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Abstract: We present a geometric formula of Poincaré type, which is inspired by a classical work of Stern-

berg and Zumbrun, and we provide a classification result of stable solutions of linear elliptic problems with

nonlinear Robin conditions on Riemannian manifolds with nonnegative Ricci curvature. The result obtained

here is a refinement of a result recently established by Bandle, Mastrolia, Monticelli and Punzo.
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1 Introduction
The study of partial differential equations on manifolds has a long tradition in analysis and geometry, see,

e.g., [1, 26, 28, 32, 33]. The interest for such topic may come from different perspectives. On the one hand,

at a local level, classical equations with variable coefficients can be efficiently comprised into the manifold

setting, allowing more general and elegant treatments. In addition, at a global level, the geometry of the

manifold can produce new interesting phenomena and interplay with the structure of the solutions, thus

creating a novel scenario for the problems into consideration.

Of course, given the complexity of the topic, the different solutions of a given partial differential equation

on a manifold can give rise to a rather wild “zoology” and it is important to try to group the solutions into

suitable “classes” and possibly to classify all the solutions belonging to a class.

In this spirit, very natural classes of solutions in a variational setting arise from energy considerations.

The simplest class in this framework is probably that of “minimal solutions”, namely the class of solutions

which minimize (or, more generally, local minimize) the energy functional.

On the other hand, it is often useful to look at a more general class than minimal solutions, that is, the

class of solutions at which the second derivative of the energy functional is nonnegative. These solutions are
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called “stable” (see, e.g., [14]). Of course, the class of stable solutions contains that of minimal solutions,

but the notion of stability is often in concrete situations more treatable than that of minimality. For instance,

it is typically very difficult to establish whether or not a given solution is minimal, since one, in principle,

should compare its energy with that of all the possible competitors, while a stability check could be more

manageable, relying only on a single, and sometimes sufficiently explicit, second derivative bound.

The goal of this paper is to study the case of a linear elliptic equation on a domain of a Riemannian

manifold with nonnegative Ricci curvature, endowed with nonlinear boundary data. We will consider stable

solutions in this setting and provide sufficient conditions to ensure that they are necessarily constant.

The framework in which we work is the following. Let M be a connected m-dimensional Riemannian

manifold endowedwith a smoothRiemannianmetric g = (gij).Wedenote by ∆ the Laplace–Beltrami operator

induced by g. Let Ω ⊂ M be a compact orientable domain and ν be the outer normal vector of ∂Ω lying in the

tangent space TpM for any p ∈ ∂Ω. We assume that ∂Ω is orientable for the outer normal to be well defined

and continuous.

In this paper we study the solutions to the following boundary value problem:

{
∆u + f(u) = 0 in Ω,

∂νu + h(u) = 0 on ∂Ω,
(1.1)

where f, h ∈ C1(ℝ) and ∂νu := g(∇u, ν). Similar problems have been investigated in [2, 3, 11, 25].

As usual, we consider the volume term induced by g, that is, in local coordinates,

dV = √|g| dx1 ∧ ⋅ ⋅ ⋅ ∧ dxm ,

where {dx1, . . . , dxm} is the basis of 1-forms dual to the vector basis {∂
1
, . . . , ∂m}, and |g| = det(gij) ≥ 0. We

also denote by dσ the volume measure on ∂Ω induced by the embedding ∂Ω 󳨅→ M.

As customary, we say that u is a weak solution to (1.1) if u ∈ C1(Ω) and

∫
Ω

⟨∇u, ∇φ⟩ dV + ∫
∂Ω

h(u)φ dσ = ∫
Ω

f(u)φ dV for any φ ∈ C1(Ω).

Moreover, we say that a weak solution u is stable if

∫
Ω

|∇φ|2 dV + ∫
∂Ω

h󸀠(u)φ2 dσ − ∫
Ω

f 󸀠(u)φ2 dV ≥ 0 for any φ ∈ C1(Ω). (1.2)

In order to state our result,we recall below some classical notions inRiemannian geometry. Given a vector

field X, we set
|X| = √⟨X, X⟩.

Also (see, for instance, [26, Definition 3.3.5]), it is customary to define the Hessian of a smooth function ϕ as

the symmetric 2-tensor given in a local patch by

(Hϕ)ij = ∂2ijϕ − Γ
k
ij∂kϕ,

where Γ

k
ij are the Christoffel symbols, namely,

Γ

k
ij =

1

2

ghk(∂ighj + ∂jgih − ∂hgij).

Given a tensor A, we define its norm by |A| = √AA∗, where A∗ is the adjoint.
The above quantities are related to the Ricci tensor Ric via the Bochner–Weitzenböck formula (see, for

instance, [4] and references therein):

1

2

∆|∇ϕ|2 = |Hϕ|2 + ⟨∇∆ϕ, ∇ϕ⟩ + Ric(∇ϕ, ∇ϕ). (1.3)

Finally, we let 𝕀 and H denote the second fundamental tensor and the mean curvature of the embed-

ding ∂Ω 󳨅→ Ω in the direction of the outward unit normal vector field ν, respectively.

Brought to you by | Università degli Studi di Trento
Authenticated

Download Date | 1/28/20 3:11 PM



S. Dipierro, A. Pinamonti and E. Valdinoci, Classification of stable solutions | 1037

We are now in position to state our main result.

Theorem 1.1. Let u ∈ C3(Ω) be a stable solution to (1.1). Assume that the Ricci curvature is nonnegative in Ω,
and that
(C1) for any p ∈ ∂Ω, the quadratic form 𝕀 − h󸀠(u)g̃ on the tangent space Tp(∂Ω) is nonpositive definite.
If

∫
∂Ω

(h(u)f(u) + (m − 1)(h(u))2H + h󸀠(u)(h(u))2) dσ ≤ 0, (1.4)

then u is constant in Ω.

Remark 1.2. Theorem 1.1 has been proved in [2, Theorem 4.5] in the particular case where h(t) := αt for
some α ∈ ℝ. We point out that with this particular choice of h, Theorem 1.1 here weakens the assumptions

on the sign of α of [2, Theorem 4.5].

The proof of Theorem 1.1 is based on a geometric Poincaré-type inequality, which we state in this setting as

follows.

Theorem 1.3. Let u be a stable weak solution to (1.1). Then

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV − ∫

∂Ω

(
1

2

⟨∇|∇u|2, ν⟩ + h󸀠(u)|∇u|2)φ2 dσ ≤ ∫
Ω

|∇u|2|∇φ|2 dV (1.5)

for any φ ∈ C∞(Ω).
We notice that formula (1.5) relates the stability condition of the solution with the principal curvatures and

the tangential gradient of the corresponding level set. Since this formula bounds a weighted L2-norm of

any φ ∈ C1(Ω) plus a boundary term by a weighted L2-norm of its gradient, we may consider this formula

as a weighted Poincaré type inequality.

The idea of using weighted Poincaré inequalities to deduce quantitative and qualitative information on

the solutions of a partial differential equation has been originally introduced by Sternberg and Zumbrun

in [30, 31] in the context of theAllen–Cahn equation, and it has been extensively exploited to prove symmetry

and rigidity results, see, e.g., [15, 18, 19]. See also [16, 20, 21, 23, 24, 29] for applications to Riemann-

ian and sub-Riemannian manifolds, [7] for problems involving the Ornstein–Uhlenbeck operator, [6, 17] for

semilinear equations with unbounded drift and [8–10, 22] for systems of equations.

Recently, in [11, 13], the cases of Neumann conditions for boundary reaction-diffusion equations and

of Robin conditions for linear and quasilinear equations have been studied, using a Poincaré inequality that

involves also suitable boundary terms.

We point out that Theorem 1.1 comprises the classical case of the Laplacian in the Euclidean space with

homogeneous Neumann data, which was studied in the celebrated papers [5, 27]. In this spirit, our The-

orem 1.1 can be seen as a nonlinear version of the results of [5, 27] on Riemannian manifolds (and, with

respect to [5, 27], we perform a technically different proof, based on Theorem 1.3).

For related results in the framework of Markov Triples, see [12]. The next two sections are devoted to the

proofs of Theorems 1.3 and 1.1, respectively.

