We prove a well-posedness result for stochastic Allen–Cahn type equations in a bounded domain coupled with generic boundary conditions. The (nonlinear) flux at the boundary aims at describing the interactions with the hard walls and is motivated by some recent literature in physics. The singular character of the drift part allows for a large class of maximal monotone operators, generalizing the usual double-well potentials. One of the main novelties of the paper is the absence of any growth condition on the drift term of the evolution, neither on the domain nor on the boundary. A well-posedness result for variational solutions of the system is presented using a priori estimates as well as monotonicity and compactness techniques. A vanishing viscosity argument for the dynamic on the boundary is also presented.
Singular stochastic Allen–Cahn equations with dynamic boundary conditions / Orrieri, Carlo; Scarpa, Luca. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 266:8(2019), pp. 4624-4667. [10.1016/j.jde.2018.10.007]
Singular stochastic Allen–Cahn equations with dynamic boundary conditions
Orrieri, Carlo;
2019-01-01
Abstract
We prove a well-posedness result for stochastic Allen–Cahn type equations in a bounded domain coupled with generic boundary conditions. The (nonlinear) flux at the boundary aims at describing the interactions with the hard walls and is motivated by some recent literature in physics. The singular character of the drift part allows for a large class of maximal monotone operators, generalizing the usual double-well potentials. One of the main novelties of the paper is the absence of any growth condition on the drift term of the evolution, neither on the domain nor on the boundary. A well-posedness result for variational solutions of the system is presented using a priori estimates as well as monotonicity and compactness techniques. A vanishing viscosity argument for the dynamic on the boundary is also presented.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022039618305898-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
565.25 kB
Formato
Adobe PDF
|
565.25 kB | Adobe PDF | Visualizza/Apri |
1703.04099.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
432.56 kB
Formato
Adobe PDF
|
432.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione