Energy efficiency is crucial in the design of battery-powered end devices, such as smart sensors for the Internet of Things applications. Wireless communication between these distributed smart devices consumes significant energy, and even more when data need to reach several kilometers in distance. Low-power and long-range communication technologies such as LoRaWAN are becoming popular in IoT applications. However, LoRaWAN has drawbacks in terms of (i) data latency; (ii) limited control over the end devices by the gateway; and (iii) high rate of packet collisions in a dense network. To overcome these drawbacks, we present an energy-efficient network architecture and a high-efficiency on-demand time-division multiple access (TDMA) communication protocol for IoT improving both the energy efficiency and the latency of standard LoRa networks. We combine the capabilities of short-range wake-up radios to achieve ultra-low power states and asynchronous communication together with the long-range connectivity of LoRa. The proposed approach still works with the standard LoRa protocol but improves performance with an on-demand TDMA. Thanks to the proposed network and protocol, we achieve a packet delivery ratio of 100% by eliminating the possibility of packet collisions. The network also achieves a round-trip latency on the order of milliseconds with sensing devices dissipating less than 46 mJ when active and 1.83 μW during periods of inactivity and can last up to three years on a 1200-mAh lithium polymer battery.

On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT / Piyare, Rajeev; Murphy, Amy; Magno, Michele; Benini, Luca. - In: SENSORS. - ISSN 1424-8220. - 18:11(2018), p. 3718. [10.3390/s18113718]

On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT

Piyare, Rajeev;
2018-01-01

Abstract

Energy efficiency is crucial in the design of battery-powered end devices, such as smart sensors for the Internet of Things applications. Wireless communication between these distributed smart devices consumes significant energy, and even more when data need to reach several kilometers in distance. Low-power and long-range communication technologies such as LoRaWAN are becoming popular in IoT applications. However, LoRaWAN has drawbacks in terms of (i) data latency; (ii) limited control over the end devices by the gateway; and (iii) high rate of packet collisions in a dense network. To overcome these drawbacks, we present an energy-efficient network architecture and a high-efficiency on-demand time-division multiple access (TDMA) communication protocol for IoT improving both the energy efficiency and the latency of standard LoRa networks. We combine the capabilities of short-range wake-up radios to achieve ultra-low power states and asynchronous communication together with the long-range connectivity of LoRa. The proposed approach still works with the standard LoRa protocol but improves performance with an on-demand TDMA. Thanks to the proposed network and protocol, we achieve a packet delivery ratio of 100% by eliminating the possibility of packet collisions. The network also achieves a round-trip latency on the order of milliseconds with sensing devices dissipating less than 46 mJ when active and 1.83 μW during periods of inactivity and can last up to three years on a 1200-mAh lithium polymer battery.
2018
11
Piyare, Rajeev; Murphy, Amy; Magno, Michele; Benini, Luca
On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT / Piyare, Rajeev; Murphy, Amy; Magno, Michele; Benini, Luca. - In: SENSORS. - ISSN 1424-8220. - 18:11(2018), p. 3718. [10.3390/s18113718]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/218031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 70
  • OpenAlex ND
social impact