2 Proof of Theorem 1.3
Applying (1.2) with φ replaced by |∇gu|φ, we get

∫
Ω

f 󸀠(u)|∇u|2ϕ2 dV ≤ ∫
Ω

(󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2ϕ2 + |∇u|2|∇ϕ|2 + 2ϕ|∇u|⟨∇ϕ, ∇|∇u|⟩) dV + ∫

∂Ω

h󸀠(u)|∇u|2φ2 dσ

= ∫
Ω

(󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2ϕ2 + |∇u|2|∇ϕ|2 + 1

2

⟨∇ϕ2

, ∇|∇u|2⟩) dV + ∫
∂Ω

h󸀠(u)|∇u|2φ2 dσ.
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Therefore, integrating by parts, the third term in the last line, we get

∫
Ω

f 󸀠(u)|∇u|2ϕ2 dV ≤ ∫
Ω

(󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2ϕ2 + |∇u|2|∇ϕ|2 − 1

2

ϕ2

∆|∇u|2) dV

+
1

2

∫
∂Ω

φ2⟨∇|∇u|2, ν⟩ dσ + ∫
∂Ω

h󸀠(u)|∇u|2φ2 dσ.

Hence, recalling (1.3),

∫
Ω

f 󸀠(u)|∇u|2ϕ2 dV ≤ ∫
Ω

[󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2ϕ2 + |∇u|2|∇ϕ|2 − (|Hu|2 + ⟨∇∆u, ∇u⟩ + Ric(∇u, ∇u))φ2] dV

+
1

2

∫
∂Ω

φ2⟨∇|∇u|2, ν⟩ dσ + ∫
∂Ω

h󸀠(u)|∇u|2φ2 dσ. (2.1)

Now, by differentiating the equation in (1.1), we see that

−∇∆u = f 󸀠(u)∇u.
Plugging this information into (2.1), we conclude that

0 ≤ ∫
Ω

[󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2ϕ2 + |∇u|2|∇ϕ|2 − (|Hu|2 + Ric(∇u, ∇u))ϕ2] dV

+
1

2

∫
∂Ω

φ2⟨∇|∇u|2, ν⟩ dσ + ∫
∂Ω

h󸀠(u)|∇u|2φ2 dσ,

which completes the proof of Theorem 1.3.

3 Proof of Theorem 1.1
In this section we provide the proof of Theorem 1.1. We first state the following result that proves [2, Theo-

rem 3.4] in the more general case in which h is any C1 function.

Theorem 3.1. Let w ∈ C3(Ω) satisfy
∂νw + h(w) = 0 on ∂Ω, (3.1)

for some h ∈ C1(ℝ). Then

1

2

∂
∂ν
|∇w|2 = 𝕀(∇̃w, ∇̃w) − h󸀠(w)|∇̃w|2 − h(w)Hw(ν, ν) on ∂Ω,

where ∇̃w := ∇w − g(∇w, ν)ν is the tangential gradient with respect to ∂Ω, and Hw is the Hessian matrix of the
function w.

Proof. We let {ei}, with i ∈ {1, . . . ,m}, be aDarboux frame along ∂Ω, that is, such that em := ν. In this setting,
conditions (3.1) reads

wm = −h(w) on ∂Ω. (3.2)

Also, for any i, j ∈ {1, . . . ,m − 1}, we define

Hij := g(𝕀(ei , ej), ν).

Then, reasoning as in the proof of [2, formula (3.32)], we obtain that, for any j ∈ {1, . . . ,m − 1},

wjm =
m−1
∑
i=1 Hijwi − h󸀠(w)wj on ∂Ω.
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Therefore, multiplying both terms by wj, we get

wjmwj =
m−1
∑
i=1 Hijwi wj − h󸀠(w)w2

j on ∂Ω. (3.3)

On the other hand, for any i ∈ {1, . . . ,m},

1

2

(|∇w|2)i =
m
∑
j=1wjwji =

m−1
∑
i=1 wjwji + wmwmi =

m−1
∑
i=1 wjwji − h(w)wmi ,

where we used (3.2) in the last passage.

As a consequence,

1

2

∂
∂ν
|∇w|2 =

m−1
∑
j=1 wjwjm − h(w)wmm on ∂Ω.

From this and (3.3), we thus obtain

1

2

∂
∂ν
|∇w|2 =

m−1
∑
i,j=1Hijwiwj − h󸀠(w) m−1∑

j=1 w2

j − h(w)wmm on ∂Ω,

which implies the desired result.

