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Abstract. We prove that the generic element of the fifth secant variety

σ5(Gr(P2,P9)) ⊂ P(
∧3 C10) of the Grassmannian of planes of P9 has exactly

two decompositions as a sum of five projective classes of decomposable skew-
symmetric tensors. We show that this, together with Gr(P3,P8), is the only

non-identifiable case among the non-defective secant varieties σs(Gr(Pk,Pn))

for any n < 14. In the same range for n, we classify all the weakly defective and
all tangentially weakly defective secant varieties of any Grassmannians. We

also show that the dual variety (σ3(Gr(P2,P7)))∨ of the variety of 3-secant

planes of the Grassmannian of P2 ⊂ P7 is σ2(Gr(P2,P7)) the variety of bi-
secant lines of the same Grassmannian. The proof of this last fact has a very

interesting physical interpretation in terms of measurement of the entangle-

ment of a system of 3 identical fermions, the state of each of them belonging
to a 8-th dimensional “Hilbert” space.

Introduction

Let X ⊂ Pn be any reduced, irreducible projective variety defined over C. A
point t ∈ Pn has X-rank equal to r if r is the minimum integer for which there
exist r points x1 . . . , xr ∈ X such that

(1) t ∈ 〈x1, . . . , xr〉
〈x1, . . . , xr〉 ' Pr−1 denotes the projective linear span of the xi’s. We will also say
that in this case {x1, . . . , xs} is a decomposition of t. The Zariski closure of the
set {t ∈ Pn |X-rank(t) = r} is the so called r-secant variety σr(X) of X. There
is an expected dimension for σr(X) that is expdimσr(X) = min{r(dimX + 1) −
1,dim〈X〉}. The actual dimension of σr(X) can be smaller than the expected as it
can be computed by Terracini’s Lemma (see e.g. [29, 5]). When this happens we
say that X is r-defective with r-defect δ = expdimσr(X)− dimσr(X).

The r-th secant degree of X is the number of Pr−1’s containing the generic
element t ∈ σr(X) and that are r-secant to X as in (1). Regarding the r-th secant
degree, when the dimension of σr(X) is not the expected one, it is infinity.

The variety X is said to be r-identifiable if the r-th secant degree of X is equal
to 1.

Moreover, a variety X which is not r-defective is said to be perfect if (dimX+1)
divides n + 1. In this case we expect a finite number of decompositions also for a
generic t ∈ Pn. Note that the r-th secant degree is well defined even for the generic
value, in the perfect case. The generic identifiability in a perfect case is rare, but
when it happens it implies that we have a canonical form (see e.g. [30, 26]). Having
a canonical form means that the generic element t ∈ Pn = 〈X〉 can be written in a
unique way as a sum of r elements on X if σr(X) is the first secant variety filling Pn.
The most celebrated case when this situation appears is the famous Pentahedral
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Theorem of Sylvester: the generic quaternary cubic can be written in a unique way
as a sum of 5 cubic forms.

LetH be a general hyperplane section ofX tangent at r general points t1, . . . , tr ∈
X with r sub-generic (i.e. σr(X) ( 〈X〉), the contact locus of H is the union of
the irreducible components of Sing(H) containing t1, . . . , tr. Remark that since
t1, . . . , tr are general points, then the contact locus is equidimensional. Now X is
r-weakly defective if the general (r+1)-tangent hyperplane to X has a contact locus
of positive dimension (these concepts were introduced in [13]).
It is worth to remark that finding a contact locus of positive dimension is not
enough for claiming the non identifiability of the generic element (while the vicev-
ersa is true: if the contact locus is zero-dimensional then we have the uniqueness
of the decomposition). Nevertheless there is a more refined notion that is more
closely related to identifiability, namely the tangentially weakly defectiveness. Let
p1, . . . , pr ∈ X be r general points of a variety X; the r-tangentially contact locus
of X is the set of points {p ∈ X |TpX ⊂ 〈Tp1

X, . . . , Tpr
X〉}. A variety X is said

to be r-tangentially weakly defective if the r-tangentially contact locus has positive
dimension. If X is not r-tangentially weakly defective then we have the identifi-
ability of the generic element of σr(X)([15, Proposition 2.4]). This is not an “ if
and only if ” criterion, but still the r-tangentially contact locus of X gives the right
information on the number of decompositions of the generic element of σr(X): in
fact the r-secant degree of X is equal to the r-secant degree of the r-tangentially
contact locus of X (cfr [13]).

In this paper we focus on the case of X being a Grassmann variety in its Plüecker

embedding Gr(Pk,Pn) ⊂ P(
∧k+1 Cn+1). It parameterizes projective classes of

skew-symmetric tensors that can be written as v1 ∧ · · · ∧ vk+1 with vi ∈ Cn for

i = 1, . . . , k + 1. Therefore we will say that t ∈ P(
∧k+1 Cn+1) has skew-symmetric

rank r if it belongs to a Pr−1 which is r-secant to Gr(Pk,Pn), with minimal r.
Since we will always deal with skew-symmetric tensors, there won’t be any risk of
confusion if we will simply say that such a t has rank r.

On defective secant varieties to Grassmann varieties there is an open conjecture
(stated independently in [1, 7, 11]) that says that defective Grassmannians occur
only for Gr(P1,Pn) for any n, Gr(P2,P6), Gr(P3,P7), Gr(P2,P8) (see also [10] for
a recent proof for σs(Gr(Pk,Pn)) with s ≤ 12).

A classical result due to C. Segre (see [28]) shows that Gr(P2,P5) has the 2-nd
secant degree equal to 1, i.e. there is a canonical form for the generic element in
P(
∧3 C6) that is therefore of type [v1 ∧ v2 + w1 ∧ w2] with vi, wi ∈ C6, i = 1, 2.

After the example of C. Segre, the next interesting perfect cases are Gr(P3,P8) and
Gr(P4,P8) (dual to each other) for which the secant degree is unknown. In order to
have a numerical evidence on the behavior of these two cases we firstly made use of
Bertini ([6]): it is possibile to show that the decompositions of the generic element

in P(
∧4 C9) as a sum of 6 elements in Gr(P3,P8) are a finite number. The number

of decompositions that we found with Bertini is high (more than 7000). Bertini
software is a good tool to have a numerical evidence on the order of magnitude of
the number of the decompositions, but we did not pursue this path since, having
found such a big number of decompositions, we won’t ever discover the precise
amount of them by only using Bertini (see [24] for a first application of homotopy
continuation method with Bertini to the study of tensors identifiability, and [9] for
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its application to a new numerical algorithm for tensor decomposition). What we
can claim is the following: since we are in a perfect case, the fact that we found at
least two numerically different decompositions, implies that the generic element of∧4 C9 is not 6-identifiable. In fact in any perfect case the map from the abstract
r-secant variety Sr = {(x1, . . . , xr; t) ∈ Xr × P(〈X〉) | t ∈ 〈x1, . . . , xr〉} to the r-
secant variety itself is generically finite, therefore, by Zariski’s main theorem (see
[31]), if the map was birational it would have connected fibers, but one could check,
by computing the dimension of the tangent space, that at least one of the two
different decompositions is an isolated point of the fiber. As already anticipated,
we included here these considerations for sake of completeness but won’t work out
this argument within the manuscript.

In this paper we firstly compute the contact locus of all the highest secant va-
rieties of the Grassmannians Gr(Pk,Pn) that do not fill the ambient space for
n + 1 ≤ 14. Secondly we find that, among the non-defective ones, the only ones
having positive dimensional contact locus are σ3(Gr(P2,P7)) and σ5(Gr(P2,P9)).
In the first case we find that the generic element of σ3(Gr(P2,P7)) is actually iden-
tifiable, therefore this is an example of a 3-weakly-defective Grassmannian having
identifiable generic elements. An important remark in this respect will be Proposi-
tion 1.2 where we show that the dual variety of σ3(Gr(P2,P7)) is σ2(Gr(P2,P7)). It
will turn out that σ2(Gr(P2,P7)), σ3(Gr(P2,P7)) and σ5(Gr(P2,P9)) are the only
weakly-defective secant varieties being not defective for n < 14. The second case
of σ5(Gr(P2,P9)) is a new example for non-identifiability and it is the unique one
among the non-defective cases for n < 14. In Proposition 1.12 we show that the
generic order 3 skew-symmetric tensor of C10 of rank 5 belongs to exactly two P4’s
5-secant to Gr(P2,P9).

Our main result is Theorem 1.1 where we compute all the secant degrees for any
Grassmannian if n < 14. Finally we conclude the paper with two Corollaries, 1.13
and 1.14, where we classify all the weakly defective cases and all the tangentially
weakly defective cases for the same range n < 14.

1. New non-identifiable Grassmannian

In order to compute the contact locus for all the secant varieties of the Grass-
mannians Gr(Pk,Pn) that does not fill the ambient space for n + 1 ≤ 14 we use
Macaulay2 [21] (see the file grascontactlocus.m2 in the ancillary material). For
those computations we have used the Hessian criterion introduced in [16] (see [16,
Lemma 4.3, Lemma 4.4, and Theorem 4.5]) suitably adapted to skew-symmetric
tensors. We stopped to n + 1 = 14 because, after such a value of n, the compu-
tational cost of running the program becomes too high. The main theorem of this
paper is the following:

Theorem 1.1.

(1) (a) The Grassmannian Gr(P2,P7) is 2 and 3-weakly defective and the
generic elements of σ2(Gr(P2,P7)) and σ3(Gr(P2,P7)) are identifiable.

(b) The dual variety σ3(Gr(P2,P7))∨ is σ2(Gr(P2,P7)).
(2) The Grassmannian Gr(Pk,Pn) is r-identifiable for n < 14 and r sub-generic

except for:
(a) σr(Gr(P1,Pn)), 2r ≤ n+ 1;
(b) σ3(Gr(P2,P6)) ' σ3(Gr(P3,P6));
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(c) σ5(Gr(P2,P9)) ' σ5(Gr(P6,P9));
(d) σ3(Gr(P3,P7));
(e) σ4(Gr(P3,P7));
(f) σ4(Gr(P2,P8)) ' σ4(Gr(P5,P8)).

Moreover the 5th-secant degree of Gr(P2,P9) is 2 (case (2c)), in all the
other exceptional cases the corresponding rth-secant degree of Gr(Pk,Pn) is
infinity.

Proof. Item (1) is proved in Section 1.1. Item (2c) is proved in Section 1.2. All the
other cases listed above correspond to defective secant varieties (cfr. [10, 1, 7, 11]).

The fact that there are no other exceptions is a consequence of the fact that
there are no other positive dimensional contact loci except for σ3(Gr(P2,P7)) and
σ5(Gr(P2,P9)) among the non defective cases: clearly if X is an r-weakly defective
variety then it is also (r+k)-weakly defective for any 1 ≤ k < min{s ∈ N | σs(X) =
〈X〉} − r; and if X is r-identifiable then it is also (r − k)-identifiable for any 0 ≤
k ≤ r−1. Since for Gr(P2,P9) we have proved by direct computation that it is not
4-weakly defective, hence its generic element is 4-identifiable.

Finally the 2-identifiability of Gr(P2,P6) and Gr(P3,P7) and the 3-identifiability
of Gr(P2,P8) were directly computed with Macaulay 2. More precisely we found a
6 dimensional contact locus for σ2(Gr(P2,P6)), so it is potentially weakly defective,
but we computed that Gr(P2,P6) is not 2-tangentially weakly defective, therefore
we have the 2-identifiability for its generic element, while Gr(P3,P7) is not 2-weakly
defective and Gr(P2,P8) is not 3-weakly defective. �

1.1. Identifiability for the generic element of σ3(Gr(P2,P7)). The compu-
tation that we have done with Macaulay2 [21] (see grascontactlocus.m2 in the
ancillary material) shows that σ3(Gr(P2,P7)) has a positive dimensional contact lo-
cus, i.e. that it is weakly-defective, with “ high probability ”. Before investigating
on the identifiability of the generic element we would like to show that Gr(P2,P7) is
indeed 3-weakly defective. We will make use of the fact that a variety X is r-weakly
defective if and only if the dimension of the dual variety to σr(X) is smaller than
dim(P〈X〉) − r (see [13]). We will also say that a variety X is dual defective if its
dual variety X∨ is not a hypersurface.

Proposition 1.2. The dual variety (σ3(Gr(P2,P7)))∨ is σ2(Gr(P2,P7)) and the
Grassmannian Gr(P2,P7) is 3-weakly defective with a 7 dimensional contact locus.

Proof. Remark that SL(8) has only a finite number of orbits on P(
∧3 C8). G.B.

Gurevich in [23, VII, §35.4] gave the complete classification of those orbits; their
dimensions are computed by D. Ž. Djoković in [18, Table I]. We retrieve this
classification in our Table 1.

Notation 1.3 (for Table 1). The table is splitted vertically in two parts: on the
same row we write the orbits that are dual to each other. We have checked them via
dimension count: since SL(8) has only a finite number of orbits on P(

∧3 C8), then
the dual variety of an orbit closure remains a homogeneous variety, therefore it has
to be one of those classified by Gurevich in [23, VII, §35.4]. The only ambiguity
exists for XV and XIX; we prove this case along the present proof. We follow the
notation of [23]: in the first (5th resp.) column the numbers of the orbits are the
same used by Gurevich in [23, VII, §35.4]; in the second (7th resp.) column we
write the canonical form (C.F.) of an element in each orbit; in the third (8ve resp.)
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column we write the affine dimension (D.) of the corresponding orbit and in the 4th

(last resp.) column we write the variety of the orbit closure. The notation for the
canonical form used in Table 1 is the following [abc][qrs] := a∧b∧c+q∧r∧s where
a, b, c, q, r, s ∈ C8. Moreover, in that table “ G ” stays for Gr(P2,P7); “ C ” for
restricted chordal variety; “ τ ” for the tangential variety to Gr(P2,P7); “ σi ” for
σi(Gr(P2,P7)), i = 2, 3; “ J(G,X) ” for the join variety among Gr(P2,P7) and the

varietyX; and “ Si ” for the subspace variety Subi(
∧3 C8) := {t ∈ P(

∧3 C8) | ∃Ci ⊂
C8 s.t. t ∈ P(

∧3 Ci)}, i = 6, 7. We refer to [22] for the complete classification of
all other orbits.

Table 1. Classification of the orbits of SL(8) on P(
∧3 C8). No-

tation is settled in Notation 1.3.

C.F. D. Var. C.F. D. Var.

I w = 0 0 XXIII [abc][qrs][aqp][brp] 56 P55

[csp][bst][crt]

II [qrs] 16 G XXII [abc][qrs][aqp][brp] 55 G∨

[bst][crt]

III [aqp][brp] 25 C XXI [abc][qrs][aqp][bst] 53 C∨

IV [aqr][brp][cpq] 31 τ XX [qrs][aqp][brp][csp] 52 τ∨

[bst][crt]

V [abc][pqr] 32 σ2 = S6 XIX [aqp][brp][csp][bst] 48 σ3
[crt]

VI [aqp][brp][csp] 28 S∨
7 X [abc][qrs][aqp][brp] 42 S7

[csp]

VII [qrs][aqp][brp][csp] 35 XVIII [qrs][aqp][brp][bst] 50
[crt]

VIII [abc][qrs][aqp] 38 J(G, τ)∨ XVII [aqp][brp][bst][crt] 47 J(G, τ)

IX [abc][qrs][aqp][brp] 41 J(G,C)∨ XVI [aqp][bst][crt] 41 J(G,C)

XI [aqp][brp][csp][crt] 40 XV [abc][qrs][aqp][brp] 48

[csp][crt]

XII [qrs][aqp][brp][csp] 43 XIV [abc][qrs][aqp][brp] 46
[crt] [crt]

XIII [abc][qrs][aqp][crt] 44 SELF DUAL

For sake of completeness we include in Table 2 the containment diagram of the
orbit closures of SL(8) on P(

∧3 C8) (we want to thank W.A. de Graaf for his
help with SLA [20] GAP4 [19] package, in drawing this diagram; anyway the same
diagram is also described in detail in [18, Figure 1]).

The variety σ3(Gr(P2,P7)) is not defective (from the dimension of the secant
variety point of view), therefore its affine cone has dimension 48. Gurevich in

[23] shows that SL(8) generates two orbits of affine dimension 48 in P(
∧3 C8):

XV and XIX (as illustrated in Table 2). One of them must be the open part of
σ3(Gr(P2,P7)). Gurevich also shows that the dual variety of the closure of XIX
has affine dimension 32 and its open part is the orbit of a ∧ b ∧ c + p ∧ q ∧ r (it
is represented by V in Table 1), i.e. the closure of V is obviously σ2(Gr(P2,P7)).
Therefore if we prove that σ3(Gr(P2,P7)) is the closure of XIX we are done.

Either if σ3(Gr(P2,P7)) is the closure of XIX or of XV, it is dual defective: in
one case its dual variety would have affine dimension 32 and in the other 40 (in
both cases the dual variety of σ3(Gr(P2,P7)) won’t be of dimension 55-3=52). Now
the point is that there is a link between the contact locus of a secant variety and
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Table 2. Containment diagram for the orbit closures of SL(8) on

P(
∧3 C8) together with their affine dimensions.

I

II

III

V I

IV

V

V II

V III

XI

IX XV I

X

XII

XIII

XIV

XV II

XV XIX

XV III

XX

XXI

XXII

XXIII

0

16

25

28

31

32

35

38

40

41

42

43

44

46

47

48

50

52

53

55

56

its dual variety (as it is shown in [13]). More precisely: the codimension of the dual
variety of a secant variety σk(X) which is not defective but with contact locus of
projective dimension c is

(2) codim(σk(X)∨) = k(c+ 1).
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This leads us to the following two possibilities:

• if σ3(Gr(P2,P7)) was the closure of XV then its dual variety would have
codimension 3(c + 1) = 56 − 40 = 16, but this is impossible because c has
to be a natural number;
• If σ3(Gr(P2,P7)) is the closure of XIX then its dual variety has codimension

3(c+ 1) = 56− 32 = 24, this is clearly possible and it is the only possibility
left.

This shows that σ3(Gr(P2,P7))∨ = σ2(Gr(P2,P7)). Remark that this also shows
that Gr(P2,P7) is 2 and 3-weakly-defective and the dimensions of the contact loci
of σ2(Gr(P2,P7)) and σ3(Gr(P2,P7)) are 3 and 7 respectively. �

Question 1.4. It would be newsworthy to give a geometric description of the
duality σ3(Gr(P2,P7))∨ = σ2(Gr(P2,P7)). An interesting fact for this purpose is

that σ2(G(P2,P7)) is equal to the so called subspace variety Sub6(
∧3 C8) := {t ∈

P(
∧3 C8) | ∃C6 ⊂ C8 s.t. t ∈ P(

∧3 C6)} (crf [25, Ex. 7.1.4.3]). One containment is
obvious and it holds for any secant variety of any Grassmannian with the correct
adjusting of indices, the other containment is a peculiarity of this specific case.

Remark 1.5. As already remarked, the projective duality in Table 1 is performed
via computation of the dimensions of the dual varieties of the orbit closure of any
generator, and via a specific argument for XV and XIX given in the proof of Propo-
sition 1.2. It is worth to remark that this duality almost corresponds to the duality
of the arithmetic characters showed in [23]: they agree in almost all cases except for
VI and X that are projectively dual to each other according to our computations,
while Gurevich in [23, VII, §35.4] explicitly writes that those two orbits don’t have
any dual orbit. It is a very interesting and peculiar phenomenon that the projective
duality does not correspond to the duality of arithmetic characters.

Corollary 1.6. The variety Gr(P2,P7) is 2 and 3-weakly defective.

Proof. The duality σ3(Gr(P2,P7))∨ = σ2(Gr(P2,P7)) together with the formula (2)
(cfr. [13]) show that the contact locus of σ2(Gr(P2,P7)) has dimension 3 and the
contact locus of σ3(Gr(P2,P7)) has dimension 7. �

As already recalled in the introduction, the weakly defectiveness is not sufficient
to claim anything about the identifiability.

Proposition 1.7. The Grassmannian Gr(P2,P7) is 3-identifiable.

Proof. We computed with Macaulay2 ([21]) the tangentially contact locus T at
three points of Gr(P2,P7); it turns out to be the union of three disjoint P3’s, each
one passing through one and only one of the tangent points, and a P5 not passing
to any one of the three points of tangency.

More precisely, the three points that we chose (before the Plüecker embedding)
were the following:

q1 =

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 , q2 =

 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0

 ,

q3 =

 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1


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We computed the 3-tangentially contact locus of the span of the three tangent
spaces at these points. We found that in the coordinates {a0, a1,1, . . . , a3,5} of the
P15 parameterizing Gr(P2,P7) the ideal of the tangentially contact locus is the
intersection of the following four ideals:

I(Π1) = (a3,4, a1,4, a2,4, a3,1, a1,1, a2,1, a3,2, a1,2, a2,2, a3,5, a1,5, a2,5),

I(Π2) = (a3,4, a1,4, a2,4−1, a3,1, a1,1, a2,1, a3,2, a1,2, a2,2, a3,3+a3,5−1, a1,3+a1,5−1, a2,3+a2,5),

I(Π3) = (a3,4, a1,4, a2,4, a2,1+a2,3, a3,1+a3,3−1, a1,1+a1,3−1, a3,2, a1,2, a2,2−1, a3,5, a1,5, a2,5),

I(Π4) = (a3,4, a1,4, a3,1, a1,1, a3,3 − 1, a1,3 − 1, a3,2, a1,2, a3,5, a1,5).

Clearly all the Πi’s are linear and it is very easy to check that they remain linear
even after the Plüecker embedding p3,8 : P15 → P55. Moreover Πi ' p3,8(Πi) ' P3

for i = 1, 2, 3 and Π4 ' p3,8(Π4) ' P5. It’s again an easy check that qi ∈ Πi for
i = 1, 2, 3 and that qi /∈ Πj for i 6= j, i = 1, 2, 3 and j = 1, 2, 3, 4. Remark also
that the three P3’s have no common components. Now it’s clear that the generic
point on a honest 3-secant plane to T can be written in a unique way as a linear
combination of 3 points of T . As already recalled in the Introduction this suffices
to claim the 3-identifiability of Gr(P2,P7) (cfr [13]). �

Corollary 1.8. The Grassmannian Gr(P2,P7) is 2-identifiable.

Proof. By definition of r-identifiability if X is r-identifiable then it is also (r − k)-
identifiable for any 0 ≤ k ≤ r − 1. �

Remark 1.9. We like to point out a very peculiar phenomenon that we have not
found before in the literature. In the computation of the 3-tangentially contact
locus of Gr(P2,P7) (in the proof of Proposition 1.7) we found four components:
three of them pass through the points of tangency, while the other one doesn’t pass
through any one of them.

Remark 1.10. The fact that σ2(Gr(P2,P7)) and σ3(Gr(P2,P7)) are weakly de-
fective but their generic element is identifiable is not a new phenomenon: in [16,
Lemma 2.5 and Theorem 2.7] is shown an analogous example in a case of secant
varieties to Segre varieties.

1.2. Two decompositions for the generic element of σ5(Gr(P2,P9)). We have
computed with Macaulay2 [21] that σ5(Gr(P2,P9)) has a positive dimensional con-
tact locus with “ very high probability ”, i.e. that it should be weakly-defective.
Here we want to prove that this is actually the case and moreover we can also show
that its generic element is not identifiable. More precisely, in Corollary 1.12 we will
show that the generic element of σ5(Gr(P2,P9)) has exactly 2 decompositions as a
sum of 5 points in Gr(P2,P9).

Firstly we like to recall what a 3-torsion scroll of P2’s in P9 is. Fix an origin
on an elliptic normal curve E ⊂ P9 and a 3-torsion point P on E. Then for each
point Q in E, the three points Q, P + Q and 2P + Q span a plane. As Q moves,
these planes form a scroll, the so called a 3-torsion scroll. It is a special case of
a 3-translation scroll defined analogously without requiring that P is necessarily
a 3-torsion point. The 3-torsion scroll of P2’s in P9 has degree 10, in fact the
general 3-translation scroll have degree 30, hence our 3-torsion scroll has degree
10 because the 3 secant planes P(〈Q,Q + P,Q + 2P 〉),P(〈Q − P,Q,Q + P 〉) and
P(〈Q − 2P,Q − P,Q〉) coincide. Therefore the corresponding curve in Gr(P2,P9)
has degree 10 because for a scroll over a curve the degree as a scroll coincides with
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the Plüecker degree of the curve in the Grassmannian. Moreover if we look at the
3-torsion scroll as a rank-3 vector bundle it is indecomposable, and, viceversa, if
a vector bundle E over an elliptic normal curve of degree 10 is indecomposable
then P(E) is the 3-torsion scroll (see. [4, Lemma 3 and Remark 31] and [12]); the
fact that it is indecomposable is a consequence of the fact that such a scroll is the
symmetric product of 3 times the elliptic curve cf. [2, 3, 27]; see also [17] for the
analogous description for 2-torsion scrolls).

Proposition 1.11. The contact locus of σ5(Gr(P2,P9)) is the 3-torsion scroll of
P2’s in P9.

Proof. We computed with Macaulay2 ([21]) that through 5 specific random points
of Gr(P2,P9) there is only one irreducible curve in the contact locus and it is an
elliptic curve (see the ancillary material to the arXiv version of the present paper).
The curve that we have found with Macaulay2 is birational to our contact locus
since we have done the computation on an affine chart, this allows to say that since
the one we found is an elliptic curve then the one in the contact locus remains an
elliptic curve. Unfortunately the degrees of the two curves may not be the same.
The direct computation of the degree of the curve was impossible with Macaulay2
and too long with Bertini ([6]) for which we used the techniques of pseudo Witness
sets developed in [9]. We therefore computed the associated scroll and we found out
that its degree is 10. This is sufficient to claim that the contact locus is an elliptic
curve of degree 10 since for a scroll over a curve its degree as a scroll coincides with
the degree of the corresponding curve in the Grassmannian. Moreover, since by
[14, Theorem 2.4] the contact locus of σ5(Gr(P2,P9)) spans a P9 then our elliptic
curve of degree 10 is also normal.

Now, since we have shown that though 5 random point there is a unique elliptic
normal curve of degree 10, this is the situation for 5 general points by semicontinuity
and this is sufficient to say that the concat locus of σ5(Gr(P2,P9)) is exactly an
elliptic normal curve of degree 10.

Now we want to prove that through 5 generic points of Gr(P2,P9) there there is
always a 3-torsion scroll. The Hilbert scheme of the elliptic normal curves of degree
d in Pd−1 has dimension d2. The conditions imposed by plane of P9 to be 3-secant
to an elliptic normal curve of degree 10 in the 3 points P −Q = Q−R = R−P are
exactly 20. Now if we consider five 3-secant planes in P9 with this property, they
impose 20 · 5 = 100 = d2 conditions to the elliptic curves of degree 10, therefore
we expect a finite number of elliptic curves with the property above. Moreover
the 3-torsion scroll is always contained in the Grassmannian by construction and
we have shown that an elliptic curve C of degree 10 is contained in the contact
locus of 5 points. In order to conclude it is sufficient to remind that the 3-torsion
scroll corresponds to an indecomposable rank 3 vector bundle over an elliptic curve,
moreover if the vector bundle is indecomposable, then its projectivization is the 3-
torsion translation scroll (cf. [4, 12]).

Summing up: We have 5 specific points through which there is only one elliptic
normal curve in the contact locus (this is the computation that we have done with
Macaulay2 ([21])); through 5 general points there is always a 3-torsion scroll that
is a degree 10 elliptic normal curve which it is contained in the contact locus, it
is irreducible and it spans a P9; therefore, by semicontinuity, we can say that the
contact locus is given by only one elliptic normal curve of degree 10 spanning a P9

that is the 3-torsion scroll of P2’s in P9. �
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Corollary 1.12. The generic element of σ5(Gr(P2,P9)) has exactly 2 decomposi-
tions as a sum of 5 points in Gr(P2,P9).

Proof. The previous proposition shows that the contact locus of σ5(Gr(P2,P9)) is
the 3-torsion scroll of P2’s of P9 which is a degree 10 elliptic normal curve in the
Grassmannian . This is enough to conclude, in fact having an elliptic normal curve
as a contact locus leads to exactly two decompositions for the generic element of
σ5(Gr(P2,P9)). In order to see this last fact it would be sufficient to quote [13]: the
same argument on the equality between the r-th secant degree of the tangentially
contact locus and the number of decomposition of the generic element in the r-th
secant variety holds. Anyway, for the present specific example this can be shown
geometrically. Fix 5 points on C and take all the (P8)’s containing them; they define
a linear series and they intersect C in other 5 points (and no more). Moreover the
two (P4)’s spanned by those two quintuple of points must intersect each other since
they live in the same P8. This is again sufficient to conclude that we have exactly
two decompositions for the generic element of σ5(Gr(P2,P9)). �

Corollary 1.13. The non r-defective Grassmannians Gr(Pk,Pn) for n < 14 are
all non r-weakly defective except for:

(a) r = 2, 3 and Gr(P2,P7) ' Gr(P4,P7), where the contact loci have dimensions
3 and 7 respectively;

(b) r = 5 and Gr(P2,P9) ' Gr(P6,P9), where the contact locus has dimension 1;
(c) r = 2 and Gr(P2,P6) ' Gr(P3,P6), where the contact locus has dimension 6.

Proof. Case (a) is Corollary 1.6. The dimensions of the contact loci are computed in
the proof of Proposition 1.2 when we show that σ2(Gr(P2,P7)) and σ3(Gr(P2,P7))
are dual to each other.

In the proof of Proposition 1.12 we showed that Gr(P2,P9) is 5-tangentially
weakly defective, therefore it is also 5-weakly defective. In the same proof we also
showed that the contact locus is an elliptic normal curve. This proves case (b). As
already said in the proof of Theorem 1.1, the fact that Gr(P2,P9) is not 4-weakly
defective is done by direct computation.

The only case that we have not proved yet is (c). We computed, with Macaulay2,
the dimension of (σ2(Gr(P2,P6)))∨, by considering σ2(Gr(P2,P6)) to be the orbit

of e0 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e5 via the action of SL(7) in
∧3 C7. It turns out that

dim(σ2(Gr(P2,P6)))∨ = 21, therefore, by the displayed formula (2) above, the
contact locus has dimension 6.

The fact that all the regular cases (i.e. Grassmannians with r-secant varieties of
the expected dimension) not listed above are not weakly defective is a consequence
of the computation that we have done in the proof of Theorem 1.1 that shows that
in those cases all contact loci are 0-dimensional. �

Corollary 1.14. The non r-defective Grassmannians Gr(Pk,Pn) for n < 14 are
all non r-tangentially weakly defective except for:

(1) r = 3 and Gr(P2,P7), where the tangentially contact locus has dimension
5;

(2) r = 5 and Gr(P2,P9), where the tangentially contact locus has dimension
1.

Proof. Since the r-tangentially weakly defectiveness implies the r-weakly defective-
ness, we have to check only weakly defective cases listed in Corollary 1.13.
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We computed with Macaulay2 that the 2-tangentially contact locus of Gr(P2,P7)
is 0-dimensional. This suffices to prove that Gr(P2,P7) is not 2-tangentially weakly
defective.

In Proposition 1.7 we computed the 3-tangentially contact locus of Gr(P2,P7)
and we found that it is the union of three P3’s and a P5.

In Proposition 1.12 we showed that the 5-th secant degree of Gr(P2,P9) is two,
therefore we don’t have the identifiability for the generic element of σ2(Gr(P2,P9)),
hence Gr(P2,P9) is 2-tangentially weakly defective. Moreover since the 5-contact
locus has dimension 1, and the 5-tangentially contact locus has positive dimension,
we can conclude that the 5-tangentially contact locus also has dimension 1.

In the proof of Theorem 1.1 we have already computed with Macaulay2 that the
2-tangentially contact locus of Gr(P2,P6) is 0-dimensional. This suffices to prove
that Gr(P2,P6) is not 2-tangentially weakly defective. �

2. Appendix on a Quantum Physical interpretation

Quantum technologies are nowadays very active in giving a good measurement of
the entanglement of the state of a quantum physical system. In particular systems
of identical fermionic particles are of very high interest in Quantum Theory.

We would like to finish our paper with a physical interpretation of our contain-
ment diagram for the orbit closures of SL(8) in P(

∧3 C8).

From a physical point of view, an element of P(
∧3 C8) can be interpreted as a

system of 3 identical fermions, the state of each belonging to a 8-th dimensional
“ Hilbert ” space. In [8] the authors describe how the entanglement of a state cannot
change under Stochastic Local Quantum Operation and Classical Communication
(SLOCC). Performing a SLOCC over a quantum system of k identical fermionic
particles on an n-dimensional vector space corresponds to act on a vector |φ〉 ∈∧k Cn with GL(n). Then if one considers that the multiplication by scalars does
not affect the state |φ〉, one can operate with a SLOCC on the projective class of

|φ〉 in P(
∧k Cn) remaining on the same orbit via SL(n). For the states in the same

orbit of SL(n) the entanglement, according to [8], does not change. Therefore the

classification of all the orbits of SL(n) in
∧k Cn gives a corresponding classification

of all the possible “ degrees of entanglement ” that a quantum state can have.
To be more precise, the containment diagram of our Table 2 gives precisely the
stratification of the entanglement measure of a 3 fermions in C8: in particular the
variety II (i.e. the Grassmannian Gr(P2,P7)) there represents the pure separable
states, and all the other states are more entangled as their level in the containment
diagram is higher. For example points in the open part of σ2(Gr(P2,P7)) (V) are
more entangled than points in the open part of the restricted chordal variety III.
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