We present a geometric formula of Poincaré type, which is inspired by a classical work of Sternberg and Zumbrun, and we provide a classification result of stable solutions of linear elliptic problems with nonlinear Robin conditions on Riemannian manifolds with nonnegative Ricci curvature. The result obtained here is a refinement of a result recently established by Bandle, Mastrolia, Monticelli and Punzo.

Classication of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature / Pinamonti, Andrea; Dipierro, Serena; Valdinoci, Enrico. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 8:1(2019), pp. 1035-1042. [10.1515/anona-2018-0013]

Classication of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature.

Andrea Pinamonti;Enrico Valdinoci
2019-01-01

Abstract

We present a geometric formula of Poincaré type, which is inspired by a classical work of Sternberg and Zumbrun, and we provide a classification result of stable solutions of linear elliptic problems with nonlinear Robin conditions on Riemannian manifolds with nonnegative Ricci curvature. The result obtained here is a refinement of a result recently established by Bandle, Mastrolia, Monticelli and Punzo.
2019
1
Pinamonti, Andrea; Dipierro, Serena; Valdinoci, Enrico
Classication of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature / Pinamonti, Andrea; Dipierro, Serena; Valdinoci, Enrico. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 8:1(2019), pp. 1035-1042. [10.1515/anona-2018-0013]
File in questo prodotto:
File Dimensione Formato  
Anona2.pdf

accesso aperto

Descrizione: File lavoro pubblicato
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 585.03 kB
Formato Adobe PDF
585.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/209877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact