We prove that the generic element of the fifth secant variety $sigma_5(Gr(mathbb{P}^2,mathbb{P}^9)) subset mathbb{P}(igwedge^3 mathbb{C}^{10})$ of the Grassmannian of planes of $mathbb{P}^9$ has exactly two decompositions as a sum of five projective classes of decomposable skew-symmetric tensors. {We show that this, {together with $Gr(mathbb{P}^3, mathbb{P}^8)$, is the only non-identifiable case} among the non-defective secant varieties $sigma_s(Gr(mathbb{P}^k, mathbb{P}^n))$ for any $n<14$. In the same range for $n$, we classify all the weakly defective and all tangentially weakly defective secant varieties of any Grassmannians.} We also show that the dual variety $(sigma_3(Gr(mathbb{P}^2,mathbb{P}^7)))^{ee}$ of the variety of 3-secant planes of the Grassmannian of $mathbb{P}^2subset mathbb{P}^7$ is $sigma_2(Gr(mathbb{P}^2,mathbb{P}^7))$ the variety of bi-secant lines of the same Grassmannian. The proof of this last fact has a very interesting physical interpretation in terms of measurement of the entanglement of a system of 3 identical fermions, the state of each of them belonging to a 8-th dimensional ``Hilbert'' space.

A new class of non-identifiable skew symmetric tensors / Bernardi, Alessandra; Vanzo, Davide. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 2018:Volume 197, Issue 5(2018), pp. 1499-1510. [10.1007/s10231-018-0734-z]

A new class of non-identifiable skew symmetric tensors

Alessandra Bernardi;
2018-01-01

Abstract

We prove that the generic element of the fifth secant variety $sigma_5(Gr(mathbb{P}^2,mathbb{P}^9)) subset mathbb{P}(igwedge^3 mathbb{C}^{10})$ of the Grassmannian of planes of $mathbb{P}^9$ has exactly two decompositions as a sum of five projective classes of decomposable skew-symmetric tensors. {We show that this, {together with $Gr(mathbb{P}^3, mathbb{P}^8)$, is the only non-identifiable case} among the non-defective secant varieties $sigma_s(Gr(mathbb{P}^k, mathbb{P}^n))$ for any $n<14$. In the same range for $n$, we classify all the weakly defective and all tangentially weakly defective secant varieties of any Grassmannians.} We also show that the dual variety $(sigma_3(Gr(mathbb{P}^2,mathbb{P}^7)))^{ee}$ of the variety of 3-secant planes of the Grassmannian of $mathbb{P}^2subset mathbb{P}^7$ is $sigma_2(Gr(mathbb{P}^2,mathbb{P}^7))$ the variety of bi-secant lines of the same Grassmannian. The proof of this last fact has a very interesting physical interpretation in terms of measurement of the entanglement of a system of 3 identical fermions, the state of each of them belonging to a 8-th dimensional ``Hilbert'' space.
2018
Volume 197, Issue 5
Bernardi, Alessandra; Vanzo, Davide
A new class of non-identifiable skew symmetric tensors / Bernardi, Alessandra; Vanzo, Davide. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 2018:Volume 197, Issue 5(2018), pp. 1499-1510. [10.1007/s10231-018-0734-z]
File in questo prodotto:
File Dimensione Formato  
Grass_ContactLoc_Scroll.pdf

Open Access dal 02/11/2019

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 348.75 kB
Formato Adobe PDF
348.75 kB Adobe PDF Visualizza/Apri
Bernardi-Vanzo2018_Article_ANewClassOfNon-identifiableSke.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 524.01 kB
Formato Adobe PDF
524.01 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/213382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact