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Abstract
Given a compact constant scalar curvature Kähler orbifold, with nontrivial holomorphic
vector fields, whose singularities admit a local ALE Kähler Ricci-flat resolution, we find
sufficient conditions on the position of the singular points to ensure the existence of a global
constant scalar curvature Kähler desingularization.We also give complete proofs of a number
of analytic results which have been used in this context by various authors. A series of explicit
examples is discussed.

Mathematics Subject Classification 58E11 · 32C17

1 Introduction

In this paper we review and extend various existence results for Kähler constant scalar
curvature (Kcsc from now on) metrics on compact complex manifolds and orbifolds.

In order to state our results precisely, let us briefly recall that one starts with a Kcsc base
M with isolated quotient singularities, hence locally of the form C

m/� j , where m is the
complex dimension of M , j ∈ J parametrizes the set of points we want to desingularize,
and � j is a finite subgroup of U (m) acting freely away from the origin.
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Given such a singular object onewould like to remove a small neighborhoodof a singular point
and replace it with a (scaled down) large piece of a Kähler resolution π : (X�, η) → C

m/�

keeping the scalar curvature constant (and close to the starting one). For such a construction
to even have a chance to preserve the Kcsc equation it is necessary that (X�, η) is scalar flat,
i.e. it is necessary to assume that Cm/� j has a scalar flat ALE resolution.

It is well known (see Sect. 2 for a precise description) that such a metric has the following
shape,

η = i∂∂

( |x |2
2

+ eX� |x |4−2m − cX� |x |2−2m + ψη (x)

)
, with ψη = O(|x |−2m),

for some real constants eX� and cX� . In particular the number eX� is called the ADM mass
of the model (see [13] for a comprehensive study of its importance).

Having then fixed a set of singular points S = {p1, . . . , pn} ⊂ M each corresponding to
a group � j , and denoted by Bj,r := {z ∈ C

m/� j : |z| < r}, we can define, for all r > 0
small enough (say r ∈ (0, r0)),

Mr := M\ ∪ j B j,r .

On the other side, for each j = 1, . . . , n, we are given a m-dimensional Kähler manifold
(X� j , η j ), with one end biholomorphic to a neighborhood of infinity in Cm/� j . Dual to the
previous notations on the base manifold, we set C j,R := {x ∈ C

m/� j : |x | > R}, the
complement of a closed large ball and the complement of an open large ball in X� j (in the
coordinates which parameterize a neighborhood of infinity in X� j ). We define, for all R > 0
large enough (say R > R0),

X� j ,R := X� j \C j,R .

which corresponds to the manifold X� j whose end has been truncated. The boundary of
X� j ,R is denoted by ∂C j,R .

We are now in a position to describe the generalized connected sum construction. Indeed,
for all ε ∈ (0, r0/R0), we choose rε ∈ (ε R0, r0) and define,

Rε := rε
ε
.

By construction,

M̃ := M �p1,ε X�1 �p2,ε · · · �pn ,ε X�n ,

is obtained by connecting Mrε with the truncated ALE spaces X�1,Rε
, . . . , X�n,Rε

. The iden-
tification of the boundary ∂Bj,rε in Mrε with the boundary ∂C j,Rε of X� j ,Rε is performed
using the change of variables,

(z1, . . . , zm) = ε (x1, . . . , xm),

where (z1, . . . , zm) are the coordinates in Bj,r0 and (x
1, . . . , xm) are the coordinates inC j,R0 .

It was proved in [4] that if no nontrivial holomorphic vector fields exist on (M, ω, g) the
ALE scalar flat condition on the model is also sufficient to construct a family parametrized
by the gluing parameter ε on the manifold (or orbifold) obtained by this procedure. On the
other hand, the known picture for the blow up of smooth points, suggests that the number
and position of points should be relevant to achieve the same existence theorem in presence
of continuous symmetries. In fact, being the linearized scalar curvature operator Lω given
by,

Lω f = 	2
ω f + 4 〈 ρω | i∂∂ f 〉,
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we have to look at the positions of points relative to the elements of ker(Lω) =
spanR {ϕ0, ϕ1, . . . , ϕd}, where ϕ0 ≡ 1, d is a positive integer and ϕ1, . . . , ϕd is a col-
lection of linearly independent functions in ker(Lω) with zero mean and normalized in such
a way that ||ϕi ||L2(M) = 1, i = 1, . . . , d ,.

As it turns out, the hardest case is when the resolution has zero ADM mass (for example
when η is actually Ricci flat, which in turn forces the group � j to be in SU (m)).

The following is our main result which gives the new conditions on the “symplectic”
positions of the singular points for the Kcsc equation to be solvable, thus generalising in the
Kcsc context the celebratedKummer’s construction for Calabi–Yaumanifolds ([15,17,22,28]
for a number of generalisations):

Theorem 1.1 Let (M, ω, g) be a compact m-dimensional Kcsc orbifold with isolated singu-
larities and constant scalar curvature equal to sω. Let p = {p1, . . . , pN } ⊆ M the set of
points with neighborhoods biholomorphic to a ball of Cm/� j where, for j = 1, . . . , N, the
� j ’s are nontrivial subgroups of U (m) such thatCm/� j admits an ALE Ricci-flat resolution(
X� j , h j , η j

)
with vanishing ADM mass. Let,

ker (Lω) = spanR {1, ϕ1, . . . , ϕd} .
be the space of Hamiltonian potentials of Killing fields with zeros and assume that N ≥ d.
Suppose moreover that there exists b ∈ (R+)N such that,{∑N

j=1bp
(
	ωϕ j + sωϕ j

)
(p) = 0 j = 1, . . . , d((

	ωϕ j + sωϕ j
)
(p)

)
1≤ j≤d,1≤ j≤N has rank d.

Then there exists ε̄ such that for every ε ∈ (0, ε̄) the orbifold,

M̃ := M �p1,ε X�1 �p2,ε · · · �pN ,ε X�N ,

has a Kcsc metric in the class,

π∗ [ω] +
N∑
j=1

ε2mb̃2mj
[
η̃ j

]
with i∗j

[
η̃ j

] = [η j ],

where π is the canonical surjection of M̃ onto M and i j the natural embedding of X� j ,Rε

into M̃. Moreover, ∣∣∣∣b̃2mj − |� j |b j

2 (m − 1)

∣∣∣∣ ≤ Cεγ for some γ > 0,

where |� j | denotes the order of the group.
A version (with a non explicit balancing formula) of the previous result was announced

without proof in [3] (Theorem 1.2). In this paper we provide the complete proof and make
explicit the right balancing condition.

Whether, given � in SU (m), a Ricci flat Kähler resolution exists is by itself an important
problem in different areas of mathematics and we will not digress on it here. It suffices to
recall the reader that Ricci flat models do exist for any subgroup of SU (m) with m = 2,
thanks to the work of Kronheimer, while in higher dimensions one needs to assume the
existence of a Kähler crepant resolution and then apply deep results by Joyce [15], Goto
[12], Van Coevering [29] and Conlon-Hein [8]. In particular m = 3 works fine again for any
� in SU (3).
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On the other hand, and contrary to the authors’ first expectations, Hein-LeBrun [13] have
proved the existence of many new examples of scalar flat with vanishing ADMmass but not
Ricci flat.

The proof we present in this paper follows the path of previous result of this type [3–5]. In
this respect the main difficulty comes from the fact that, contrary to all these previous known
cases, part of the obstruction, comes from the non linear analysis.

An alternative proof would rely instead of the existence result for extremal metrics proved
in [3]. Mixing this fact (whose analytic difficulties are undoubtedly much easier than the
present’s one) with the classical observation of Calabi [7] that an extremal metric in a class
with vanishingFutaki invariant is in factKcsc, leads to the delicate problemof how to compute
this invariant for resolutions of isolated quotient singularities. This is accomplished in [1]
and this will also allow to generalize the previous Theorem to the general case of scalar-flat
resolutions and to prove also the necessity of the balancing condition.

The proof we present here certainly requires a deeper and finer understanding of the PDE
point of view, but has the advantage, at least under these stronger assumptions, to give a
more refined information on the Kcsc metric produced. In fact as we will see in Sect. 3, each
singular point gives us the freedom of the choice of two parameters (b and c). Indeed for each
choice of these parameters the metrics ω0,b,c,h,k can be actually glued to the metric η (of
course not solving any particular PDE), but it is easy to check that the resulting Kähler class
depends only on b and not on c. As we will show in the final part of the proof of Theorem 1.1,
the nonlinear part of the Kcsc equation will require a uniquely determined choice of c as a
function of b (c = sωb), in accordance with the well known uniqueness property of Kcsc
metrics in a given Kähler class. At the end of the proof one will then know explicitly how to
write down the first two exploding terms in the asymptotic expansion of the Kähler potential
of the final Kcsc metric, a result out of reach if one takes the alternative route of passing
through extremal metrics and Futaki invariants.

We can then look for new examples of full or partial desingularizations of Kcsc orbifolds.
Of course it will be very hard on a general orbifold to compute 	ωϕ j . On the other hand,
assuming for example that M is Einstein and using,

	ωϕ j = − sω
m

ϕ j ,

the balancing condition requires only the knowledge of the value of the ϕ j at the singular
points. Moreover these values are easily computed for example in toric setting by the well
known relationship between the evaluation of the potentials ϕ j and the image point via the
moment map.

With these classical observations one can then look for toric Kähler–Einstein orbifolds
with isolated quotient singularities to test to which of them our results can be applied. In
complex dimension two things are pretty simple and in fact two such examples are,

• (
P
1 × P

1, π∗
1ωFS + π∗

2ωFS
)
with Z2 acting by,

([x0 : x1], [y0 : y1]) −→ ([x0 : −x1], [y0 : −y1]) .
This orbifold is isomorphic to the intersection of two singular, quadrics in P4.

{
z0z3 − z24 = 0

} ∩ {
z1z2 − z24 = 0

}
.

• (
P
2, ωFS

)
with Z3 acting by,

[z0 : z1 : z2] −→ [x0 : ζ3x1 : ζ 23 x2] ζ3 �= 1, ζ 33 = 1.
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This orbifold is isomorphic to the singular cubic surface in, P3

{
z0z1z2 − z33 = 0

}
.

In both cases we will show in Sect. 7 that our results provide a full Kcsc (clearly not
Kähler–Einstein) desingularization (in the first case applied to 4 singular SU (2) points, while
3 SU (2) points in the second). It is worth noting that both these orbifolds are also limits of
smooth Kähler- Einstein surfaces. This can be seen in various ways: either applying Tian’s
resolution of the Calabi Conjecture [27] or by [2] in the first case, or by Odaka–Spotti–Sun
[21].

Working out higher dimensional examples turned out to be much more challenging than
we expected. Even making use of the beautiful database of Toric Fano Threefolds run by
Brown and Kasprzyk ([10], see also [16]) and their amazing help in implementing a complete
search of Einstein ones with isolated singularities, we could only extract orbifolds where only
a partial Kcsc resolution is possible. We will describe two such examples in Sect. 7.

It is interesting to observe that in the list of toric Fano KE 3-folds it appears a very
intriguing example which does not satisfy any balancing condition, neither the one in Theo-
rem 1.1 nor those of [3]. It seems a very intriguing question whether this example be actually
desingularized by Kcsc manifolds in some way. Beyond this example, it is worth mention-
ing, among the possible extensions of the present technique and the possible directions of
research, the desingularization of Kcsc manifolds with non isolated singularities, in the spirit
of the generalized connected sum constructions performed in [18–20].

Structure of the paper In Sect. 2 we collect some known facts and we prove a crucial
refinement (Proposition 2.3) of results of Joyce, Tian-Yau and others on the asymptotics of
a Kähler Ricci flat metric on a crepant resolution.

In Sect. 3 we collect all results needed at the linear level on the linearized scalar curvature
operator on the base orbifold. In particular we construct global functions in the kernel of the
linearized operator with prescribed blow up behaviour near the singularities (see Proposi-
tion 3.3).

Section 4 contains the (weighted) linear analysis on a scalar flat Kähler resolution of an
isolated singularity. These results are significantly different from what was known, in that
our problem forces us to use weights in a different, more delicate, range.

In Sect. 5 the existence of truncated Kcsc metrics on the base and on the models is proved
in Propositions 5.1 and 5.2.

Section 6 contains the analytic proof of Theorem 1.1 by proving the mentioned Cauchy-
data matching property of the truncated metrics previously produced.
Section 7 gives a complete description of the above mentioned examples.

2 Notations and preliminaries

2.1 Eigenfunctions and eigenvalues of1S2m−1

In order to fix some notation which will be used throughout the paper, we agree that S2m−1 is
the unit sphere of real dimension 2m − 1, equipped with the standard round metric inherited
from (Cm, geucl). We will denote by {φk}k∈N a complete orthonormal system of the Hilbert
space L2(S2m−1), given by eigeinfunctions of the Laplace-Beltrami operator	S2m−1 , so that,
for every k ∈ N,
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	S2m−1φk = λkφk,

and {λk}k∈N are the eigenvalues of 	S2m−1 counted with multiplicity. We will also indicate
by � j the generic element of the j-th eigenspace of 	S2m−1 , so that, for every j ∈ N,

	S2m−1� j = � j� j ,

and {� j } j∈N are the eigenvalue of	2m−1
S

counted without multiplicity. In particular, we have
that� j = − j(2m − 2+ j), for every j ∈ N. If � �U (m) is a finite subgroup of the unitary
group acting on C

m having the origin as its only fixed point, we denote by {��
j } j∈N the

eigenvalues counted without multiplicity of the operator 	S2m−1 restricted to the �-invariant
functions. For future conveniencewe introduce the following notation, given f ∈ L2

(
S
2m−1

)
we denote with f (k) the L2

(
S
2m−1

)
-projection of f on the �k-eigenspace of 	S2m−1 and,

f (†) := f − f (0).

2.2 The scalar curvature equation

We let (M, g, ω) be a Kähler orbifold with complex dimension equal to m, where g is the
Kähler metric andω is the Kähler form. Notice that we allow the Riemannian orbifold (M, g)
to be incomplete, since in the following we will be eventually led to consider punctured
orbifolds. We denote by sω the scalar curvature of the Kähler metric g and by ρω its Ricci
form. In the following it will be useful to consider cohomologous deformations of the Kähler
form ω. Hence, for a smooth real function f ∈ C∞(M) such that ω + i∂∂ f > 0, we set,

ω f = ω + i∂∂ f ,

and we will refer to f as the deformation potential. Since we want to understand the behavior
of the scalar curvature under deformations of this type, it is convenient to consider the
following differential operator,

Sω(·) : C∞(M) −→ C∞(M), f �−→ Sω( f ) := sω+i∂∂ f ,

which associate to a deformation potential f the scalar curvature of the correspondingmetric.
We then have,

Sω( f ) = sω − 1

2
Lω f + 1

2
Nω( f ), (2.1)

where the linearized scalar curvature operator Lω is given by,

Lω f = 	2
ω f + 4 〈 ρω | i∂∂ f 〉 . (2.2)

Once we introduce the bilinear operator ◦ acting on tensors in (T M∗)(1,0) ⊗ (T M∗)(0,1)
as,

(T ◦U )i l̄ := Ti j̄ g
kj̄Ukl̄ T ,U ∈ (

T M∗)(1,0) ⊗ (
T M∗)(0,1) ,

the nonlinear remainder Nω takes the form,

Nω( f ) = 8trω (i∂∂ f ◦ i∂∂ f ◦ ρω) − 8trω (i∂∂ f ◦ i∂∂ 	ω f )

+ 4	ω trω (i∂∂ f ◦ i∂∂ f ) + 2Rω( f ), (2.3)

with Rω( f ) the collections of all higher order terms.
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2.3 The Kähler potential of a Kcsc orbifold

We let (M, g, ω) be a compact constant scalar curvature Kähler orbifold without boundary
with complex dimension equal to m. Unless otherwise stated the singularities are assumed
to be isolated.

Combining the local ∂∂-lemma with the equations of the previous section, we now recall
a more precise well-known description of the local structure of the Kähler potential of a Kcsc
metric.

Proposition 2.1 Let (M, g, ω) be a Kähler orbifold. Then, given any point p ∈ M, there
exists a holomorphic coordinate chart (U , z1, . . . , zm) centered at p such that the Kähler
form can be written as,

ω = i∂∂

( |z|2
2

+ ψω

)
, with ψω = O(|z|4).

If in addition the scalar curvature sg of the metric g is constant, then ψg is a real analytic
function on U, and one can write,

ψω(z, z) =
+∞∑
k=0

�4+k(z, z),

where, for every k ∈ N, the component �4+k is a real homogeneous polynomial in the
variables z and z of degree 4+k. In particular, we have that�4 and�5 satisfy the equations,

	2 �4 = −2sω,

	2 �5 = 0,

where	 is the Euclidean Laplace operator ofCm. Finally, the polynomial�4 can be written
as,

�4 (z, z) =
(

− sω
16m(m + 1)

+ �2 + �4

)
|z|4 , (2.4)

where�2 and�4 are functions in the second and fourth eigenspace of	S2m−1 , respectively.

2.4 The Kähler potential of a scalar flat ALE Kähler resolution

We start by recalling the concept ofAsymptotically Locally Euclidean (ALE for short) Kähler
resolution of an isolated quotient singularitiy. We let � � U (m) be a finite subgroup of the
unitary group acting freely away from the origin. and we say that a complete noncompact
Kähler manifold (X�, h, η) of complex dimension m, where h is the Kähler metric and η

is the Kähler form, is an ALE Kähler manifold with group � if there exist a positive radius
R > 0 and a quotient map π : X� → C

m/�, such that,

π : X�\π−1(BR) −→ (
C
m\BR

)
/�,

is a biholomorphism and in standard Euclidean coordinates the metric π∗h satisfies the
expansion, ∣∣∣∣ ∂α

∂xα

((
π∗h)i j̄ − 1

2
δi j̄

)∣∣∣∣ = O
(
|x |−τ−|α|) ,

for some τ > 0 and every multindex α ∈ N
m .
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Remark 2.1 The reader must be aware of the fact that the above definition gives only a special
class of Kähler ALEmanifolds. In particular we are identifying the complex structure outside
a compact subset with the standard one, while in general it could be only asymptotic to it
and in fact the complex structure could not even admit holomorphic coordinates at infinity
as shown for example by Honda [14] also in the scalar flat case.

Remark 2.2 In the following, we will make as systematic use of π as an identification and,
consequently, we will make no difference between h and π∗h as well as between η and π∗η.

Remark 2.3 It is a simple exercise to prove that if � is nontrivial, then there are no �-
invariant linear functions on C

m , and thus, with the notations introduced in Sect. 2.1, we
have that ��

1 > �1. This will be repeatedly used in our arguments in Proposition 2.3 and
Proposition 4.2.

We are now ready to present a result which describe the asymptotic behaviour of the Käh-
ler potential of a scalar flat ALE Kähler metric. This can be though as the analogous of
Proposition 2.1. We omit the proof because in the spirit it is very similar to the one of the
aforementioned proposition and the details can be found in [4].

Proposition 2.2 Let (X�, h, η) be a scalar flat ALE Kähler resolution of an isolated quotient
singularitiy and let π : X� → C

m/� be the quotient map. Then for R > 0 large enough,
we have that on X�\π−1(BR) the Kähler form can be written as,

η = i∂∂

(
|x |2
2

+ eX�
|x |4−2m − cX�

|x |2−2m + ψη (x)

)
, with ψη = O(|x |−2m),

for some real constants eX� and cX� . Moreover, the radial component ψ(0)
η in the Fourier

decomposition of ψη is such that,

ψ(0)
η (|x |) = O (|x |6−4m)

.

In the case where the ALEKähler metric is Ricci-flat it is possible to obtain sharper estimates
for the deviation of the Kähler potential from the Euclidean one, which we believe to be of
independent interest. This is far formbeing obvious and in fact it is an important result of Joyce
[15, Theorem 8.2.3 pag 175]. With the following proposition we now give an improvement
of Joyce’s result which will turn out to be crucial in the rest of the paper.

Proposition 2.3 Let (X�, h, η) be as in Proposition 2.2. Moreover let ��U (m) be nontrivial
and e (�) = 0. Then for R > 0 large enough, we have that on X�\π−1(BR) the Kähler form
can be written as

η = i∂∂

( |x |2
2

− cX� |x |2−2m + ψη (x)

)
, with ψη = O(|x |−2m) , (2.5)

for some positive real constant cX� > 0. Moreover, the radial componentψ(0)
η in the Fourier

decomposition of ψη is such that,

ψ(0)
η (|x |) = O (|x |2−4m)

.

Proof By [15, Theorem 8.2.3], we have that on X�\π−1(BR) the Kähler form η can be
written as,

η = i∂∂

( |x |2
2

− cX� |x |2−2m + ψη (x)

)
with ψη (x) = O (|x |2−2m−γ

)
,
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for some γ ∈ (0, 1). Since (X�, h) is scalar flat, arguing as in Proposition 2.1, we deduce
that ψη is a real analytic function. To obtain the desired estimates on the decay of ψη, we are
going to make use of the equation Seucl(ψη − cX� |x |2−2m) = 0. By means of identity (2.1),
(2.2) and (2.3), this can be rephrased in terms of ψη as follows,

	2ψη = 8 tr
(
i∂∂

(
ψη − cX� |x |2−2m) ◦ i∂∂	ψη

)
+ 4	 tr

(
i∂∂

(
ψη − cX� |x |2−2m) ◦ i∂∂

(
ψη − cX� |x |2−2m) )

+ 2Reucl
(
ψη − cX� |x |2−2m)

,

where, in writing the first summand on the right hand side, we have used the fact that
	|x |2−2m = 0. Since ψη = O(|x |2−2m−γ ), for some γ ∈ (0, 1), it is straightforward to see
that all of the terms on the right hand side can be estimated asO(|x |−2−4m−γ ), with the only
exception of the purely radial term,

	 tr
(
(i∂∂|x |2−2m) ◦ (i∂∂|x |2−2m)

) = O(|x |−2−4m).

For sake of convenience, we set now the right hand side of the above equation equal to F/2,
so that,

	2ψη = F .

It is now convenient to expand both ψη and F in Fourier series as,

ψη(x) =
+∞∑
k=0

ψ(k)
η (|x |) φk(x/|x |) and F(x) =

+∞∑
k=0

F (k)(|x |) φk(x/|x |),

where the functions {φk}k∈N, are the eigenfunctions of the spherical laplacian 	S2m−1 on
S
2m−1, counted with multplicity. Since φ0 ≡ |S2m−1|−1/2, we will refer to ψ

(0)
η and F (0) as

the radial part of ψη and F , respectively. We also notice that in the forthcoming discussion it
will be important to select among the eigenfunctionsφk ’s, only the oneswhich are�-invariant,
in order to respect the quotient structure. So far, we have seen that F (0) = O(|x |−2−4m) and
F (k) = O(|x |−2−4m−γ ), for k ≥ 1. On the other hand, using the linear ODE satisfied by the
components ψ(k)

η , it is not hard to see that their general expression is given by,

ψ(k)
η (|x |) = ak |x |4−2m−α(k) + bk |x |2−2m−α(k) + ck |x |α(k) + dk |x |α(k)+2 + ψ̃(k)

η (|x |),
where, in view of the behavior of the F (k)’s, the functions ψ̃(k)

η are such that,

ψ̃(0)
η = O(|x |2−4m) and ψ̃(k)

η = O(|x |2−4m−γ ), for k ≥ 1,

and the integers α(k)’s are such that α(k) = h if and only if φk belongs to the h-th eigenspace.
Since the cited Joyce’s result implies that ψ(k)

η = O(|x |2−2m−γ ), it is easy to deduce that

ck = 0 = dk , for every k ∈ N. Moreover, we have that a0 = 0 = b0 and thus ψ(0)
η =

O(|x |2−4m), as wanted. The same kind of considerations imply that the components ψ(k)
η ’s

satisfy the desired estimates for every k ≥ 2m + 1, that is for every k such that α(k) ≥ 2.
For 1 ≤ k ≤ 2m, we have that ak = 0, but a priori nothing can be said about the bk’s and
thus at a first glance, one has that,

ψ(k)
η (|x |) = bk |x |1−2m + ψ̃(k)

η (|x |), for 1 ≤ k ≤ 2m.

As it has been pointed out in Remark 2.3, there are no �-invariant eigenfunctions for	S2m−1

in the first eigenspace. This means that the componentsψk
η ’s, with 1 ≤ k ≤ 2m do not appear

in the Fourier expansion of ψη and hence ψη(x) = O(|x |−2m). ��
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We conclude this section with the following, probably well known observation, which
will turn out to be very useful in our proof. The authors are not aware of a reference of it so
we include its proof for the reader’s convenience.

Proposition 2.4 If (X , η) is Ricci flat, we have,

dμη = π∗dμ0 ,

and for R > 0

Volη
(
X�,R

) = |S2m−1|
2m |�| R

2m .

Proof Let π� : Cm → C
m/� the canonical holomorphic quotient map, since,

ρη = 0,

on (Cm\BR) /� we have,

i∂∂
[
log

(
det

(
(π�)

∗ (
π−1)∗

η
))]

= 0.

We want to prove that on Cm\ {0},

det
(
(π�)

∗ (
π−1)∗

η
)

≡ 1

2m
.

By Proposition 2.3 we have on C
m\BR ,

(π�)
∗ (

π−1)∗
ηi j̄ = δi j̄

2
− c(�)∂i∂ j |x |2−2m + O (|x |−2m)

,

that implies immediately,

log
(
det

(
(π�)

∗ (
π−1)∗

η
))

= − m log (2) + O (|x |−2−2m)
.

On C
m\BR we have,

i∂∂ log
(
det

(
(π�)

∗ (
π−1)∗

η
))

= − id
(
∂ log

(
det

(
(π�)

∗ (
π−1)∗

η
)))

,

so,

∂ log
(
det

(
(π�)

∗ (
π−1)∗

η
))

∈ H1 (
C
m\BR,C

)
,

but H1 (Cm\BR,C) = 0 and there exists h1 ∈ C1 (Cm\BR,C) such that,

∂ log
(
det

(
(π�)

∗ (
π−1)∗

η
))

= dh1 = ∂h1 + ∂h1 ∂h1 = 0.

Analogously, there is h2 ∈ C1 (Cm\BR,C) such that,

∂
[
log

(
det

(
(π�)

∗ (
π−1)∗

η
))

− h1
]

= dh2 = ∂h2 + ∂h2 ∂h2 = 0.

It is now clear that,

d
[
log

(
det

(
(π�)

∗ (
π−1)∗

η
))

− h1 − h2
]

= 0.

We conclude that on Cm\BR ,

log
(
det

(
(π�)

∗ (
π−1)∗

η
))

= h1 + h2 + K K ∈ R Imh2 = −Imh1,
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moreover h1, h2 are holomorphic on C
m\BR and by Hartogs extension theorem they are

extendable to functions H1, H2 holomorphic on C
m . Since H1, H2 are holomorphic, their

real and imaginary parts are harmonic with respect to the euclidean metric on C
m and by

assumptions on η we have on C
m\BR ,

ReH1 + ImH2 + K = −m log (2) + O (|x |−2−2m)
.

SinceReH1+ImH2+K is harmonic and bounded, Liouville theorem implies it is constant,
so that,

det
(
(π�)

∗ (
π−1)∗

η
)

= 1

2m
.

We can now see that,

1

m! (π�)
∗ [(

π−1)∗
η
]∧m = dμ0.

and then,

Volη
(
X�,R

) =
∫
BR/�\{0}

dμ(π−1)
∗
η = |S2m−1|

2m |�| R
2m,

so also the third statement is proved. ��

3 Linear analysis on a Kcsc orbifold

In this sectionwe develop the linear analysis for the operatorLω andwe do it in full generality
even if, in this work, we will use only some particular cases of this theory. We distinguish
between two sets of points: {p1, . . . , pN } with neighborhoods biholomorphic to a ball of
C
m/� j with � j nontrivial such that Cm/� j admits an ALE Kahler scalar-flat resolution(
X� j , h, η j

)
with eX� j

= 0 and the set (possibly empty) {q1, . . . , qK } whose points have
neighborhoods biholomorphic to a ball ofCm/�N+l such thatCm/�N+l admits a scalar flat
ALE resolution (Y�N+l , kl , θl) with eX�N+l

�= 0. To simplify the notation we set,

p := {p1, . . . , pN } , q := {q1, . . . , qK } , and Mp,q := M\ (p ∪ q) .

CAVEAT We agree that, if q = ∅, then Mp := Mp,∅. When this case occurs and whenever
an object, that could be a function or a tensor, has indices relative to elements of q we set
these indices to 0.

3.1 The bounded kernel ofL!

As usual we let (M, g, ω) be a compact Kcsc orbifold with isolated singularities and we
assume that the kernel of the linearized scalar curvature operator Lω defined in (2.2) is non-
trivial, in the sense that it contains also nonconstant functions. By the standard Fredholm
theory for self-adjoint elliptic operators, we have that such a kernel is always finite dimen-
sional. Throughout the paper we will assume that it is (d + 1)-dimensional and we will
set,

ker(Lω) = spanR {ϕ0, ϕ1, . . . , ϕd}, (3.1)

where ϕ0 ≡ 1, d is a positive integer and ϕ1, . . . , ϕd is a collection of linearly independent
functions in ker(Lω) with zero mean and normalized in such a way that ||ϕi ||L2(M) = 1,
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i = 1, . . . , d , for sake of simplicity. We recall the following classical characterization of
ker(Lω).

Proposition 3.1 Let (M, g, ω) be a compact constant scalar curvature Kähler orbifold with
isolated singularities. Then, the subspace of ker(Lω) given by the elements with zero mean
is in one to one correspondence with the space of holomorphic vector fields which vanish
somewhere in M.

The aim of this section is to study the solvability of the linear problem,

Lωu = f , (3.2)

on the complement of the singular points inM . In order to do that, we introduce some notation
as well as an appropriate functional setting. We consider geodesics balls Br0

(
p j

)
, Br0 (ql)

of radius r0 > 0, with Kähler normal coordinates centered at the points p j ’s and ql ’s and we
set,

Mr0 := M\
⎛
⎝ N⋃

j=1

Br0
(
p j

) ∪
K⋃
l=1

Br0 (ql)

⎞
⎠ .

For δ ∈ R and α ∈ (0, 1), we define the weighted Hölder space Ck,α
δ

(
Mp,q

)
as the set of

functions f ∈ Ck,α
loc

(
Mp,q

)
such that the norm,

‖ f ‖Ck,α
δ (Mp,q)

:= ‖ f ‖Ck,α(Mr0 )
+ sup

0<r≤r0
r−δ

N∑
j=1

∥∥∥ f (r ·)|Br0(p j )

∥∥∥
Ck,α(B2\B1)

+ sup
0<r≤r0

r−δ
K∑
l=1

∥∥∥ f (r ·)|Br0 (ql )
∥∥∥
Ck,α(B2\B1)

,

is finite. We observe that the typical function f ∈ C4,α
δ

(
Mp,q

)
beheaves like,

f (·) = O(
dω

(
p j , ·

)δ )
, on Br0

(
p j

)
and f (·) = O(

dω
(
q j , ·

)δ )
, on Br0

(
q j

)
,

where dω is the Riemannian distance induced by the Kahler metric ω.
We are now in the position to solve Eq. (3.2) in the case where the datum f is orthogonal

to ker(Lω). By this we mean that, looking at f as a distribution, we have,

〈 f |ϕi 〉D ′×D = 0, (3.3)

for every i = 0, . . . , d , where we denoted by 〈· | · · 〉D ′×D the distributional pairing and the
functions ϕi ’s are as in (3.1). It is worth pointing out that since the functions in ker(Lω) are
smooth, everything makes sense.

To solve Eq. (3.2) we need to ensure the Fredholmness of the operatorLω on the functional
spaces we have chosen. The Fredholm property depends heavily on the choice of weights,
indeed the operator Lω is Fredholm if and only if the weight is not an indicial root (for
definition of indicial roots we refer to [5]) at any of the points p j ’s or ql ’s. Since in normal
coordinates on a punctured ball, the principal part of our operator Lω is ’asymptotic’ to the
Euclidean Laplacian	, then the set of indicial roots of Lω at the center of the ball coincides
with the set of indicial roots of 	 at 0. We recall that the set of indicial roots of 	 at 0 is
given by Z\ {5 − 2m, . . . ,−1} for m ≥ 3 and Z for m = 2.
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By the analysis in [4], we recover the following result, which provides the existence of
solutions in Sobolev spaces for the linearized equation together with a priori estimates in
suitable weighted Hölder spaces.

Theorem 3.1 For every f ∈ L p(M), p > 1, satisfying the orthogonality condition (3.3),
there exists a unique solution u ∈ W 4,p(M) to,

Lωu = f ,

which satisfy the condition (3.3). Moreover, the following estimates hold true.

• If m ≥ 3 and in addition f ∈ C0,α
δ−4(Mp,q) with δ ∈ (4 − 2m , 0), then the solution u

belongs to C4,α
δ (Mp,q) and satisfy the estimates,

‖u‖C4,α
δ (Mp,q)

≤ C ‖ f ‖C0,α
δ−4(Mp,q)

, (3.4)

for some positive constant C > 0.
• If m = 2 and in addition f ∈ C0,α

δ−4(Mp,q) with δ ∈ (0 , 1), then the solution u belongs

to C4,α
loc (Mp,q) and satisfy the following estimates,

∥∥∥∥∥∥ u −
N∑
j=1

u(p j )χp j −
K∑
l=1

u(ql)χql

∥∥∥∥∥∥
C4,α
δ (Mp,q)

+
N∑
j=1

|u(p j )| +
K∑
l=1

|u(ql)|

≤ C ‖ f ‖C0,α
δ−4(Mp,q)

, (3.5)

where C > 0 is a positive constant and the functions χp1 , . . . , χpN and χq1 , . . . , χqK are
smooth cutoff functions supported on small balls centered at the points p1, . . . , pN and
q1, . . . , qK , respectively and identically equal to 1 in a neighborhood of these points.

In order to drop the orthogonality assumption (3.3) in Theorem 3.1 and tackle the general
case, we first need to investigate the behaviour of the fundamental solutions of the operator
Lω. This will be done in the following section.

3.2 Multi-poles fundamental solutions ofL!

The aim of this section is twofold. On one hand, we want to produce the tools for solving
Eq. (3.2) on Mp,q, when f is not necessarily orthogonal to ker (Lω). On the other hand, we
are going to determine under which global conditions on ker(Lω)we can produce a function,
which near the singularities behaves like the principal non euclidean part of the Kähler
potential of the corresponding ALE resolution. In concrete, building on Propositions 2.3
and 2.2, we aim to establish the existence of a function, which blows up like |z|2−2m near the
p j ’s and like |z|4−2m near the ql ’s. Such a function will then be added to the original Kähler
potential of the base orbifold in order to make it closer to the one of the resolution. At the
same time, for obvious reasons, it is important to guarantee that this new Kähler potential
will produce on Mp,q the smallest possible deviation from the original scalar curvature, at
least at the linear level. Thinking of g as a perturbation of the flat metric at small scale, we
have that Lω can be thought of as a perturbation of 	2. Since |z|2−2m and |z|4−2m satisfy
equations of the form,

	2(A|z|2−2m + B|z|4−2m) = C	δ0 + Dδ0,
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where δ0 is the Dirac distribution centered at the origin and A, B,C and D are suitable
constants, we are led to study these type of equations on M for the operator Lω.

The following easily follows from standard arguments in functional analysis.

Proposition 3.2 Let (M, g, ω) be compact Kcsc orbifold of complex dimension m and let
ker(Lω) = span{ϕ0, ϕ1, . . . , ϕd}, as in (3.1). Let ( f0, . . . , fd) be a vector in Rd+1. Assume
that the following linear balancing condition holds

fi +
K∑
l=1

alϕi (ql) +
N∑
j=1

b j (	ϕi )(p j ) +
N∑
j=1

c jϕi (p j ) = 0, i = 1, . . . , d ,

f0 Volω(M) +
K∑
l=1

al +
N∑
j=1

c j = ν Volω(M), (3.6)

for some choice of the coefficients ν, a = (a1, . . . , aK ), b = (b1, . . . , bN ) and c =
(c1, . . . , cN ). Then, there exist a distributional solution U ∈ D ′(M) to the equation,

Lω[U ] + ν =
d∑

i=0

fi ϕi +
K∑
l=1

al δql +
N∑
j=1

b j 	δp j +
N∑
j=1

c j δp j , in M . (3.7)

Remark 3.1 When fi = 0, for i = 0, . . . , d , we only impose the balancing condition (3.6),
which specializes to,

K∑
l=1

alϕi (ql) +
N∑
j=1

b j (	ϕi )(p j ) +
N∑
j=1

c jϕi (p j ) = 0 , (3.8)

and we obtain a real number νa,c, defined by the relation,

K∑
l=1

al +
N∑
j=1

c j = νa,c Volω(M) , (3.9)

and a distribution Ga,b,c ∈ D ′(M), which satisfies the equation,

Lω

[
Ga,b,c

] + νa,c =
K∑
l=1

al δql +
N∑
j=1

b j 	δp j +
N∑
j=1

c j δp j , in M .

We will refer to Ga,b,c as a multi-poles fundamental solution of Lω.

The following two lemmata and the subsequent proposition (3.3) will give us a precise
description of the behavior of a multi-poles fundamental solution Ga,b,c of Lω around the
singular points. The same considerations obviously apply to a distributional solution U of
the Eq. (3.7). The first observation in this direction can be found in [5] and we report it here
for sake of completeness.

Lemma 3.2 Let (M, g, ω) be a Kcsc orbifold of complex dimension m ≥ 2 and let Mq =
M\{q}, with q ∈ M. Then, the following holds true.

• If m ≥ 3, there exists a function G		(q, ·) ∈ C4,α4−2m(Mq) ∩ C∞
loc(Mq), orthogonal to

ker(Lω) inthe sense of (3.3), such that,

Lω[G		(q, ·)] + 2(m − 1) |S2m−1|
|�|

[
4(m − 2) δq

] ∈ C0,α(M),
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where |�| is the order of the orbifold group at q. Moreover, if z are holomorphic coordi-
nates centered at q, it holds the expansion,

G		(q, z) = |z|4−2m + O (|z|6−2m)
.

• If m = 2, there exists a function G		(q, ·) ∈ C∞
loc(Mq), orthogonal to ker(Lω) inthe

sense of (3.3), such that,

Lω[G		(q, ·)] − 4|S3|
|�| δq ∈ C0,α(M),

where |�| is the order of the orbifold group at q. Moreover, if z are holomorphic coordi-
nates centered at q, it holds the expansion,

G		(q, ·) = log(|z|) + Cq + O(|z|2),
for some constant Cq ∈ R.

Before stating the next lemma, it is worth pointing out that G		(q, ·) has the same rate
of blow up as the Green function of the bi-Laplacian operator	2. Since we want to produce
a local approximation of the multi-poles fundamental solutionGa,b,c , we also need a profile
whose blow up rate around the singular points is the same as the one of the Green function
of the Laplace operator. This will be responsible for the 	δp’s terms.

Lemma 3.3 Let (M, g, ω) be a Kcsc orbifold of complex dimension m ≥ 2 and let Mp =
M\{p}, with p ∈ M. Then, the following holds true.

• If m ≥ 3, there exists a function G	(p, ·) ∈ C4,α2−2m(Mp) ∩ C∞
loc(Mp), orthogonal to

ker(Lω) inthe sense of (3.3), such that,

Lω[G	(p, ·)] − 2(m − 1) |S2m−1|
|�|

[
	δp + sω(m2 − m + 2)

m(m + 1)
δp

]
∈ C0,α(M),

where |�| is the cardinality of the orbifold group at p and sω is the constant scalar
curvature of the orbifold. Moreover, if z are holomorphic coordinates centered at p, it
holds the expansion,

G	(p, ·) = |z|2−2m + |z|4−2m (�2 + �4 ) + |z|5−2m
2∑
j=0

�2 j+1 + O (|z|6−2m)
,

for suitable smooth �-invariant functions � j ’s defined on S
2m−1 and belonging to the

j-th eigenspace of the operator 	S2m−1 .
• If m = 2, there exists a function G	(p, ·) ∈ C4,α−2 (Mp)∩C∞

loc(Mp), orthogonal to ker(Lω)

inthe sense of (3.3), such that,

Lω[G	(p, ·)] − |S3|
|�| 	δp − sω 2 |S3|

3 |�| δp ∈ C0,α(M),

where |�| is the cardinality of the orbifold group at p and sω is the constant scalar
curvature of the orbifold. Moreover, if z are holomorphic coordinates centered at p, it
holds the expansion

G	(p, ·) = |z|−2 + log(|z|)(�2 + �4) + Cp + |z|
2∑

h=0

�2h+1 + O(|z|2),
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for some constant Cp ∈ R, some H ∈ N and suitable smooth �-invariant functions�h’s
defined on S3 and belonging to the h-th eigenspace of the operator 	S3 .

Proof We focus on the case m ≥ 3 and since the computations for the case m = 2 are very
similar, we leave them to the reader. To prove the existence of G	 (p, ·), we fix a coordinate
chart centered at p and we consider the Green function for the Euclidean Laplacian |z|2−2m .
In the spirit of Proposition 2.1, we compute,

Lω[ |z|2−2m ] = (
Lω − 	2 ) [ |z|2−2m ]

= − 4 tr
(
i∂∂|z|2−2m ◦ i∂∂	ψω

) − 4 tr
(
i∂∂ψω ◦ i∂∂	|z|2−2m )

− 4	 tr
(
i∂∂ψω ◦ i∂∂|z|2−2m ) + O (|z|2−2m)

= − m

4|z|2m 	2�4 + m (m + 1)

|z|2m+2 	�4 − m

4
	

(
	�4

|z|2m
)

+ 4m (m + 1)	tr

(
�4

|z|2m+2

)
+ O (|z|2−2m)

,

where we used the explicit form of �4,

�4 (z, z) = −1

4

m∑
i, j,k,l=1

Ri j̄kl̄ z
i z j zk zl ,

and the complex form of the euclidean laplace operator,

	 = 4
m∑
i=1

∂2

∂zi∂zi
.

Expanding the real analytic function ψω as ψω = |z|4 (�0 +�2 +�4) + |z|5 (�1 +�3 +
�5) + O(|z6|), where, for h = 0, 1, 2, the �2h’s and the �2h+1’s are suitable �-invariant
functions in the h-th eigenspace of 	S2m−1 , we obtain,

Lω[|z|2−2m] = |z|−2m
2∑

h=0

c2h �2h + |z|1−2m
2∑

h=0

c2h+1 �2h+1 + O (|z|2−2m)
,

where c0, . . . , c5 are suitable constants. It is a straightforward but remarkable consequence
of formula (2.4), the fact that c0 = 0. It is then possible to introduce the corrections,

V4 = |z|4−2m (C2 �2 + C4 �4 ) and V5 = |z|5−2m
2∑

h=0

C2h+1 �2h+1,

where the coefficients C1, . . . ,C5 are so chosen that,

	2 [ V4 + V5 ] = |z|−2m ( c2 �2 + c4 �4 ) + |z|1−2m
2∑

h=0

c2h+1 �2h+1.

This implies in turn that Lω

[ |z|2−2m − V4 − V5
] = O(|z|2−2m) . Using the fact that

in normal coordinates centered at p the Euclidean bi-Laplacian operator 	2 yields a good
approximation of Lω, it is not hard to construct a functionW ∈ C4,α

6−2m(B
∗
r0) on a sufficiently

small punctured ball B∗
r0 centered at p, such that,

Lω

[ |z|2−2m − V4 − V5 − W
] ∈ C0,α(B∗

r0).
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By means of a smooth cut-off function χ , compactly supported in Br0 and identically equal
to 1 in Br0/2, we obtain a globally defined function in L1(M), namely,

Up = χ

(
|z|2−2m − |z|4−2m (C2 �2 + C4 �4 ) − |z|5−2m

2∑
h=0

C2h+1 �2h+1 − W

)

In order to guarantee the orthogonality condition (3.3), we set,

G	(p, · ) = Up(·) − 1

Volω (M)

∫
M
Up dμω −

d∑
i=1

ϕi (·)
∫
M
Up ϕi dμω,

andwe claim thatLω[G	(p, · )] satisfies the desired distributional identity. To see this, we set
Mε = M\Bε , where Bε is a ball of radius ε centered at p, and we integrateLω[G	(p, · )] =
Lω [Up] against a test function φ ∈ C∞(M). Setting,

ρ0
ω = ρω − sω

2m
ω,

and using formula (2.2), it is convenient to write,

Lω[Up] = 	2
ω Up + sω

m
	ω Up + 4

〈
ρ0
ω | i∂∂Up

〉
,

so that we have,∫
Mε

φ Lω

[
Up

]
dμω =

∫
Mε

φ
(
	2

ω + sω
m

	ω

)[
Up

]
dμω + 4

∫
Mε

φ
〈
ρ0
ω | i∂∂Up

〉
dμω.

We first integrate by parts the first summand on the right hand side and we take the limit for
ε → 0, obtaining,

lim
ε→0

∫
Mε

φ
(
	2

ω + sω
m

	ω

) [
Up

]
dμω

=
∫
M
Up

(
	2

ω + sω
m

	ω

) [
φ
]
dμω + lim

ε→0

∫
∂Mε

φ ∂ν(	ωUp) dσω

+ lim
ε→0

∫
∂Mε

(	ωφ) ∂νUp dσω + sω
m

lim
ε→0

∫
∂Mε

φ ∂νUp dσω

where dσω is the restriction of the measure dμω to ∂Mε and ν is the exterior unit normal to
∂Mε. Combining the definition of Up with the standard development of the area element, it
is easy to deduce that,

lim
ε→0

∫
∂Mε

(	ωφ) ∂νUp dσω + sω
m

lim
ε→0

∫
∂Mε

φ ∂νUp dσω

= 2 (m − 1) |S2m−1|
|�|

[
	ωφ (p) + sω

m
φ (p)

]
.

To treat the last boundary term, we use Proposition 2.1 and we compute,

∂ν (	ωUp) = |z|1−2m

(
2sω (m − 1)3

m (m + 1)
+ K2 �2 + K4 �4

)
+ O( |z|2−2m )

,

for suitable constants K2 and K4. Hence, we get,

lim
ε→0

∫
∂Mε

φ ∂ν(	ωUp) dσω = 2 (m − 1) |S2m−1|
|�|

[
sω(m − 1)2

m(m + 1)
φ (p)

]
.
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In conclusion we have that,

〈 (
	2

ω + sω
m

	ω

)[
Up

] ∣∣∣φ 〉
D ′×D

=
∫
M
Up

(
	2

ω + sω
m

	ω

)[
φ
]
dμω

+ 2 (m − 1) |S2m−1|
|�|

[
	ωφ (p) + sω(m2 − m + 2)

m(m + 1)
φ (p)

]
.

We now pass to consider the term contanining ρ0
ω. An integration by parts gives,

lim
ε→0

∫
Mε

φ
〈
ρ0
ω | i∂∂Up

〉
dμω =

∫
M
Up

〈
ρ0
ω | i∂∂φ 〉

dμω

+ lim
ε→0

∫
∂Mε

φ X(Up)� dμω + lim
ε→0

∫
∂Mε

Up X(φ)� dμω,

where, for a given function u ∈ C1(Mp), the vector field X(u) is defined as X(u) =(
ρ0
ω(∂

�u , · ) )�. It is easy to check that second boundary term vanishes in the limit. We claim
that the same is true for the first boundary term. To prove this, we recall the expansions,

(
ρ0
ω

)
i j̄ =

(
λi (p) − sω

2m

)
δi j̄ + O (|z|) ,

∂�Up =
m∑
i=1

(
(1 − m) |z|−2mzi + O (|z|2−2m) ) ∂

∂zi

dμω = (
1 + O (|z|2)) dμ0,

where the λi ’s are the eigenvalues of the matrix
(
ρ0
ω

)
i j̄ and dμ0 is the Euclideam volume

form. This implies,

X(Up) � dμω = (1 − m)

m∑
i=1

(
λi (p) − sω

2m

)
zi

∂

∂zi
� dμ0 + O (|z|) .

On the other hand, by the symmetry of dμ0, it is easy to deduce that,

∫
∂Mε

z1
∂

∂z1
� dμ0 = · · · =

∫
∂Mε

zm
∂

∂zm
� dμ0.

The claim is now a straightforward consequence. In synthesis, we have obtained,

〈
Lω

[
Up

] ∣∣φ 〉
D ′×D

=
∫
M
Up Lω

[
φ
]
dμω + 2 (m − 1) |S2m−1|

|�|
×

[
	ωφ (p) + sω(m2 − m + 2)

m(m + 1)
φ (p)

]

and the lemma is proven. ��

Having at hand the above lemmata,we are now in the position to describe the local structure
around the singular points of the multi-poles fundamental solutions Ga,b,c constructed in
Remark 3.1 through Proposition 3.2. For m ≥ 3, it is sufficient to apply the operator Lω to
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the expression,

Ga,b,c +
K∑
l=1

al
4(m − 2)

[ |�N+l |
2(m − 1)|S2m−1| G		(ql , ·)

]

+
N∑
j=1

(
c j

4(m − 2)
− sω (m2 − m + 2) b j

(m − 2)m(m + 1)

) [ |� j |
2(m − 1)|S2m−1| G		(p j , ·)

]

−
N∑
j=1

b j

[ |� j |
2(m − 1)|S2m−1| G	(p j , ·)

]
,

to get a function in C0,α(M). For m = 2, one can obtain the same conclusion, applying the
operator Lω to the expression,

Ga,b,c −
K∑
l=1

al
4

[ |�N+l |
|S3| G		(ql , ·)

]

−
N∑
j=1

(
c j
4

− sω b j

6

) [ |� j |
|S3| G		(p j , ·)

]

−
N∑
j=1

b j

[ |� j |
2|S3| G	(p j , ·)

]
.

Combining the previous observations with the standard elliptic regularity theory, we obtain
the following proposition.

Proposition 3.3 Let (M, g, ω) be a compact Kcsc orbifold of complex dimension m ≥ 2, let
Ker(Lω) = span{ϕ0, ϕ1, . . . , ϕd}, as in (3.1) and let Ga,b,c be as in Remark 3.1. Then, we
have that,

Ga,b,c ∈ C∞
loc(Mp,q) .

Moreover, if z1, . . . , zm are local coordinates centered at the singular points, then the fol-
lowing holds.

• If m ≥ 3, then Ga,b,c blows up like |z|2−2m at the points points of p1, . . . , pN and like
|z|4−2m at the points q1, . . . , qK .

• If m = 2, then Ga,b,c blows up like |z|−2 at the points p1, . . . , pN and like log (|z|) at
the points q1, . . . , qK .

3.3 Solution of the linearized scalar curvature equation

In this section, we are going to describe the possible choices for a right inverse of the operator
Lω, in a suitable functional setting. Since this operator is formally selfadjoint and since we
are assuming that its kernel is nontrivial, we expect the presence of a nontrivial cokernel. To
overcome this difficulty, we are going to consider some appropriate finite dimensional exten-
sions of the natural domain ofLω, which, according to Theorem 3.1, is given byC4,α

δ (Mp,q),
with δ ∈ (4 − 2m, 0) if m ≥ 3 and δ ∈ (0, 1) if m = 2. Building on the analysis of the
previous section, we are going to introduce the following deficiency spaces. Given a triple
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of vectors α ∈ R
K and β, γ ∈ R

N , we set, for m ≥ 3, l = 1, . . . , K and j = 1, . . . , N ,

Wl
α = − αl

4(m − 2)

[ |�N+l |
2(m − 1)|S2m−1| G		(ql , ·)

]
,

W j
β,γ = β j

[ |� j |
2(m − 1)|S2m−1| G	(p j , ·)

]

−
(

γ j

4(m − 2)
− sω (m2 − m + 2) β j

(m − 2)m(m + 1)

)

×
[ |� j |
2(m − 1)|S2m−1| G		(p j , ·)

]
, (3.10)

whereas, for m = 2, l = 1, . . . , K and j = 1, . . . , N , we set,

Wl
α = αl

[ |�N+l |
4|S3| G		(ql , ·)

]
,

W j
β,γ = β j

[ |� j |
|S3| G	(p j , ·)

]
+

(
γ j

4
− sω β j

6

) [ |� j |
|S3| G		(p j , ·)

]
.

We are now in the position to define the deficiency spaces,

Dq(α) = span
{
Wl

α : l = 1, . . . , K
}

and Dp(β, γ ) = span
{
W j

β,γ : j = 1, . . . , N
}
..

These are finite dimensional vector spaces and they can be endowed with the following norm.
If V = ∑K

l=1 V
l Wl

α ∈ Dq(α) and U = ∑N
j=1U

jW j
β,γ ∈ Dp(β, γ ), we set,

‖V ‖Dq(α) =
K∑
l=1

|V l | and ‖U‖Dp(β,γ ) =
N∑
j=1

|U j |.

We will also make use of the shorthand notation Dp,q(α,β, γ ) to indicate the direct sum
Dq(α) ⊕ Dp(β, γ ) of the deficiency spaces introduced above, endowed with the obvious
norm ‖ · ‖Dq(α) + ‖ · ‖Dp(β,γ ).

To treat the casem = 2, it is convenient to introduce further finite dimensional extensions
of the domain C4,α

δ (Mp,q), with δ ∈ (0, 1). These will be called extra deficiency spaces and
they are defined as,

Eq = span
{
χql : l = 1, . . . , K

}
and Ep = span

{
χp j : j = 1, . . . , N

}
,

where the functions χp1 , . . . , χpN , χq1 , . . . , χqK are smooth cutoff functions supported on
small balls centered at the points p1, . . . , pN , q1, . . . , qK and identically equal to 1 in a
neighborhood of these points. Given two functions X = ∑N

j=1 X
jχp j ∈ Ep and Y =∑K

l=1 Y
lχql ∈ Eq, we set,

‖Y‖Eq =
K∑
l=1

|Y l | and ‖X‖Ep =
N∑
j=1

|X j |.

Wewill also make use of the shorthand notation Ep,q to indicate the direct sum Eq ⊕Ep of the
extra deficiency spaces introduced above, endowed with the obvious norm ‖ · ‖Eq + ‖ · ‖Ep .
Notice that, with these notation, the estimate (3.5) in Theorem 3.1 reads,

|| ũ ||C4,α
δ (Mp,q)

+ || ◦
u ||Ep,q ≤ C || f ||C0,α

δ−4
,
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where u = ũ + ◦
u ∈ C4,α

δ (Mp,q) ⊕ Ep,q and f ∈ C0,α
δ−4(Mp,q) are functions satisfying the

equation Lω[u] = f as well as the orthogonality condition (3.3) and δ ∈ (0, 1).
We recall that we have assumed that the bounded kernel of Lω is (d + 1)-dimensional

and that it is spanned by {ϕ0, ϕ1, . . . , ϕd}, where ϕ0 ≡ 1 and ϕ1, . . . , ϕd , with d ≥ 1, is a
collection ofmutually L2(M)-orthogonal smooth functionswith zeromean and L2(M)-norm
equal to 1. Given a triple of vectors α ∈ R

K and β, γ ∈ R
N , it is convenient to introduce the

following matrices,

�il(α) := αl ϕi (ql), for i = 1 . . . , d and l = 1, . . . , K ,

�i j (β, γ ) := β j 	ϕi (p j ) + γ j ϕi (p j ), for i = 1 . . . , d and j = 1, . . . , N . (3.11)

These will help us in formulating our nondegeneracy assumption. We are now in the position
to state the main results of our linear analysis on the base orbifold.

Theorem 3.4 Let (M, g, ω) be a compact Kcsc orbifold of complex dimension m ≥ 2 and
let Ker(Lω) = span{ϕ0, ϕ1, . . . , ϕd}. Assume that (N + K ) ≥ d and that the following
nondegeneracy condition is satisfied: a triple of vectors α ∈ R

K and β, γ ∈ R
N is given

such that the d × (N + K ) matrix,(
(�il(α))1≤i≤d

1≤l≤K

∣∣∣∣ (
�i j (β, γ )

)
1≤i≤d
1≤ j≤N

)
,

has rank d. Then, the following holds.

• If m ≥ 3, then for every f ∈ C0,α
δ−4(Mp,q) with δ ∈ (4 − 2m, 0), there exist real number

ν and a function,

u = ũ + û ∈ C4,α
δ (Mp,q) ⊕ Dp,q(α,β, γ )

such that,

Lωu + ν = f , in Mp,q. (3.12)

Moreover, there exists a positive constant C = C(α,β, γ , δ) > 0 such that,

| ν | + || ũ ||C4,α
δ (Mp,q)

+ || û ||Dp,q(α,β,γ ) ≤ C || f ||C0,α
δ−4(Mp,q)

.

• If m = 2, then for every f ∈ C0,α
δ−4(Mp,q) with δ ∈ (0, 1), there exist real number ν and

a function,

u = ũ + ◦
u + û ∈ C4,α

δ (Mp,q) ⊕ Ep,q ⊕ Dp,q(α,β, γ ),

such that,

Lωu + ν = f , in Mp,q.

Moreover, there exists a positive constant C = C(α,β, γ , δ) > 0 such that,

| ν | + || ũ ||C4,α
δ (Mp,q)

+ || ◦
u ||Ep,q + || û ||Dp,q(α,β,γ ) ≤ C || f ||C0,α

δ−4(Mp,q)
.

Proof We only prove the statement in the case m ≥ 3, since it is completely analogous in
the other case. For sake of simplicity we assume α = 0 ∈ R

K , so that the nondegeneracy
condition becomes equivalent to the requirement that the matrix,(

�i j (β, γ )
)
1≤i≤d
1,≤ j≤N
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has full rank. Under these assumptions, the deficiency space Dp,q(α,β, γ ) reduces to
Dp(β, γ ). In order to split our problem, it is convenient to set,

f ⊥ = f − 1

Volω (M)

∫
M

f dμω −
d∑

i=1

ϕi

∫
M

f ϕi dμω,

so that f ⊥ satisfies the orthogonality conditions (3.3). By Theorem 3.1, we obtain the exis-
tence of a function u⊥ ∈ C4,α

δ (Mp,q), which satisfies the equation,

Lω [ u⊥] = f ⊥,

together with the orthogonality conditions (3.3) and the desired estimate (3.4). To complete
the resolution of Eq. (3.12), we set,

f0 = 1

Volω (M)

∫
M
f dμω and fi =

∫
M
f ϕi dμω, for i = 1, . . . , d .

Recalling the definition of �i j (β, γ ) and using the nondegeneracy condition, we select a
solution (ν,U1, . . . ,UN ) ∈ R

N+1 to the following system of linear balancing conditions,

fi +
N∑
j=1

U j [β j (	ϕi )(p j ) + γ j ϕi (p j )
] = 0, i = 1, . . . , d,

f0 Volω(M) +
N∑
j=1

U j γ j = ν Volω(M) .

It is worth pointing out that in general this choice is not unique, since it depends in the
choice of a right inverse for the matrix�i j (β, γ ). Theorem 3.2 implies then the existence of
a distribution U ∈ D ′(M) which satisfies,

Lω[U ] + ν =
d∑

i=0

fi ϕi +
N∑
j=1

U jβ j 	δp j +
N∑
j=1

U jγ j δp j , in M .

Arguing as in Proposition 3.3, it is not hard to show that U ∈ C∞
loc(Mp). In particular the

function u⊥ +U ∈ C4,α
loc (Mp) satisfies the equation,

Lω[u⊥ +U ] + ν = f , in Mp .

To complete the proof of our statement, we need to describe the local structure ofU in more
details. First, we observe that, by the very definition of the deficiency spaces, one has,

Lω

[
W j

β,γ

] = β j 	δp j + γ j δp j + V j
β,γ ,
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where, for every j = 1, . . . , N , the function V j
β,γ is in C∞(M). Combining this fact with

the linear balancing conditions, we deduce that,

Lω

⎡
⎣U −

N∑
j=1

U j W j
β,γ

⎤
⎦ = f0 − ν +

d∑
i=1

fi φi −
N∑
j=1

U j V j
β,γ

= 1

Volω(M)

N∑
j=1

U j γ j −
d∑

i=1

N∑
j=1

U j �i j (β, γ ) φi

−
N∑
j=1

U j V j
β,γ .

By the definition of V j
β,γ it follows that,

∫
M
V j

β,γ φ0 dμω = − γ j and
∫
M
V j

β,γ φi dμω = −�i j (β, γ ),

and thus, it is easy to check the right hand side of the equation above is orthogonal to ker(Lω).
Hence, using Theorem 3.1 and by the elliptic regularity, we deduce the existence of a smooth
function u ∈ C∞(M) which satisfies,

Lω [u] = 1

Volω(M)

N∑
j=1

U j γ j −
d∑

i=1

N∑
j=1

U j �i j (β, γ ) φi −
N∑
j=1

U j V j
β,γ , in M .

Setting û = ∑N
j=1 U j W j

β,γ , we have obtained that Lω [U ] = Lω [ û + u ], hence,
Lω[ u⊥+ u + û ] + ν = f , in Mp,

with ũ = (u⊥ + u) ∈ C4,α
δ (Mp) and û ∈ Dp(β, γ ). Moreover, combining the estimate (3.4)

with our construction, it is clear that, for suitable positive constants C0, . . . ,C3, possibly
depending on β, γ and δ, it holds,

|| u ||C4,α
δ (Mp)⊕Dp(β,γ )

= || ũ ||C4,α
δ (Mp)

+ || û ||Dp(β,γ )

≤ || u⊥||C4,α
δ (Mp)

+ || u ||C4,α
δ (Mp)

+ || û ||Dp(β,γ )

≤ C0 || f ⊥||C0,α
δ−4(Mp)

+ C1

N∑
j=1

|U j |

≤ C2

(
|| f ⊥ ||C0,α

δ−4(Mp)
+

d∑
i=1

| fi |
)

≤ C3 || f ||C0,α
δ−4(Mp)

,

which is the desired estimate. Finally, we observe that the constant ν as well can be easily
estimated in terms of the norm of f . This concludes the proof of the theorem. ��
Remark 3.2 In otherwords,with the notations introduced in the proof of the previous theorem,
we have proven that, for m ≥ 3 and δ ∈ (4 − 2m, 0), the operator,

L
(δ)
α,β,γ : C4,α

δ (Mp,q) ⊕ Dp,q(α,β, γ ) × R −→ C0,α
δ−4(Mp,q)

( ũ + û , ν ) �−→ Lω [ ũ + û ] + ν ,
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with β, γ and α satisfying the nondegeneracy condition, admits a (in general not unique)
bounded right inverse,

J
(δ)
α,β,γ : C0,α

δ−4(Mp,q) −→ C4,α
δ (Mp,q) ⊕ Dp,q(α,β, γ ) × R ,

so that
(
L
(δ)
α,β,γ ◦ J

(δ)
α,β,γ

) [ f ] = f , for every f ∈ C0,α
δ−4(Mp,q) and,

∥∥ J(δ)α,β,γ [ f ] ∥∥C4,α
δ (Mp,q)⊕Dp,q(α,β,γ )×R

≤ C || f ||C0,α
δ−4(Mp,q)

.

Of course, the analogous conclusion holds in the case m = 2.

4 Linear analysis on ALEmanifolds

We now reproduce an analysis similar to the one just completed on the base orbifold on
our model ALE resolutions of isolated singularities. We define also in this setting weighted
Hölder spaces. Since we will use duality arguments we introduce also weighted Sobolev
spaces. Let (X�, h, η) be an ALE Kähler resolution of isolated singularity and set,

X�,R0 = π−1 (
BR0

)
.

where π : X� → C
m/� is the canonical projection. This can be thought as the counterpart

in X� of Mr0 in M . For δ ∈ R and α ∈ (0, 1), the weighted Hölder space Ck,α
δ (X�) is the

set of functions f ∈ Ck,α
loc (X�) such that,

‖ f ‖Ck,α
δ (X�)

:= ‖ f ‖Ck,α
(
X�,R0

) + sup
R≥R0

R−δ ‖ f (R·)‖Ck,α(B1\B1/2) < +∞.

In order to define weighted Sobolev spaces we have to introduce a distance-like function
γ ∈ C∞

loc (X�) defined as,

γ (p) := χ (p) + (1 − χ (p)) |x (p) | p ∈ X�,

with χ a smooth cutoff function identically 1 on X�,R0 and identically 0 on X�\X�,2R0 . For
δ ∈ R, the weighted Sobolev space Wk,2

δ (X�) is the set of functions f ∈ L1
loc(X�) such

that,

‖ f ‖Wk,2
δ (X�)

:=
√√√√ k∑

j=0

∫
X

∣∣γ−δ−m+ j∇( j) f
∣∣2
η
dμη < +∞,

where,

∇( j) f := ∇ ◦ · · · ◦ ∇︸ ︷︷ ︸
j times

f .

We recall now the natural duality between weighted spaces,

〈·|·〉η : L2
δ (X�) × L2−2m−δ (X�) → R,

defined as,

〈 f |g〉η :=
∫
X
f g dμη. (4.1)
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Remark 4.1 We note that a function f ∈ Wk,2
δ (X�) ∩ C∞

loc (X�) on the set X�\X�,R0

beheaves like,

f |X�\X�,R0
(p) = O

(
|x (p) |δ′)

for dome δ′ < δ.

and a function f ∈ Ck α (X�) on the set X\X�,R0 typically beheaves like,

f |X�\X�,R0
(p) = O (|x (p) |δ) .

We also note that for every δ′ < δ we have the inclusion,

Ck,α
δ (X�) ⊆ Wk,2

δ′ (X�) .

The main task of this section is to solve the linearized constant scalar curvature equation,

Lηu = f .

We recall that by (2.2),

Lηu = 	2
ηu + 4

〈
ρη|i∂∂u

〉
.

and, since (X�, h, η) is scalar flat,Lη is formally self-adjoint.We also notice that if (X�, h, η)
is Ricci-flat, the operator Lη reduces to the η bi-Laplacian operator. Since we want to study
the operator Lη on weighted spaces we have to be careful on the choice of weights. Indeed
to have Fredholm properties we must avoid the indicial roots at infinity of Lη that, thanks to
the decay of the metric, coincide with those of euclidean bi-Laplace operator	2 . We recall
that the set of indicial roots at infinity for 	2 on Cm is Z\ {5 − 2m, . . . ,−1} for m ≥ 3 and
Z for m = 2. Let δ ∈ R with,

δ /∈ Z\ {5 − 2m, . . . ,−1} .
for m ≥ 3 and δ /∈ Z for m = 2, then the operator,

L
(δ)
η : W 4,2

δ (X�) → L2
δ−4 (X�) .

is Fredholm and its cokernel is the kernel of its adjoint under duality (4.1),

L
(−2m−δ)
η : W 4,2

−2m−δ (X�) → L2−2m−4−δ (X�) .

For ALE Kähler manifolds a result analogous to Proposition 3.1 holds true.

Proposition 4.1 Let (X�, h, η) a scalar flat ALE Kähler resolution. If m ≥ 3 and δ ∈
(4 − 2m, 0), then,

L
(δ)
η : C4,α

δ (X�) −→ C0,α
δ−4 (X�) ,

is invertible. If m = 2 and δ ∈ (0, 1), then,

L
(δ)
η : C4,α

δ (X�) −→ C0,α
δ−4 (X�) ,

is surjective with one dimensional kernel spanned by the constant function.

Remark 4.2 Rephrasing Proposition 4.1 we can say that for δ ∈ (4 − 2m) if m ≥ 3 and
δ ∈ (0, 1) if m = 2 the operator,

L
(δ)
η : C4,α

δ (X�) −→ C0,α
δ−4 (X�) .

has a continuous right inverse,

J
(δ) : C0,α

δ−4 (X�) −→ C4,α
δ (X�) .
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The proof of the above result follows standard lines (see e.g. Theorem 10.2.1 and Proposition
11.1.1 in [23]). We focus now on the asymptotic expansions of various operators on ALE
manifolds.

Lemma 4.1 Let (X�, h, η) be a scalar flat ALE-Kähler resolution with e (�) = 0. Then on
the coordinate chart at infinity we have the following expansions,

• for the inverse of the metric ηi j̄

ηi j̄ = 2

[
δi j̄ − 2cX� (m − 1)

|x |2m
(
δi j̄ − m

xi x j

|x |2
)

+ O (|x |−2−2m)] ; (4.2)

• for the unit normal vector to the sphere |x | = ρ

ν = 1

|x |
(
xi

∂

∂xi
+ xi

∂

∂xi

)[
1 + cX� (m − 1)2

|x |2m + O (|x |−2−2m)] ; (4.3)

• for the laplacian 	η

	η =
[
1 − 2cX� (m − 1)

|x |2m
]
	 +

[
8cX� (m − 1)m

|x |2m+2 xi x j + O
(
|x |−2−2m

)]
∂ j∂ı̄ . (4.4)

The proof of the above lemma consists of straightforward computations and is therefore
omitted.
We conclude this section with an observation regarding fine mapping properties of,

L
(δ)
η : W 4,2

δ (X�) → L2
δ−4 (X�) ,

that will be useful in Sect. 5.3 in a crucial point where we show how the nonlinear analysis
constrains the choice of balancing parameters. In the following proposition we want to solve
the equation,

Lη [u] = f ,

with f ∈ L2
δ−4 (X�) (C

0,α
δ−4 (X�)). In general, when δ ∈ (2 − 2m, 4 − 2m), the indicial root

3− 2m imposes to the solution u to have a component with asymptotic growth |x |3−2m . The
keypoint of Proposition is that if � is non trivial this doesn’t occur.

Proposition 4.2 Let (X�, h, η) be a scalar-flat ALE Kähler resolution with eX� = 0 and
nontrivial � �U (m). For δ ∈ (2 − 2m, 4 − 2m), the equation,

Lη [u] = f

with f ∈ L2
δ−4 (X�) (respectively f ∈ C0,α

δ−4 (X�)) is solvable for u ∈ W 4,2
δ (X�) (respec-

tively u ∈ C4,α
δ (X�)) if and only if, ∫

X�

f dμη = 0.

Proof We are going to prove the following characterization:

L
(δ)
η

[
W 4,2

δ (X�)
]

=
{
f ∈ L2

δ (X�) |
∫
X�

f dμη = 0

}
.

Since Lη is formally selfadjoint we can identify, via duality (4.1), the cokernel of,

L
(δ)
η : W 4,2

δ (X�) → L2
δ−4 (X�) δ ∈ (2 − 2m, 4 − 2m) ,
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with the kernel of,

L
(−2m−δ)
η : W 4,2

−2m−δ (X�) → L2−2m−4−δ (X�) .

We want to identify generators of this kernel. Let then u ∈ W 4,2
δ (X�) such that,

Lη [u] = 0,

with δ ∈ (0, 2),we want ot prove that u ≡ c0 for some c0 ∈ R. By standard elliptic regularity
we have that u ∈ Cω

loc (X�). On X�\X�,R we consider the Fourier expansion of u,

u =
+∞∑
k=0

u(k) (|x |) φk,

with u(k) ∈ Cn,α
δ ([R,+∞)) for any n ∈ N and this sum isCn,α-convergent on compact sets.

Then, using expansions (4.2), (4.3), (4.4), we have on X�\X�,R ,

0 = 	2
η [u] =

+∞∑
k=0

	2
[
u(k) (|x |) φk

]
+ |x |−2mL4 [u] + |x |−1−2mL3 [u] + |x |−2−2mL2 [u] .

where the Lk’s are differential operators of order k and uniformly bounded coefficients. The
equation,

+∞∑
k=0

	2
[
u(k) (|x |) φk

]
= −|x |−2mL4 [u] − |x |−1−2mL3 [u] − |x |−2−2mL2 [u] ,

implies

	2
[
u(k)φk

]
∈ Cn,α

δ−2m−4

(
X�\X�,R

)
for k ≥ 0.

Suppose by contradiction that,

lim sup
|x |→+∞

|u| > 0.

Since u(k)φk ∈ Cn,α
δ

(
X�\X�,R

)
the only possibilities are,

u(0) (|x |) = c0 + υ0 (|x |)
u(1) (|x |) = (|x | + υ1 (|x |)) φ1,

with υ0, υ1 ∈ Cn,α
δ−2m ([R,+∞)) and c0 ∈ R. But there are not φ1 that are �-invariant (see

Remark 2.3) since � is nontrivial, so the only possibility is that,

u(0) (|x |) = c0 + υ0 (|x |) .
We now show that u is actually constant, indeed u − c0 ∈ Cn,α

δ−2m (X) and,

Lη [u − c0] = 	2
η [u − c0] = 0,

so by Proposition 4.1 we can conclude,

u − c0 ≡ 0.

The proposition now follows immediately. ��
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5 Nonlinear analysis

In this section we collect all the estimates needed in the proof of Theorem1.1. As in [4]
and [5] we produce Kcsc metrics on orbifolds with boundary which we believe could be of
independent interest (Propositions 5.1, 5.2).
From now on we will assume that the points in p ⊂ M have resolutions which are Ricci-Flat
ALE Kähler manifold.
Given ε sufficiently small we look at the truncated orbifoldsMrε and X� j ,Rε for j = 1, . . . , N
where we impose the following relations:

rε = ε
2m−1
2m+1 = εRε.

Wewant to construct families ofKcscmetrics onMrε and X� j ,Rε perturbingKähler potentials
of ω and η j ’s. We build these perturbations in such a way that they depend on parameters
that we call pseudo- boundary data and we can also prescribe, with some freedom, principal
asymptotics of the resulting Kcsc metrics. By principal asymptoticswemean the terms of the
potentials of the families of Kcsc metrics on Mrε that near points p j beheave like |z|2−2m or
|z|4−2m and the terms of the potentials of the families of Kcsc metrics on X� j ,Rε approaching
infinity beheave like |x |2−2m or |x |4−2m . In a second moment we choose the exact shape of
these asymptotics by specifying some free parameters (tuning). The pseudo-boundary data
form a particular set of functions on the unit sphere and they are the parameters that rule
the behavior of the families of Kcsc metrics at the boundaries ∂Mrε and ∂X� j ,Rε . They
are the main tool for gluing the various families of metrics to a unique Kcsc metric on the
resulting manifold, indeed their arbitrariness will allow us to perform the procedure of data
matching. We call them pseudo-boundary data because they represent small perturbations
of the (suitably rescaled) potentials of the Kcsc metrics at the boundaries.

Notation For the rest of the section χ j will denote a smooth cutoff functions identically equal
to 1 on B2r0

(
p j

)
and identically equal to 0 outside B3r0

(
p j

)
.

5.1 Pseudo-boundary data and euclidean Biharmonic extensions

A key technical tool to implement such a strategy is given by using outer (which will be
transplanted on the base orbifold) and inner (transplanted on themodel) euclidean biharmonic
extensions of functions on the unit sphere. We define now the outer biharmonic extensions of
functions on the unit sphere. Let (h, k) ∈ C4,α

(
S
2m−1

)×C4,α
(
S
2m−1

)
the outer biharmonic

extension of (h, k) is the function Ho
h,k ∈ C4,α (Cm\B1) solution fo the boundary value

problem,

⎧⎪⎨
⎪⎩
	2Hout

h,k = 0 on Cm\B1

Hout
h,k = h on ∂B1

	Hout
h,k = k on ∂B1.

Moreover Hout
h,k has the following expansion in Fourier series for m ≥ 3,

Hout
h,k :=

+∞∑
γ=0

((
h(γ ) + k(γ )

4(m + γ − 2)

)
|w|2−2m−γ − k(γ )

4(m + γ − 2)
|w|4−2m−γ

)
φγ , (5.1)
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and for m = 2

Hout
h,k := h(0)|w|−2 + k(0)

2
log (|w|)

+
+∞∑
γ=1

((
h(γ ) + k(γ )

4γ

)
|w|−2−γ − k(γ )

4γ
|w|−γ

)
φγ . (5.2)

Remark 5.1 In the sequel we will take �-invariant (h, k) ∈ C4,α
(
S
2m−1

) × C4,α
(
S
2m−1

)
and by the Remark 2.3 we will have no terms with φ1 in the formulas (5.1) and (5.2) for
nontrivial �.

We define also the inner biharmonic extensions of functions on the unit sphere. Let(
h̃, k̃

)
∈ C4,α

(
S
2m−1

) × C2,α
(
S
2m−1

)
, the biharmonic extension Hin

h̃,k̃
on B1 of

(
h̃, k̃

)
is the function Hin

h̃,k̃
∈ C4,α

(
B1

)
given by the solution of the boundary value problem,

⎧⎪⎪⎨
⎪⎪⎩
	2Hin

h̃,k̃
= 0 w ∈ B1

Hin
h̃,k̃

= h̃ w ∈ ∂B1

	Hin
h̃,k̃

= k̃ w ∈ ∂B1

.

The function Hin
h̃,k̃

has moreover the expansion,

Hin
h̃,k̃

(w) =
+∞∑
γ=0

((
h̃(γ ) − k̃(γ )

4(m + γ )

)
|w|γ + k̃(γ )

4(m + γ )
|w|γ+2

)
φγ .

Remark 5.2 Again, if the group � is non trivial and for �-invariant (h, k), by Remark 2.3 ,
there will be no φ1-term in the above summations. So we will have,

Hin
h,k =

(
h̃(0) − k̃(0)

4m

)
+ k̃(0)

4m
|w|2 +

+∞∑
γ=2

((
h̃(γ ) − k̃(γ )

4(m + γ )

)
|w|γ + k̃(γ )

4(m + γ )
|w|γ+2

)
φγ .

As in [4,5] we introduce some functional spaces that will be needed in the sequel that will
naturally work as “space of parameters” for our construction:

B j := C4,α
(
S
2m−1/� j

)
× C2,α

(
S
2m−1/� j

)

B :=
N∏
j=1

B j

B (κ, δ) :=
{
(h, k) ∈ B

∣∣∣∣
∥∥∥h(0)j , k(0)j

∥∥∥B j
≤ κε4m+2r−6m+4−δ

ε ,

∥∥∥h(†)j , k(†)j

∥∥∥B j
≤ κε2m+4r2−4m−δ

ε

}
.

(5.3)

We call the functions in B (κ, δ) pseudo-boundary data and will be used to parametrize
solution of the Kcsc problem near a given “skeleton” solution built by hand to match some
of the first orders of the metrics coming on the two sides of the gluing.
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5.2 Kcsc metrics on the truncated base orbifold

We start with a Kcsc orbifold (M, ω, g) with isolated singular points such that there is a
subset of sungular points p ⊂ M whose elements have resolutions which are Ricci-flat ALE
Kähler manifold. We want to find Fout

0,b,c,h,k ∈ C4,α
(
Mrε

)
such that,

ω0,b,c,h,k := ω + i∂∂Fout
0,b,c,h,k

is a metric on Mrε and its scalar curvature sω0,b,c,h,k is a small perturbation of the scalar
curvature sω of the reference Kähler metric on M .
The function Fout

0,b,c,h,k consists of four blocks,

Fout
0,b,c,h,k := −ε2mG0,b,c + Pb,η + Hout

h,k + f out0,b,c,h,k

the skeleton ε2mG0,b,c, extensions of pseudo-boundary data Hout
h,k, transplanted potentials

of η j ’s Pb,η and a “small” correction term f out0,b,c,h,k that has to be determined. We want
Fout
0,b,c,h,k be a small perturbation of ω and hence we can use the expansion in Proposition 3.1

to look for the equation that f out0,b,c,h,k has to satisfy on Mrε . We have,

sω0,b,c,h,k = Sω
(−ε2mG0,b,c + Pb,η + Hout

h,k + f
)

= sω − 1

2
ε2mν0,c − 1

2
Lω

[
Pb,η

] − 1

2
Lω

[
Hout

h,k

] − 1

2
Lω [ f ]

+ 1

2
Nω

(−ε2mG0,b,c + Pb,η + Hout
h,k + f

)
, (5.4)

where in the second line we used the very definition ofG0,b,c. Rewriting the above equation
in terms of the unknown f we obtain,

Lω [ f ] = (
2sω − ε2mν0,c − 2sω0,b,c,h,k

) − Lω

[
Pb,η

] − Lω

[
Hout

h,k

]
+ Nω

(−ε2mG0,b,c + Pb,η + Hout
h,k + f

)
.

The rest of this section is devoted to solve this equation.

Skeleton The skeleton is made ofmulti-poles fundamental solutionsG0,b,c of Lω introduced
in Sect. 3.2. These can be regarded as functions defined on Mp that are in kerLω and blow
up approaching points in p. For this reason, the existence of a skeleton, is strictly related to
balancing conditions (3.8) and (3.9) in Remark 3.1 with a = 0, namely,

N∑
j=1

b j (	ϕi )(p j ) +
N∑
j=1

c jϕi (p j ) = 0

N∑
j=1

c j = ν0,c Volω(M)

so that,

Lω

[
G0,b,c

] + ν0,c =
N∑
j=1

b j 	δp j +
N∑
j=1

c j δp j , in M .

123



On the Kummer construction for Kcsc metrics

for a local description of the skeleton it is useful to keep in mind that, by Lemma 3.2, near
points p j we have the expansion,

G0,b,c ∼ b j |� j |
2 (m − 1) |S2m−1|G	

(
p j , z

)
.

It is clear that the form,

ω + i∂∂

⎡
⎣−ε2mG0,b,c +

(
b j |� j |

2c
(
� j

)
(m − 1) |S2m−1|

) 1
m

ε2χ jψη j

×
⎛
⎝

(
2c

(
� j

)
(m − 1) |S2m−1|
b j |� j |

) 1
m z

ε

⎞
⎠

⎤
⎦

matches exactly at the highest order the form
(

b j |� j |
2c(� j)(m−1)|S2m−1|

) 1
m
η j , once we rescale (as

we will in the final gluing) the model using the map,

x =
(
2c

(
� j

)
(m − 1) |S2m−1|
b j |� j |

) 1
m z

ε
,

where the coefficient c
(
� j

)
is given by Proposition 2.3. It is then convenient, from now on,

to set the following notation,

Bj =
(

b j |� j |
2c

(
� j

)
(m − 1) |S2m−1|

) 1
2m

. (5.5)

It will also be convenient to identify the right constants C j such that,

Lω

⎛
⎝G0,b,c −

N∑
j=1

c
(
� j

)
B2m
j G	

(
p j , z

) + C jG		

(
p j , z

)
⎞
⎠ ∈ C0,α (M) .

By Lemma 3.3 one gets,

C j = |� j |
8 (m − 2) (m − 1)

[
2c

(
� j

)
B2m
j

(m − 1) |S2m−1|
m|� j | sω

(
1 + (m − 1)2

(m + 1)

)
− c j

]
. (5.6)

The highest blow-up terms of G	,G		 in G0,b,c i.e. terms exploding like |z|2−2m, |z|4−2m

are the principal asymptotics of the family of Kcsc metrics ω0,b,c,h,k. At the moment of data
matching, the coefficients Bj ’s and C j ’s will be “tuned” in such a way that, principal asymp-
totics of ω0,b,c,h,k on Mrε will match exactly the “principal asymptotics” of ε2ηb̃ j ,h̃ j ,k̃ j

’s on

X
� j ,

Rε
b̃ j

’s. More precisely, under suitable rescalings, the |z|2−2m terms of G0,b,c will match

exactly the |x |2−2m terms of the potentials at infinity of η j ’s and also |z|4−2m terms will
match exactly the correction terms |x |4−2m that pop up transplanting potential of ω on X� j .
The justification for this procedure will come at the moment of data matching. indeed, when
we will look at the metrics at the boundaries, it will be clear that the ε-growths of the prin-
cipal asymptotics are the maximum among all terms constituting the family ω0,b,c,h,k and
are in fact too large to be controlled by the extensions of pseudo-boundary data (introduced
just below here). For general b, c as in assumptions of Proposition 5.1 the data matching
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procedure becomes hence impossible. To overcome this difficulty we are forced to impose
relations on b, c with the tuning procedure, and in some sense we fix them, in order to have
that the extensions of pseudo-boundary data control all the components of ω0,b,c,h,k not
perfectly matched. The tuning procedure, although it could appear as a merely technical
procedure, has strong geometric consequences indeed it yields to the right relations among
the coefficients b j and c j giving us a precise asymptotics of the metrics produced.

Extensions of pseudo-boundary data Using the notion of euclidean outer biharmonic exten-
sions of functions on the sphere we define for (h,k) ∈ B (κ, δ),

Hout
h,k :=

N∑
j=1

χ j H
out
h(†)j ,k(†)j

(
z

rε

)
. (5.7)

When we will look to this term at the boundary we will see that it has the second ε-growth
after the principal asymptotics and it will become the highest ε-growth after the “tuning”
of principal asymptotics. We will have, hence, that extensions of pseudo-boundary data
dominate every other term with respect to ε-growth. Moreover thanks to the arbitrariness of
(h,k), we can perform the Cauchy data matching procedure and glue the various metrics to
a unique one.

Transplanted potentials AsSzékelyhidi does in [25,26], we bring toMrε the potentials of η j ’s
suitably rescaled and cut off in order to havebetter estimates through algebraic simplifications.
Indeed, using the fact that η j ’s are scalar flat we obtain some useful cancellations when
compute the magnitude of the error we commit adding toω “artificial” terms like the skeleton
and the transplanted potentials. In x-coordinates on X� j ’s we have,

0 ≡ Seucl
(−c

(
� j

) |x |2−2m + ψη j (x)
)

= −1

2
	2 [

ψη j (x)
] + 1

2
Neucl

(−c
(
� j

) |x |2−2m + ψη j (x)
)
, (5.8)

with ψη j ’s potentials “at inifinity” of metrics η j ’s defined in Sect. 2 Proposition 2.3 formula
(2.5). With the rescaling,

x = Bj z

ε
,

where the coefficients Bj ’s are defined in formula (5.5), we consider the term,

Pb,η :=
N∑
j=1

B2
j ε

2χ jψη j

(
z

B jε

)
. (5.9)

We can rewrite identities (5.8) as follows,

0 ≡ Seucl
(−c

(
� j

)
ε2m B2m |z|2−2m + Pb,η

)
= −1

2
	2 [

Pb,η
] + 1

2
Neucl

(−c
(
� j

)
ε2mB2m |z|2−2m + Pb,η

)
. (5.10)

Unfortunately, since we are not in the euclidean setting, we have,

−1

2
Lω

[
Pb,η

] + 1

2
Nω

(−c
(
� j

)
ε2mB2m |z|2−2m + Pb,η

) �= 0.

and hence we produce an error that has to be corrected by the solution f of the Eq. (5.4).
The size of the solution f grows as the error grows and we need f to be small to be
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able to perform the Cauchy data matching procedure. So we want to minmize as much
as possible this error. Here two facts come into play, the first is that on a small ball centered
at p j ∈ p the metric ω osculates with order two to the euclidean one and the second is that
we substitute c

(
� j

)
ε2mB2m |z|2−2m with ε2mG0,b,c whose principal asymptotic is exactly

c
(
� j

)
ε2mB2m |z|2−2m . As we will see in the sequel we can use these two facts and relations

(5.10) to produce sharp estimates for the error Sω
(−ε2mG0,b,c + Pb,η

)
and verify that is

sufficiently small to allow us to perform the Cauchy data matching procedure and hence
conclude the gluing construction.

• Correction term It is the term that ensures the constancy of the scalar curvature of
the metric ω0,b,c,h,k on Mrε and it is a function f out0,b,c,h,k ∈ C4,α

δ

(
Mp

) ⊕ Dp (b, c)

if m ≥ 3 and f out0,b,c,h,k ∈ C4,α
δ

(
Mp

) ⊕ Ep ⊕ Dp (b, c) if m = 2, where the spaces

C4,α
δ

(
Mp

)⊕Dp (b, c) andC
4,α
δ

(
Mp

)⊕Ep⊕Dp (b, c) are defined in Sect. 3.3 by formulas
(3.11) and (3.11). As the notation suggests, the function f out0,b,c,h,k depends nonlinearly
on (h,k) and b and we find it by solving a fixed point problem on a suitable closed and
bounded subspace of C4,α

δ

(
Mp

)⊕Dp (b, c) ifm ≥ 3 and ∈ C4,α
δ

(
Mp

)⊕Ep ⊕Dp (b, c)
if m = 2.

Notation For the rest of the paper we will denote with C a positive constant, that can vary
from line to line, depending only on ω and η j ’s.

We can now state themain proposition for the base space, whose proof at this point follows
similar arguments as in [4,5] and is hence omitted:

Proposition 5.1 Let (M, g, ω) a Kcsc orbifold with isolated singularities and let p be the set
of singular points with non trivial orbifold group that admit a Kähler Ricci flat resolution.

• Assume exist b ∈ (
R

+)N
and c ∈ R

N such that,

{∑N
j=1b j	ωϕi

(
p j

) + c jϕi
(
p j

) = 0 i = 1, . . . , d
(� (b, c)) 1≤i≤d

1≤ j≤N
has rank d

where (� (b, c)) 1≤i≤d
1≤ j≤N

is the matrix introduced in Sect. 3 formula (3.11). Let G0,b,c be

the multi-poles solution of Lω constructed in Sect. 3 Remark 3.1.
• Let δ ∈ (4−2m, 5−2m). Given any (h,k) ∈ B (κ, δ), whereB (κ, δ) is the space defined

in formula (5.3), let Hout
h,k be the function defined in formula (5.7).

Hout
h,k :=

N∑
j=1

χ j H
out
h(†)j ,k(†)j

(
z

rε

)
.

• Let Pb,η be the transplanted potentials defined in formula (5.9),

Pb,η :=
N∑
j=1

B2
j ε

2χ jψη j

(
z

B jε

)
.

Then there exists f out0,b,c,h,k ∈ C4,α
δ

(
Mp

) ⊕ Dp (b, c) if m ≥ 3 and f out0,b,c,h,k ∈ C4,α
δ

(
Mp

) ⊕
Ep ⊕ Dp (b, c) if m = 2 such that,

ω0,b,c,h,k = ω + i∂∂
(−ε2mG0,b,c + Pb,η + Hout

h,k + f out0,b,c,h,k

)
.
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is a Kcsc metric on Mrε and the following estimates hold∥∥ f out0,b,c,h,k

∥∥
C4,α
δ (Mp)⊕Dp(b,c)

≤ Cε2m+2r2−2m−δ
ε for m ≥ 3,∥∥ f out0,b,c,h,k

∥∥
C4,α
δ (Mp)⊕Ep⊕Dp(b,c)

≤ Cε6r−2−δ
ε for m = 2.

Moreover sω0,b,c,h,k , the scalar curvature ofω0,b,c,h,k, is a small perturbation of sω, the scalar
curvature of the background metric ω and we have,∣∣sω0,b,c,h,k − sω

∣∣ ≤ Cε2m .

5.3 Kcsc metrics on the truncatedmodel spaces

We now want to perform on the model spaces X� j ’s a similar analysis as in the previous
section.

Notation To keep notations as short as possible we drop the subscript j .

Our starting point is a Ricci-flat ALE Kähler manifold (X�, η, h) where we want to find

Fin
b̃,h̃,k̃

∈ C4,α
(
X
�,

Rε
b̃

)
with b̃ ∈ R

+ such that,

ηb̃,h̃,k̃ := b̃2η + i∂∂Fin
b̃,h̃,k̃

.

is a metric on X Rε
b̃
and,

Sb̃2η

(
Fin
b̃,h̃,k̃

)
= ε2

(
sω + 1

2
s0,b,c,h,k

)
.

with Sb̃2η the operator introduced in (2.1). The parameters b̃, h̃, k̃ will be chosen after the

construction of the familiy of Kcsc metrics on X
�,

Rε
b̃
, in particular b̃ will be chosen with

a “manual tuning” of the principal asymptotics while h̃, k̃ with the Cauchy data matching
procedure. The function Fin

b̃,h̃,k̃
will be made of three blocks:

Fin
b̃,h̃,k̃

:= Pb̃,ω + Hin
h̃,k̃

+ f in
b̃,h̃,k̃

.

Pb̃,ω is the transplanted potential of ω that keeps the metric near to a Kcsc metric,Hin
h̃,k̃

is

the extension ofpseudo-boundary data thatwill allowus to perform theCauchy datamatching
procedure and a small perturbation f in

b̃,h̃,k̃
that ensures the constancy of the scalar curvature.

Since Fin
b̃,h̃,k̃

has to be a small perturbation we can use the expansion in Proposition 3.1 to

look for the equation that f in
b̃,h̃,k̃

has to satisfy and we have,

ε2sω + 1

2
ε2s0,b,c,h,k = Sb̃2η

(
Pb̃,ω + Hin

h̃,k̃
+ f

)

= Sb̃2η (0) − 1

2
Lb̃2η

[
Pb̃,ω + Hin

h̃,k̃
f
]

+ 1

2
Nb̃2η

(
Pb̃,ω + Hin

h̃,k̃
+ f

)
(5.11)

Remembering that Sb̃2η (0) = 0 since η is scalar flat and,

Lb̃2η = 1

b̃4
	2

η,
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because η is also Ricci-flat we can rewrite Eq. (5.11) in terms of the unknown f ,

	2
η [ f ] = − ε2b̃4

(
2sω + s0,b,c,h,k

) − 	2
η

[
Pb̃,ω + Hin

h̃,k̃

]
+ b̃4Nb̃2η

(
Pb̃,ω + Hin

h̃,k̃
+ f

)
.

(5.12)

Transplanted potential As in [25,26]we introduce the termPb̃,ω that is a suitablemodification
of the function ψω defined in Proposition 2.1. We recall that ψω satisfies,

Seucl (ψω) = sω,

and hence,

sω = −1

2
	2 [ψω] + 1

2
Neucl (ψω) ,

in z coordinates on a small ball. Once we perform the rescaling,

z = b̃εx,

we consider the function ε−2ψω

(
b̃εx

)
and we have,

ε2sω = − 1

2b̃4
	2

⎡
⎣ψω

(
b̃εx

)
ε2

⎤
⎦ + 1

2
Nb̃2·eucl

⎛
⎝ψω

(
b̃εx

)
ε2

⎞
⎠

The aim of the transplanted potential is, hence, to cancel the term ε2sω in Eq. (5.12).
Unfortunately the metric associated to η is not the euclidean one so remainder terms appear
and the solution f has to correct them, indeed we have,

− 1

2b̃4
	2

⎡
⎣ψω

(
b̃εx

)
ε2

⎤
⎦ + 1

2
Nb̃2·eucl

⎛
⎝ψω

(
b̃εx

)
ε2

⎞
⎠ = ε2sω + remainder terms.

Remark 5.3 If the remainder terms of the equation above are too large, then the solution f
to the Eq. (5.12) becomes too large and it becomes impossible to perform the Cauchy data
matching construction.

For simplicity we come back to the pre-rescaling expression of ψω and we observe that
by Lemma 2.1

ψω =
+∞∑
k=0

�4+k ,

−	2 [�4] = 2sω ,

−	2 [�5] = 0.

We have to correct the linear error committed by terms �4, �5 and hence we look for
functions W4,W5 solutions of,

	2
η [�4 + W4] = −2sω

	2
η [�5 + W5] = 0.

We point out that it will be crucial to obtain a description as explicit as possible ofW4,W5.
More precisely these corrections will be made of explicit terms and rapidly decaying terms.
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The first ones will impose constraints on the parameters of the balancing conditionwhile the
latter will be sufficiently small to be handled in the process of Cauchy data matching. The
correctionW4, more precisely precisely one of its components, will give an extra constraint in
the balancing condition and it is responsible for the requirement c j = sωb j in Theorem 1.1.

Notation For the rest of the section χ will denote a smooth cutoff function identically 0 on
X
�,

R0
3b̃

and identically 1 outside X
�,

R0
2b̃

.

Using Lemmas 4.1 and 2.1 it is easy to see that,

	2
η [χ�4] = −2sω + (�2 + �4) χ |x |−2m + O (|x |−2−2m)

	2
η [χ�5] = (�3 + �5) χ |x |1−2m + O (|x |−1−2m)

.

If we set

u4 :=

⎧⎪⎪⎨
⎪⎪⎩

(
�2
�2

2
+ �4

�2
4

)
χ |x |4−2m for m ≥ 3,

(
�2
�2

2
+ �4

�2
4

)
χ log (|x |) for m = 2,

u5 :=
(
�3

�2
3

+ �5

�2
5

)
χ |x |5−2m,

for a suitable choice of �2,�4,�3,�5 eigenfunctions relative to the eigenvalues �2,�4,

�3,�5 of 	S2m−1 , then,

	2
η [χ�4 + u4] = −2sω + O (|x |−2−2m)

,

	2
η [χ�5 + u5] = O (|x |−1−2m)

.

Now we would like to find v4 ∈ C4,α
δ (X�) with δ ∈ (2 − 2m, 3 − 2m) and v5 ∈ C4,α

δ (X�)

with δ ∈ (3 − 2m, 4 − 2m) such that,

	2
η [χ�4 + u4 + v4] = −2sω

	2
η [χ�5 + u5 + v5] = 0. (5.13)

Proposition 4.2 tells us that we can find such v4, v5 if and only if the integrals,∫
X�

(
	2

η [χ�4 + u4] + 2sω
)
dμη (5.14)

∫
X�

	2
η [χ�5 + u5] dμη, (5.15)

vanish identically. To check whether those conditions are satisfied we have to compute the
two integrals above. The crucial tool for the calculations is Lemma 2.4. We start computing
integral (5.14). By means of divergence Theorem and Lemma 2.4 we can write,

∫
X�

(
	2

η [χ�4 + u4] + 2sω
)
dμη = lim

ρ→+∞

[∫
∂X�,ρ

∂ν	η (χ�4) dμη + sω|S2m−1|
m |�| ρ2m

]
,

with ν outward unit normal to the boundary. We point out that u4 doesn’t appear in the right
hand side of the equation above because the boundary term produced by the integration by
parts tends to zero as ρ tends to infinity, and this is an immediate consequence of Lemma 4.1
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and the fact that u4 has zero mean on every euclidean sphere. Then using Proposition 2.1 and
Lemma 4.1,

∂ν	η [�4] dμη

∣∣
∂X�,ρ

=
[
− sω
m

ρ2m − 4cX� (m − 1)2 sω
m (m + 1)

]
dμ0|S2m−1/�

+
[
O (1) (�2 + �4) + O

(
1

ρ

)]
dμ0|S2m−1/� ,

and integrating we obtain,

∫
X�

(
	2

η [χ�4 + u4] + 2sω
)
dμη = −4cX� (m − 1)2 |S2m−1|sω

m (m + 1) |�| .

this shows thatEq. (5.13) cannot be solved in general forv4 ∈ C4,α
δ (X�)with δ ∈ (2−2m, 3−

2m). To overcome this difficulty we add an explicit function which belongs approximately

to ker
(
	2

η

)
, more precisely we can solve the equation,

	2
η

[
χ�4 + u4 + cX� (m − 1) sω

2 (m − 2)m (m + 1)
χ |x |4−2m + v4

]
= −2sω for m ≥ 3

	2
η

[
χ�4 + u4 − cX� sω

6
χ log (|x |) + v4

]
= −2sω for m = 2

for v4 ∈ C4,α
δ (X)with δ ∈ (2−2m, 3−2m). In a completely analogouswaywe can compute

integral (5.15) that vanishes identically and so we can solve the equation,

	2
η [χ�5 + u5 + v5] = 0.

for v5 ∈ C4,α
δ (X) with δ ∈ (3 − 2m, 4 − 2m). Now we can write the explicit expression of

W4,

W4 :=
⎧⎨
⎩

cX� (m−1)sω
2(m−2)m(m+1)χ |x |4−2m + u4 + v4 for m ≥ 3 ,

− cX� sω
6 χ log (|x |) + u4 + v4 for m = 2.

. (5.16)

The structure of the functionW4 deserves a word of comment, the function v4 is what we call
the rapidly decaying term, u4 has a “critical” decaying rate but it has no radial components
with respect to Fourier decomposition reative to 	S2m−1 and hence it will be handled by
pseudo-boundary data in the Cauchy data matching, the remaning term is the one that will
constrain the coefficients of the balancing condition.

Remark 5.4 The term |x |4−2m (respectively log (|x |)) in formula (5.16) plays a crucial role
in our procedure, not only it is necessary for creating function on X� that rapidly decays �4

at infinity, but also influence the balancing condition. It forces, indeed, to require condition
c j = sωb j in Theorem 1.1. In Sect. 6.1, we will see that, in order to be able to perform the
data matching procedure, we will have to match perfectly (tuning procedure) the terms of the
potential at inifinity of ηb̃,h̃,k̃ decaying as |x |4−2m and |x |2−2m with the principal asymptotics

of the potential of ω0,b,c,h,k that are the terms exploding as |z|2−2m and |z|4−2m . We will do
this by making a specific choice for the parameters b and c and as a consequence we will get
the key condition in Theorem 1.1.
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Contrarily to the case of �4 the correction of �5 is much easier indeed it is easy to see,
using Lemma 4.1 and the fact that u5 has no radial component with respect to the fourier
decomposition relative to 	S2m−1 , that,

lim
ρ→+∞

∫
∂X�,ρ

∂ν	η [χ�5 + u5] = 0,

and hence it is sufficient to apply Proposition 4.2 to find v5. The function W5 is then,

W5 := u5 + v5,

and as forW4 the function v5 is a rapidly decaying term and u4 has also a “critical” decaying
rate but it has no radial components with respect to Fourier decomposition reative to	S2m−1

and hence it will be handled by pseudo-boundary conditions in the Cauchy data matching.
If we define,

V := ε2b̃4W4 + ε3b̃5W5.

then we can define the transplanted potential Pb̃,ω as the function in C4,α
(
X
�,

Rε
b̃

)
,

Pb̃,ω :=
⎧⎨
⎩

1
ε2
χψω

(
b̃εx

)
+ V for m ≥ 3,

1
ε2
χψω

(
b̃εx

)
+ V + C for m = 2.

(5.17)

where C is the constant term in the expansion at B2r0 (p) \Brε (p) of,
Fout
0,b,c,h,k = −ε2mG0,b,c + Pb,η + Hout

h,k + f out0,b,c,h,k.

introduced in Proposition 5.1. As we will see in Sect. 6 the coefficient b̃ is very important and
it will force the choice of particular values for the parameters b, c we used on M to construct
Fout
0,b,c,h,k, and in particular of the skeleton G0,b,c.

Extensions of pseudo-boundary data Using euclidean inner biharmonic extensions of func-
tions on the sphere we want to build a function on X� that is “almost” in the kernel of 	2

η.
We note that

	2
η

[
χ |x |2] = O (|x |−2−2m)

,

	2
η

[
χ |x |2�2

] = O (|x |−2m−2) ,

	2
η

[
χ |x |3�3

] = χ |x |−1−2m�3 + O (|x |−3−2m)
.

As for the transplanted potential we want to correct the functions on the left hand sides of

equations in such a way they are in ker
(
	2

η

)
. Precisely we want to solve the equations,

	2
η

[
χ |x |2 + v(0)

]
= 0 ,

	2
η

[
χ |x |2�2 + v(2)

]
= 0 ,

	2
η

[
χ |x |3�3 + u(3) + v(3)

]
= 0.

with v(0), v(2), v(3) ∈ C4,α
δ (X�) for δ ∈ (2 − 2m, 3 − 2m) and,

u(3) := χ |x |3−2m�3,
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for a suitable spherical harmonic �3. The existence of v(0), v(2), v(3) follows from Proposi-
tion 4.1, Lemma 4.2 and,∫

X�

	2
η

[
χ |x |2] dμη =

∫
X�

	2
η

[
χ |x |2�2

]
dμη =

∫
X�

	2
η

[
χ |x |3�3

]
dμη = 0,

as one can easily check using exactly the same ideas exposed for the transplanted potential.

We are ready to define the function Hin
h̃,k̃

∈ C4,α
(
X
�,

Rε
b̃

)
,

Hin
h̃,k̃

:= Hin
h̃,k̃

(0) + χ

(
Hin
h̃,k̃

(
b̃x

Rε

)
− Hin

h̃,k̃
(0)

)
+ k̃(0)b̃2

4mR2
ε

v(0)

+
(
h̃(2) − k̃(2)

4(m + 2)

)
b̃2v(2)

R2
ε

+
(
h̃(3) − k̃(3)

4(m + 3)

)
b̃3

(
u(3) + v(3)

)
R3
ε

. (5.18)

Correction term It is the term that ensures the constancy of the scalar curvature of the metric
ηb̃,h̃,k̃ on X

�,
Rε
b̃

and it is a function f in
b̃,h̃,k̃

∈ C4,α
δ (X�) where the space C4,α

δ (X�) is a

weighted Hölder space defined in Sect. 4. As in the base orbifold, the function f in
b̃,h̃,k̃

depends

nonlinearly on
(
h̃, k̃

)
and b̃ and we find it by solving a fixed point problem on a suitable

closed and bounded subspace of C4,α
δ (X�).

We are now ready to state the main result on the model spaces.

Proposition 5.2 Let (X�, h, η) an ALE Ricci-Flat Kähler resolution of an isolated quotient
singularity.

• Let δ ∈ (4−2m, 5−2m). Given any
(
h̃, k̃

)
∈ B, such that

(
ε2h̃, ε2k̃

)
∈ B (κ, δ), where

B (κ, δ) is the space defined in formula (5.3), let Hin
h̃,k̃

be the function defined in formula

(5.18).

Hin
h̃,k̃

:= Hin
h̃,k̃

(0) + χ

(
Hin
h̃,k̃

(
b̃x

Rε

)
− Hin

h̃,k̃
(0)

)
+ k̃(0)b̃2

4mR2
ε

v(0)

+
(
h̃(2) − k̃(2)

4(m + 2)

)
b̃2v(2)

R2
ε

+
(
h̃(3) − k̃(3)

4(m + 3)

)
b̃3

(
u(3) + v(3)

)
R3
ε

.

• Let Pb̃,ω be the transplanted potential defined in formula (5.17)

Pb̃,ω :=
⎧⎨
⎩

1
ε2
χψω

(
b̃εx

)
+ V for m ≥ 3,

1
ε2
χψω

(
b̃εx

)
+ V + C for m = 2.

Then there is f in
b̃,h̃,k̃

∈ C4,α
δ (X�) such that

ηb̃,h̃,k̃ = b̃2η + i∂∂
(
Pb̃,ω + Hin

h̃,k̃
+ f in

b̃,h̃,k̃

)
,

is a Kcsc metric on X
�,

Rε
b̃
and the following estimates hold.

∥∥∥ f in
b̃,h̃,k̃

∥∥∥
C4,α
δ (X�)

≤ C (κ) ε2m+4r−4m−δ
ε R−2

ε ,
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with C (κ) ∈ R
+ depending only onω and η j ’s and κ the constant appearing in the definition

of B (κ, δ) (Sect. 5.1 formula 5.3). Moreover sηb̃,h̃,k̃ , the scalar curvature of ηb̃,h̃,k̃ is,

sηb̃,h̃,k̃ = sω0,b,h,k = sω + 1

2
s0,b,h,k.

Again, the proof follows from similar arguments as in [4,5] repeatedly using the Ricci-flat
condition.

6 Datamatching

Now that we have the families of metrics on the base orbifold and onmodel spaces wewant to
glue them. To perform the data matching construction we will rescale all functions involved
in such a way that functions on X� j are functions on the annulus B1\B 1

2
and functions on

M are functions on the annulus B2\B1. The main technical tool we will use in this section is
the “Dirichet to Neumann” map for euclidean biharmonic extensions that we introduce with
the following Theorem whose proof can be found in [4, Lemma 6.3].

Theorem 6.1 The map

P : C4,α (
S
2m−1) × C2,α (

S
2m−1) → C3,α (

S
2m−1) × C1,α (

S
2m−1)

P (h, k) =
(
∂|w|

(
Hout
h,k − Hin

h,k

)
, ∂|w|	

(
Hout
h,k − Hin

h,k

))

is an isomorphism of Banach spaces with inverse Q.

Proof of Theorem 1.1 We carry on the proof for the case m ≥ 3, for m = 2 it is identical.

Let Vout
j,0,b,c,h,k be Kähler potential of ω0,b,c,h,k at the annulus B2rε

(
p j

)\Brε (
p j

)
under the

homothety

z = rεw.

We have then the expansion

Vout
j,0,b,c,h,k = r2ε

2
|w|2 + ψω (rεw) + ε2ψη j

(
rεw

Bjε

)

+
⎛
⎜⎝1 −

(
f out0,b,c,h,k

) j

ε2m

⎞
⎟⎠

(
−cX� j

B2m
j ε2mr2−2m

ε |w|2−2m + C jε
2mr4−2m

ε |w|4−2m
)

+ Hout
h(†)j ,k(†)j

−
[
ε2mG0,b,c − c

(
� j

)
B2m
j ε2mr2−2m

ε |w|2−2m + C jε
2mr4−2m

ε |w|4−2m
]

+
[
f out0,b,c,h,k + (

f out0,b,c,h,k

) j (
cX� j

B2m
j r2−2m

ε |w|2−2m − C jr
4−2m
ε |w|4−2m

)]
.

For the sake of notation we set,

Rout
j := −

[
ε2mG0,b,c − cX� j

B2m
j ε2mr2−2m

ε |w|2−2m + C jε
2mr4−2m

ε |w|4−2m
]

+
[
f out0,b,c,h,k + (

f out0,b,c,h,k

) j (
cX� j

B2m
j r2−2m

ε |w|2−2m − C jr
4−2m
ε |w|4−2m

)]
.
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We recall that, using notations of Theorem 3.4, f out0,b,c,h,k ∈ C4,α
δ

(
Mp

) ⊕D (b, c) and we
have,

f out0,b,c,h,k = f̃ out0,b,c,h,k +
N∑
j=1

(
f out0,b,c,h,k

) j
W j

b,c

with f̃ out0,b,c,h,k ∈ C4,α
δ

(
Mp

)
for δ ∈ (4 − 2m, 5 − 2m) and the numbers

(
f out0,b,c,h,k

) j
’s

are the coefficients of the deficiency components of f out0,b,c,h,k. In writing the expansion of
Vout
j,0,b,c,h,k, precisely in the second and fourth lines ,we used the only principal asymptotics of(
f out0,b,c,h,k

) j
W j

b,c exposed in formula (3.10) while the remaining part falls in the remainder

term Rout
j .

Let also V in
j,b̃ j ,h̃ j ,k̃ j

be the Kähler potential of ε2η j,b̃ j ,h̃ j ,k̃ j
at the annulus X

� j ,
Rε
b̃ j

\X
� j ,

Rε
2b̃ j

under the homothety,

x = Rεw

b̃ j
.

We have the expansion

V in
j,b̃ j ,h̃ j ,k̃ j

= ε2R2
ε

2
|w|2 + ε2B2ψη j

(
Rεw

Bj

)
+ ψω (εRεw)

− c
(
� j

)
b̃2mj ε2R2−2m

ε |w|2−2m +
cX� j

(m − 1) sωb̃4ε4R4−2m
ε

2 (m − 2)m (m + 1)
|w|4−2m

+ Hin
ε2 h̃ j ,ε

2 k̃ j

+
[
ε2Pb̃,ω − ψω (εRεw) −

cX� j
(m − 1) sωb̃4ε4R4−2m

ε

2 (m − 2)m (m + 1)
|w|4−2m

]

+
[
ε2b̃2jψη j

(
Rεw

b̃ j

)
− ε2B2

jψη j

(
Rεw

Bj

)]
+

[
Hin

ε2 h̃ j ,ε
2 k̃ j

− Hin
ε2 h̃ j ,ε

2 k̃ j

]

+ ε2 f in
b̃ j ,h̃ j ,k̃ j

.

For the sake of notation we set,

Rin
j :=

[
ε2Pb̃,ω − ψω (εRεw) −

cX� j
(m − 1) sωb̃4ε4R4−2m

ε

2 (m − 2)m (m + 1)
|w|4−2m

]

+
[
ε2b̃2jψη j

(
Rεw

b̃ j

)
− ε2B2

jψη j

(
Rεw

Bj

)]
+

[
Hin

ε2 h̃ j ,ε
2 k̃ j

− Hin
ε2 h̃ j ,ε

2 k̃ j

]

+ ε2 f in
b̃ j ,h̃ j ,k̃ j

.

We want to find b, c, b̃,h,k, h̃, k̃ such that the functions,

V j :=
{
V in
j,b̃ j ,h̃ j ,k̃ j

on B1\B 1
2

Vout
j,0,b,c,h,k on B2\B1
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are smooth on B2\B 1
2
for every j = 1, . . . , N .Wehavewritten the expansions ofVout

j,0,b,c,h,k’s

and V in
j,b̃ j ,h̃ j ,k̃ j

’s in such a way we can see immediately perfectly matched terms in the first

rows, principal asymptotics in the second rows, biharmonic extensions of pseudo-boundary
data in the third rows, and “remainder” terms.

6.1 Tuning procedure

We would like to have that also the principal asymptotics match perfectly and biharmonic
extensions of pseudo-boundary data dominate all the “remainder terms” in ε-growth. More-
over we need to recover a degree of freedom in biharmonic extensions since we have have
taken meanless functions h(†),k(†) as parameters. To overcome these problems we have to
perform a “tuning” of the principal asymptotics i.e. we have to set,

cX� j
b̃2mj ε2R2−2m

ε |w|2−2m =
⎛
⎜⎝1 −

(
f out0,b,c,h,k

) j

ε2m

⎞
⎟⎠ cX� j

B2m
j ε2mr2−2m

ε |w|2−2m

+
(
h(0)j + k(0)j

4m − 8

)
|w|2−2m, (6.1)

cX� j
(m − 1) sωb̃2mε4R4−2m

ε

2 (m − 2)m (m + 1)
|w|4−2m = −

⎛
⎜⎝1 −

(
f out0,b,c,h,k

) j

ε2m

⎞
⎟⎠C jε

2mr4−2m
ε |w|4−2m

− k(0)j

4m − 8
|w|4−2m . (6.2)

With the specialization above we regain the means of functions h j and k j . In fact, as we
can see from formula (5.1), choosing meanless functions we were missing exactly the radial
terms in the Fourier expansion of Hout

h,k that incidentally have exactly the same growth of
the principal asymptotics. So perturbing a bit the coefficients b j ’s we can recover these
missing asymptotics in the biharmonic extensions but Eq. (6.1) imposes us to set the value
of parameter b̃ j . Moreover, we point out that once we have set the value of b̃ j the Eq. (6.2)
imposes us to choose a particular value for the parameter c j and hence we see, as anticipated
in Sect. 5.3, how the nonlinear analysis on X� j ’s constrains the parameters of balancing
condition. We recall that coefficients Bj and C j are defined in Sect. 5.2 respectively by
Eqs. (5.5) and (5.6). Conditions above force us to set:

b̃2mj = B2m
j

⎛
⎜⎝1 −

(
f out0,b,c,h,k

) j

ε2m

⎞
⎟⎠ + 1

cX� j

(
h(0)j + k(0)j

4m − 8

)
r2m−2
ε

ε2m
(6.3)

C j = − 1

2 (m − 2)

(
ε2m −

(
f out0,b,c,h,k

) j
)

(
cX� j

(m − 1) sωb̃2mj ε4R4−2m
ε

m (m + 1)
+ k(0)j

)
(6.4)

and hence we must set

c j = sωb j (6.5)
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Remark 6.1 At this point, the presence of |x |4−2m term in the correction W4, introduced in
Sect. 5.3 formula (5.16), shows its effects. That term indeed, introduced as a technical tool
for obtaining better estimates, puts now strong geometric constraints on our construction
defining the correct form of non degeneracy condition and balancing condition forcing us to
impose Eq. (6.2) and giving as consequence relations (6.3), (6.4) and the key condition (6.5).

We can see also that,∥∥∥∥
(
Rout

j

)(0)∥∥∥∥
C4,α

(
B2\B1

) ,
∥∥∥∥
(
Rout

j

)(0)∥∥∥∥
C4,α

(
B1\B 1

2

) = o
(
ε4m+2r−6m+4−δ

ε

)
(6.6)

and, ∥∥∥∥
(
Rout

j

)(†)∥∥∥∥
C4,α

(
B2\B1

) ,
∥∥∥∥
(
Rout

j

)(†)∥∥∥∥
C4,α

(
B1\B 1

2

) = o
(
ε2m+4r2−4m−δ

ε

)
, (6.7)

therefore the biharmonic extensions dominate all remainder terms in ε-growth indeed,

|h(0)| + |k(0)| = O (
ε4m+2r−6m+4−δ

ε

)
and

∥∥∥h(†),k(†)
∥∥∥B(κ,δ)

= O (
ε2m+4r2−4m−δ

ε

)
.

