We describe the Fukaya–Seidel category of a Landau–Ginzburg model LG(2) for the semisimple adjoint orbit of sl(2,C). We prove that this category is equivalent to a full triangulated subcategory of the category of coherent sheaves on the second Hirzebruch surface. We show that no projective variety can be mirror to LG(2), and that this remains so after compactification.

A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors / Ballico, E.; Barmeier, S.; Gasparim, E.; Grama, L.; San Martin, L. A. B.. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - STAMPA. - 158:1-2(2019), pp. 85-101. [10.1007/s00229-018-1024-1]

A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors

E. Ballico;
2019

Abstract

We describe the Fukaya–Seidel category of a Landau–Ginzburg model LG(2) for the semisimple adjoint orbit of sl(2,C). We prove that this category is equivalent to a full triangulated subcategory of the category of coherent sheaves on the second Hirzebruch surface. We show that no projective variety can be mirror to LG(2), and that this remains so after compactification.
1-2
Ballico, E.; Barmeier, S.; Gasparim, E.; Grama, L.; San Martin, L. A. B.
A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors / Ballico, E.; Barmeier, S.; Gasparim, E.; Grama, L.; San Martin, L. A. B.. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - STAMPA. - 158:1-2(2019), pp. 85-101. [10.1007/s00229-018-1024-1]
File in questo prodotto:
File Dimensione Formato  
1610.06965.pdf

embargo fino al 31/01/2020

Descrizione: Articolo principale
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 180.34 kB
Formato Adobe PDF
180.34 kB Adobe PDF Visualizza/Apri
Ballico2019_Article_ALieTheoreticalConstructionOfA.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 488.68 kB
Formato Adobe PDF
488.68 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/225649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact