Given a compact constant scalar curvature Kähler orbifold, with nontrivial holomorphic vector fields, whose singularities admit a local ALE Kähler Ricci-flat resolution, we find sufficient conditions on the position of the singular points to ensure the existence of a global constant scalar curvature Kähler desingularization. We also give complete proofs of a number of analytic results which have been used in this context by various authors. A series of explicit examples is discussed.

On the Kummer construction for Kcsc metrics / Arezzo, Claudio; Della Vedova, Alberto; Lena, Riccardo; Mazzieri, Lorenzo. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 12:1-2(2019), pp. 83-132. [10.1007/s40574-018-0170-4]

On the Kummer construction for Kcsc metrics

Mazzieri, Lorenzo
2019-01-01

Abstract

Given a compact constant scalar curvature Kähler orbifold, with nontrivial holomorphic vector fields, whose singularities admit a local ALE Kähler Ricci-flat resolution, we find sufficient conditions on the position of the singular points to ensure the existence of a global constant scalar curvature Kähler desingularization. We also give complete proofs of a number of analytic results which have been used in this context by various authors. A series of explicit examples is discussed.
2019
1-2
Arezzo, Claudio; Della Vedova, Alberto; Lena, Riccardo; Mazzieri, Lorenzo
On the Kummer construction for Kcsc metrics / Arezzo, Claudio; Della Vedova, Alberto; Lena, Riccardo; Mazzieri, Lorenzo. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 12:1-2(2019), pp. 83-132. [10.1007/s40574-018-0170-4]
File in questo prodotto:
File Dimensione Formato  
Arezzo2018_Article_OnTheKummerConstructionForKcsc.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 816.83 kB
Formato Adobe PDF
816.83 kB Adobe PDF Visualizza/Apri
Arezzo2019_Article_OnTheKummerConstructionForKcsc.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 807.01 kB
Formato Adobe PDF
807.01 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/222299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact