifold of U of class C^{1} satisfying (4.12), this can be obtained also from [1, Theorem 1]. The following example for $n=2 k$ and $m=1$ has been considered in [2] in connection with characteristic sets, in the context of the Heisenberg group:

$$
\begin{equation*}
U:=\mathbb{R}^{2 k+1}, \quad \theta_{(x, y)}^{(1)}:=-\sum_{i=1}^{k} x_{k+i} d x_{i}+\sum_{i=k+1}^{2 k} x_{i-k} d x_{i}-d y_{1} . \tag{4.13}
\end{equation*}
$$

In this case the matrix field N has a single entry identically equal to -1 . Then $N(z)$ is obviously invertible for all $z \in \mathbb{R}^{2 k+1}$, so we can choose $U^{\prime}=\mathbb{R}^{2 k+1}$ and a trivial computation shows that $\omega^{(1)}=\theta^{(1)}$.

Remark 4.2. In the special case when φ is of class C^{2}, even under the weaker assumption that $a_{0} \in A$ is merely a point of density of K, we can provide the following two much simpler proofs of Theorem 4.2:

- (First proof) Observe that the differential 1-forms $\varphi^{*} \theta^{(j)}$ are of class C^{1} in A and that

$$
K=\bigcap_{j=1}^{m} K_{j}
$$

where $K_{j}:=\left\{a \in A:\left(\varphi^{*} \theta^{(j)}\right)_{a}=0\right\}$. Since a_{0} is a point of density of K, then a_{0} is a point of density of K_{j} for all $j=1, \ldots, m$. Recalling the property in Remark
3.1 (with $\Omega:=A, f:=0, \omega:=\varphi^{*} \theta^{(j)}$) we conclude that

$$
\left[\varphi^{*}\left(d \theta^{(j)}\right)\right]_{a_{0}}=\left[d\left(\varphi^{*} \theta^{(j)}\right)\right]_{a_{0}}=0
$$

for all $j=1, \ldots, m$.

- (Second proof) Since a_{0} is a point of density of K then $\operatorname{Tan}_{a_{0}}(K)=\mathbb{R}^{n}$, by Proposition 3.4. Hence

$$
\begin{aligned}
\operatorname{Tan}_{\varphi\left(a_{0}\right)}(\tau(S, \mathcal{D})) & =\operatorname{Tan}_{\varphi\left(a_{0}\right)}(\varphi(K))=d \varphi_{a_{0}}\left(\operatorname{Tan}_{a_{0}}(K)\right)=d \varphi_{a_{0}}\left(\mathbb{R}^{n}\right) \\
& =T_{\varphi\left(a_{0}\right)} S
\end{aligned}
$$

by Proposition 4.1 and [3, Proposition 2.2]. The conclusion follows from [3, Lemma 3.2].

5. The proof of Theorem 1.1

As in Section 4, let \mathcal{D} be a C^{1} distribution of rank n on an open set $U \subset \mathbb{R}_{x}^{n} \times \mathbb{R}^{m}$ determined by a Pfaffian system of equations

$$
\theta^{(j)}=0 \quad(j=1, \ldots, m)
$$

Remark 5.1. Let M be an n-dimensional regularly embedded C^{1} submanifold of U and let $z_{0} \in M$ be a point of density of $\tau(M, \mathcal{D})$, i.e., $\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})\right)=o\left(r^{n}\right)$ as $r \rightarrow 0+$. Since $\tau(M, \mathcal{D})$ is closed relatively to M, then one has $z_{0} \in \tau(M, \mathcal{D})$.

We can finally prove our main result, namely Theorem 1.1, as a corollary of Theorem 4.2 and Proposition 3.3. We recall its statement, for the reader's convenience.

Theorem. Let M be an n-dimensional regularly embedded C^{1} submanifold of U and assume that one between conditions (I) and (II) below is satisfied:
(I) Let $z_{0} \in M$ be a superdensity point of $\tau(M, \mathcal{D})$, i.e.,

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})\right)=o\left(r^{n+1}\right) \quad(\text { as } r \rightarrow 0+)
$$

(II) Let $z_{0} \in M$ be an ordinary point of density of $\tau(M, \mathcal{D})$, i.e.,

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})\right)=o\left(r^{n}\right) \quad(\text { as } r \rightarrow 0+)
$$

and let M be locally of class C^{2} at z_{0}.

Then $z_{0} \in \tau(M, \mathcal{D})$ and \mathcal{D} is involutive at z_{0}, i.e.,

$$
\begin{equation*}
\left.\left(d \theta^{(j)}\right)_{z_{0}}\right|_{T_{z_{0}} M \times T_{z_{0}} M}=\left.\left(d \theta^{(j)}\right)_{z_{0}}\right|_{\mathcal{D}\left(z_{0}\right) \times \mathcal{D}\left(z_{0}\right)}=0 \tag{5.1}
\end{equation*}
$$

for all $j=1, \ldots, m$.

Proof. If (I) is satisfied. One has $z_{0} \in \tau(M, \mathcal{D})$, by Remark 5.1. By assumption, there exist an open set $A \subset \mathbb{R}^{n}$ and an injective immersion $\varphi: A \rightarrow U$ of class C^{1} which parametrizes M around z_{0}, that is $z_{0} \in \varphi(A) \subset M$. Let K be the set defined in (4.3) and observe that

$$
\begin{equation*}
\varphi(K)=\left\{z \in \varphi(A): T_{z} M=\mathcal{D}(z)\right\}=\tau(M, \mathcal{D}) \cap \varphi(A) \tag{5.2}
\end{equation*}
$$

by Proposition 4.1. Since $\varphi(A)$ is a relatively open subset of M containing z_{0}, the identity (5.2) yields

$$
B_{M}\left(z_{0}, r\right) \backslash \varphi(K)=B_{M}\left(z_{0}, r\right) \backslash \tau(M, \mathcal{D})
$$

provided r is small enough. Then

$$
\begin{equation*}
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \varphi(K)\right)=o\left(r^{n+1}\right) \quad(\text { as } r \rightarrow 0+) \tag{5.3}
\end{equation*}
$$

by assumption. From Proposition 3.3 , with $E:=K$ and $k=n+1$, we obtain $a_{0}:=$ $\varphi^{-1}\left(z_{0}\right) \in K^{(n+1)}$. Hence

$$
\begin{equation*}
\left[\varphi^{*}\left(d \theta^{(j)}\right)\right]_{a_{0}}=0, \text { for all } j=1, \ldots, m \tag{5.4}
\end{equation*}
$$

by Theorem 4.2. Since $T_{z_{0}} M=\operatorname{Im}\left(d \varphi_{a_{0}}\right)$, the identity (5.4) is equivalent to (5.1).
If (II) is satisfied. The argument above continues to work, with some obvious changes. First of all φ can be assumed to be of class C^{2}. In place of (5.3) we obtain

$$
\mathcal{H}^{n}\left(B_{M}\left(z_{0}, r\right) \backslash \varphi(K)\right)=o\left(r^{n}\right) \quad(\text { as } r \rightarrow 0+)
$$

hence $a_{0}:=\varphi^{-1}\left(z_{0}\right)$ turns out to be a point of density of K (by Proposition 3.3, with $E:=K$ and $k=n$). Then (5.4) follows by recalling Remark 4.2.

References

[1] G. Alberti: A Lusin Type Theorem for Gradients. J. Funct. Anal. 100, 110-118 (1991).
[2] Z.M. Balogh: Size of characteristic sets and functions with prescribed gradient. J. reine angew. Math. 564, 63-83 (2003).
[3] Z.M. Balogh, C. Pintea, H. Rohner: Size of tangencies to non-involutive distributions. Indiana Univ. Math. J. 60, no. 6, 2061-2092 (2011).
[4] I. Chavel: Riemannian Geometry: a Modern Introduction. (Cambridge Tracts in Mathematics 108) Cambridge University Press 1995.
[5] S.S. Chern, W.H. Chen, K.S. Lam: Lectures on differential geometry. Series On University Mathematics Vol. 1, World Scientific 1999.
[6] S. Delladio: Functions of class C^{1} subject to a Legendre condition in an enhanced density set. Rev. Matem. Iberoam. 28 (2012), n. 1, 127-140.
[7] S. Delladio: A Whitney-type result about rectifiability of graphs. Riv. Mat. Univ. Parma 5 (2014), 387-397.
[8] S. Delladio: Structure of tangencies to distributions via the implicit function theorem. Preprint 2016.
[9] M. Derridj: Sur un théorème de traces. Ann. Inst. Fourier (Grenoble) 22 (1972), n. 2, 73-83.
[10] H. Federer: Geometric Measure Theory. Springer-Verlag 1969.
[11] B. Franchi, R. Serapioni, F. Serra Cassano: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13, no. 3, 421-466 (2003).
[12] V. Magnani: Characteristic points, rectifiability and perimeter measure on stratified groups. J. Eur. Math. Soc. (JEMS) 8, n. 4, 585-609 (2006).
[13] R. Narasimhan : Analysis on real and complex manifolds. North-Holland Math. Library 35, NorthHolland 1985.

[^0]: 2010 Mathematics Subject Classification. 28Axx, 58A17, 58A30, 58C35.
 Key words and phrases. Tangency set of a submanifold with respect to a distribution, Distributions, Superdensity, Frobenius Theorem.