6.2 Cauchy datamatching procedure

Now we want to find the correct parameters such that at S2m−1 there is a C3 matching
of potentials Vout

j,0,b,c,h,k and V in
j,b̃ j ,h̃ j ,k̃ j

. As proved in [4] there is the C3 matching at the

boundaries if and only if the following system is verified,

(! j ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vout
j,0,b,c,h,k = V in

j,b̃ j ,h̃ j ,k̃ j

∂|w|
[
Vout
j,0,b,c,h,k

]
= ∂|w|

[
V in
j,b̃ j ,h̃ j ,k̃ j

]

	
[
Vout
j,0,b,c,h,k

]
= 	

[
V in
j,b̃ j ,h̃ j ,k̃ j

]

∂|w|	
[
Vout
j,0,b,c,h,k

]
= ∂|w|	

[
V in
j,b̃ j ,h̃ j ,k̃ j

]

After choices (6.3),(6.4), (6.5) and some algebraic manipulations, systems (! j ) become,

(! j ) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε2h̃ j = h j − ξ j

ε2k̃ j = k j − 	
[
ξ j

]
∂|w|

[
Hout
h j ,k j

− Hin
h j ,k j

]
= ∂|w|

[
ξ j − Hin

ξ j ,	ξ j

]

∂|w|	
[
Hout
h j ,k j

− H I
h j ,k j

]
= ∂|w|	

[
ξ j − Hin

ξ j ,	ξ j

]

with ξ j a function depending linearly Rout
j and Rin

j . Using Theorem 6.1 we define the
operators,

S j

(
ε2h̃ j , ε

2k̃ j , h j , k j
)

:=
(
h j − ξ j , k j − 	ξ j ,Q

[
∂|w|

(
ξ j − Hin

ξ j ,	ξ j

)
, ∂|w|	

(
ξ j − Hin

ξ j ,	ξ j

)])

and then the operator S : B (κ, δ)2 → B2,

S := (S1, . . . ,SN ) .
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Note also that biharmonic extensions, seen as operators,

Hout·,· , Hin·,· : C4,α (
S
2m−1) × C2,α (

S
2m−1) → C4,α (

S
2m−1)

and the operator,

Q : C3,α (
S
2m−1) × C1,α (

S
2m−1) → C4,α (

S
2m−1) × C2,α (

S
2m−1)

defined in Proposition 6.1, preserve eigenspaces of	S2m−1 . Thanks to the explicit knowledge
of the various terms composingRout

j ’s andRin
j ’s, in particular estimates (6.6) and (6.7), we

can find κ > 0 such that,

S : B (κ, δ)2 → B (κ, δ)2 .

Now the conclusion follows immediately applying a Picard iteration scheme and standard
regularity theory. ��

7 Examples

In this Section we list few examples where our results can be applied. We have confined
ourselves to the case when M is a toric Kähler–Einstein orbifold, but there is no doubt that
this is far from a comprehensive list.

Theorem 7.1 Consider
(
P
1 × P

1, π∗
1ωFS + π∗

2ωFS
)
and let Z2 act in the following way,

([x0 : x1], [y0 : y1]) −→ ([x0 : −x1], [y0 : −y1]) .
It is immediate to check that this action is in SU (2) with four fixed points,

p1 = ([1 : 0], [1 : 0])
p2 = ([1 : 0], [0 : 1])
p3 = ([0 : 1], [1 : 0])
p4 = ([0 : 1], [0 : 1]) .

The quotient space X2 := P
1 ×P

1/Z2 is a Kähler–Einstein, Fano orbifold and thanks to the
embedding into P

4

([x0 : x1], [y0 : y1]) �→ [x20 y20 : x20 y21 : x21 y20 : x21 y21 : x0x1y0y1],
it is isomorphic to the intersection of singular quadrics{

z0z3 − z24 = 0
} ∩ {

z1z2 − z24 = 0
}

that by [2] is a limit of Kähler–Einstein surfaces, namely the intersection of two smooth
quadrics. Since it isKähler–Einstein, conditions for applying our construction become exactly
the conditions of [5], so we have to verify that the matrix,

�(1, sω1) =
( sω
2
ϕ j (pi )

)
1≤i≤2
1≤ j≤4

.

has full rank and there exist a positive element in ker�(1, sω1). It is immediate to see that
we have,

H0
(
X2, T

(1,0)X2

)
= H0

(
P
1/Z2, T

(1,0) (
P
1/Z2

)) ⊕ H0
(
P
1/Z2, T

(1,0) (
P
1/Z2

))
.
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Moreover,

H0
(
P
1/Z2, T

(1,0) (
P
1/Z2

))

is generated by holomorphic vector fields on P
1 that vanish on points [0 : 1], [1 : 0] so,

dimC H0
(
P
1/Z2, T

(1,0) (
P
1/Z2

)) = 1

and an explicit generator is the vector field,

V = z1∂1.

We can compute explicitly its potential ϕV with respect to ωFS that is,

ϕV ([z0 : z1]) = − |z0z1|
|z0|2 + |z1|2 + 1

2
,

and it is easy to see that it is a well defined function and,∫
P1

ϕVωFS = 0.

Summing up everything, we have that the matrix�(1, sω1) for X2 is a 2× 4 matrix and can
be written explicitly,

�(1, sω1) = sω
2

(−1 −1 1 1
−1 1 −1 1

)

that has rank 2 and every vector of type (a, b, b, a) for a, b > 0 lies in ker�(1, sω1).

Theorem 7.2 Consider
(
P
2, ωFS

)
and let Z3 act in the following way,

[z0 : z1 : z2] −→ [x0 : ζ3x1 : ζ 23 x2] ζ3 �= 1, ζ 33 = 1.

It’s immediate to check that this action is in SU (2) with three fixed points,

p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0],
p3 = [0 : 0 : 1].

The quotient space X3 := P
2/Z3 is a Kähler–Einstein, Fano orbifold and it is isomorphic,

via the embedding,

[x0 : x1 : x2] �→ [x30 : x31 : x32 : x0x1x2],
to the singular cubic surface in P3,

{
z0z1z2 − z33 = 0

}
.

that by [27] we know to be a point of the boundary of the moduli space of Fano Kähler–
Einstein surfaces, namely smooth cubic hypersurfaces. Again we have to verify that the
matrix,

�(1, sω1) =
(
2sω
3

ϕ j (pi )

)
1≤i≤2
1≤ j≤3

.
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has full rank and there exist a positive element in ker�(1, sω1). It is immediate to see that
we have,

dimC H0
(
X3, T

(1,0)X3

)
= 2,

because H0
(
X3, T (1,0)X3

)
it is generated by holomorphic vector fields on P

2 vanishing at
points p1, p2, p3. Explicit generators are the vector fields,

V1 = z1∂1 + z2∂2

V2 = z0∂0 + z1∂1.

We can compute explicitly their potentials φV1 , φV2 with respect to ωFS that are,

φV1 ([z0 : z1 : z2]) = − |z0|2
|z0|2 + |z1|2 + |z2|2 + 1

3

φV2 ([z0 : z1 : z2]) = − |z2|2
|z0|2 + |z1|2 + |z2|2 + 1

3
,

and it is easy to see that are well defined functions and
∫
P2

φV1
ω2
FS

2
=

∫
P2

φV1
ω2
FS

2
= 0,

One can check that,

ϕ1 = − 3 (φ1 + 2φ2)

ϕ2 = − 3 (2φ1 + φ2)

is a basis of the space of potentials of holomorphic vector fields vanishing somewhere on
X3. Summing up everything, we have that the matrix�(1, sω1) for X3 is a 2× 3 matrix and
can be written explicitly,

�(1, sω1) = 2sω
3

(
1 −1 0
0 −1 1

)
,

that has rank 2 and every vector of type (a, a, a) for a > 0 lies in ker�(1, sω1).

Theorem 7.3 Let X (1) be the toric Kähler–Einstein threefold whose 1-dimensional fan !
(1)
1

is generated by points

!
(1)
1 = {(1, 3,−1), (−1, 0,−1), (−1,−3, 1), (−1, 0, 0), (1, 0, 0), (0, 0, 1), (0, 0,−1), (1, 0, 1)}

and its 3-dimensional fan !
(1)
3 is generated by 12 cones

C1 := 〈(−1, 0,−1), (−1,−3, 1), (−1, 0, 0)〉
C2 := 〈(1, 3,−1), (−1, 0,−1), (−1, 0, 0)〉
C3 := 〈(−1,−3, 1), (−1, 0, 0), (0, 0, 1)〉
C4 := 〈(1, 3,−1), (−1, 0, 0), (0, 0, 1)〉
C5 := 〈(1, 3,−1), (−1, 0,−1), (0, 0,−1)〉
C6 := 〈(−1, 0,−1), (−1,−3, 1), (0, 0,−1)〉
C7 := 〈(−1,−3, 1), (1, 0, 0), (0, 0,−1)〉
C8 := 〈(1, 3,−1), (1, 0, 0), (0, 0,−1)〉
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C9 := 〈(1, 3,−1), (0, 0, 1), (1, 0, 1)〉
C10 := 〈(−1,−3, 1), (1, 0, 0), (1, 0, 1)〉
C11 := 〈(1, 3,−1), (1, 0, 0), (1, 0, 1)〉
C12 := 〈(−1,−3, 1), (0, 0, 1), (1, 0, 1)〉

All these cones are singular and C1,C4,C5,C7,C11,C12 are cones relative to affine open
subsets of X (1) containing a SU (3) singularity, while the others are cones relative to affine
open subsets of X (1) containing a U (3) singularity.
The 3-anticanonical polytope P−3KX(1)

is the convex hull of vertices

P−3KX(1)
:= 〈(0,−2,−3), (−3, 0, 0), (−3, 1, 3), (0, 0, 3), (3,−2, 0),

(0, 2, 3), (0, 0,−3), (−3, 2, 0), (−3, 3, 3), (3, 0, 0), (3,−1,−3), (3,−3,−3)〉
With 2-faces

F1 := 〈(0,−2,−3), (3,−3,−3), (−3, 0, 0), (−3, 1, 3), (0, 0, 3), (3,−2, 0)〉
F2 := 〈(−3, 1, 3), (0, 0, 3), (0, 2, 3), (−3, 3, 3)〉
F3 := 〈(0, 0, 3), (3,−2, 0), (0, 2, 3), (3, 0, 0)〉
F4 := 〈(0,−2,−3), (−3, 0, 0), (0, 0,−3), (−3, 2, 0)〉
F5 := 〈(3,−1,−3), (0, 2, 3), (0, 0,−3), (−3, 2, 0), (−3, 3, 3), (3, 0, 0)〉
F6 := 〈(−3, 0, 0), (−3, 1, 3), (−3, 2, 0), (−3, 3, 3)〉
F7 := 〈(3,−1,−3), (0,−2,−3), (3,−3,−3), (0, 0,−3)〉
F8 := 〈(3,−1,−3), (3,−3,−3), (3,−2, 0), (3, 0, 0)〉

We have the following correspondences between cones containing a SU (3)-singularity and
vertices of P−3KX(1)

C1 ←→ F3 ∩ F5 ∩ F8 = {(3, 0, 0)}
C4 ←→ F1 ∩ F7 ∩ F8 = {(3,−3,−3)}
C5 ←→ F1 ∩ F2 ∩ F3 = {(0, 0, 3)}
C7 ←→ F2 ∩ F5 ∩ F7 = {(−3, 3, 3)}
C11 ←→ F1 ∩ F4 ∩ F6 = {(−3, 0, 0)}
C12 ←→ F4 ∩ F5 ∩ F7 = {(0, 0,−3)}

Since in complex dimension 3 every SU (3)-singularity admits a Kähler crepant resolution
it is then immediate to see that all assumptions of Theorem 1.1 are satisfied to get a partial
resolution of this orbifold. We do not know whether we can also resolve the other 6 U (3)
singularities since at the moment we do not know if a good local model for these groups
exists.

Theorem 7.4 Let X be the toric Kähler–Einstein threefold whose 1-dimensional fan !1 is
generated by points

!1 = {(0, 3, 1), (1, 1, 2), (1, 0, 0), (−1, 0, 0), (−2,−1,−2), (1,−3,−1)}
and its 3-dimensional fan !3 is generated by 8 cones

C1 := 〈(0, 3, 1), (1, 1, 2), (−1, 0, 0)〉
C2 := 〈(0, 3, 1), (1, 1, 2), (1, 0, 0)〉
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C3 := 〈(0, 3, 1), (−1, 0, 0), (−2,−1,−2)〉
C4 := 〈(0, 3, 1), (1, 0, 0), (−2,−1,−2)〉
C5 := 〈(1, 0, 0), (−2,−1,−2), (1,−3,−1)〉
C6 := 〈(1, 1, 2), (−1, 0, 0), (1,−3,−1)〉
C7 := 〈(−1, 0, 0), (−2,−1,−2), (1,−3,−1)〉
C8 := 〈(1, 1, 2), (1, 0, 0), (1,−3,−1)〉

The cones C1,C4,C7,C8 are relative to affine open subsets of X containing a SU (3) singu-
larity and the other cones are relative to affine open subsets of X containing aU (3) singularity.
The 5-anticanonical polytope P−5KX is the convex hull of vertices

P−5KX := 〈(5,−1,−2), (5, 0,−5), (−5,−2, 1), (−5, 0, 0),

(5, 5,−5), (−5,−5, 10), (−5,−3, 9), (5, 6,−8)〉
With 2-faces

F1 := 〈(5, 0,−5), (−5,−2, 1), (−5, 0, 0), (5, 6,−8)〉
F2 := 〈(5,−1,−2), (5, 0,−5), (−5,−2, 1), (−5,−5, 10)〉
F3 := 〈(5,−1,−2), (5, 0,−5), (5, 5,−5), (5, 6,−8)〉
F4 := 〈(5,−1,−2), (5, 5,−5), (−5,−5, 10), (−5,−3, 9)〉
F5 := 〈(−5,−2, 1), (−5, 0, 0), (−5,−5, 10), (−5,−3, 9)〉
F6 := 〈(−5, 0, 0), (5, 5,−5), (−5,−3, 9), (5, 6,−8)〉

We have the following correspondences between cones containing a SU (3)-singularity and
vertices of P−5KX

C1 ←→ F1 ∩ F2 ∩ F5 = {(−5,−2, 1)}
C4 ←→ F2 ∩ F3 ∩ F4 = {(5,−1,−2)}
C7 ←→ F4 ∩ F5 ∩ F6 = {(−5,−3, 9)}
C8 ←→ F1 ∩ F3 ∩ F6 = {(5, 6,−8)}

Since in complex dimension 3 every SU (3)-singularity admits a Kähler crepant resolution
it is then immediate to see that all assumptions of Theorem 1.1 are satisfied to get a partial
resolution of this orbifold. Whether we can also resolve the other 4U (3) singularities we do
not know since at the moment we do not know if a good local model for these groups exists.

Theorem 7.5 Let Y be the toric Kähler–Einstein threefold whose 1-dimensional fan !1 is
generated by points

!1 = {(2,−1, 0), (1, 3, 1), (0, 0, 1), (−3,−2,−2)}
and its 3-dimensional fan !3 is generated by 6 cones

C1 := 〈(1, 3, 1), (0, 0, 1), (−3,−2,−2), 〉
C2 := 〈(2,−1, 0), (0, 0, 1), (−3,−2,−2)〉
C3 := 〈(2,−1, 0), (1, 3, 1), (−3,−2,−2)〉
C4 := 〈(2,−1, 0), (1, 3, 1), (0, 0, 1)〉

The cone C1 is relative to affine open subsets of Y containing a SU (3) singularity and the
other cones are relative to affine open subsets of Y containing a U (3) singularity.
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The 7-anticanonical polytope P−7KX(6)
is the convex hull of vertices

P−7KX(6)
:= 〈(1, 9,−7), (−3, 1,−7), (9,−3,−7), (−7,−7, 21)〉

With 2-faces

F1 := 〈(−3, 1,−7), (9,−3,−7), (−7,−7, 21)〉
F2 := 〈(1, 9,−7), (9,−3,−7), (−7,−7, 21)〉
F3 := 〈(1, 9,−7), (−3, 1,−7), (−7,−7, 21)〉
F4 := 〈(1, 9,−7), (−3, 1,−7), (9,−3,−7)〉

We have the following correspondences between cones containing a SU (3)-singularity
and vertices of P−7KX(6)

C1 ←→ F1 ∩ F2 ∩ F4 = {(9,−3,−7)}
It is now clear that this example does not satisfy either the balancing condition on the

SU (3) point, nor the one found in [3] on the remaining 3 U (3) singularities. Ito would
be very interesting to know whether this examples can be actually desingularized by Kcsc
manifolds.
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