Now we recall that ∆ is the Laplace–Beltrami operator of the manifold (M, g), and we let ∆̃ be the Laplace–

Beltrami operator of themanifold ∂Ω endowedwith the inducedmetric by the embedding ∂Ω 󳨅→ M. We have

that

∆w = ∆̃w − (m − 1)H ∂w
∂ν
+ Hw(ν, ν). (3.4)

With this, we can prove the following result.

Lemma 3.2. Let u ∈ C3(Ω) be a stable solution of (1.1). Then

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

(𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 + h(u)f(u) + (m − 1)(h(u))2H + h󸀠(u)(h(u))2)φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV − ∫
∂Ω

h(u)⟨∇̃u, ∇̃φ2⟩ dσ (3.5)

for any φ ∈ C∞(Ω).
Proof. From Theorems 1.3 and 3.1, for every stable weak solution u to (1.1) and for any φ ∈ C∞(Ω), we have
that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

(𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 − h(u)Hu(ν, ν) + h󸀠(u)|∇u|2)φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV. (3.6)

Now we use (3.4) to manipulate the integral on the boundary of Ω. In this way, we obtain from (3.6) that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

[𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 − h(u)(∆u − ∆̃u + (m − 1)H ∂u
∂ν )
+ h󸀠(u)|∇u|2]φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV.
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Thus, recalling¹ (1.1), we conclude that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

(𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 + h(u)f(u) + h(u)∆̃u + (m − 1)(h(u))2H + h󸀠(u)|∇u|2)φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV. (3.7)

Now we observe that

|∇u|2 = |∇̃u|2 +
󵄨󵄨󵄨󵄨󵄨󵄨
∂u
∂ν
󵄨󵄨󵄨󵄨󵄨󵄨
2

= |∇̃u|2 + (h(u))2 on ∂Ω.

Plugging this information into (3.7), we obtain that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

(𝕀(∇̃u, ∇̃u) + h(u)f(u) + h(u)∆̃u + (m − 1)(h(u))2H + h󸀠(u)(h(u))2)φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV.

Now we notice that

∫
∂Ω

h(u)φ2

∆̃u dσ = − ∫
∂Ω

h󸀠(u)|∇̃u|2φ2 dσ − ∫
∂Ω

h(u)⟨∇̃u, ∇̃φ2⟩ dσ,

and therefore

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2)φ2 dV

− ∫
∂Ω

(𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 + h(u)f(u) + (m − 1)(h(u))2H + h󸀠(u)(h(u))2)φ2 dσ

≤ ∫
Ω

|∇u|2|∇φ|2 dV − ∫
∂Ω

h(u)⟨∇̃u, ∇̃φ2⟩ dσ,

which proves the desired inequality.

Before completing the proof of Theorem1.1we recall the following lemmata proved in [21, Lemma5] and [21,

Lemma 9], respectively.

Lemma 3.3. For any smooth function ϕ : M → ℝ, we have that

|Hϕ|2 ≥
󵄨󵄨󵄨󵄨∇|∇ϕ|
󵄨󵄨󵄨󵄨
2 almost everywhere.

Lemma 3.4. Suppose that the Ricci curvature of M is nonnegative and that Ric does not vanish identically. Let u
be a solution of (1.1), with

Ric(∇u, ∇u)(p) = 0 for any p ∈ M.

Then u is constant.

With this, we are able to finish the proof of Theorem 1.1.

1 Notice that, since u is regular enough, the equation holds true up to the boundary of Ω.
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Proof of Theorem 1.1. Taking φ ≡ 1 in (3.5), we see that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2) dV

≤ ∫
∂Ω

(𝕀(∇̃u, ∇̃u) − h󸀠(u)|∇̃u|2 + h(u)f(u) + (m − 1)(h(u))2H + h󸀠(u)(h(u))2) dσ.
Hence, using (C1) and (1.4), we obtain that

∫
Ω

(Ric(∇u, ∇u) + |Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2) dV ≤ 0. (3.8)

On the other hand, by Lemma 3.3,

|Hu|2 −
󵄨󵄨󵄨󵄨∇|∇u|
󵄨󵄨󵄨󵄨
2 ≥ 0 on Ω,

and so (3.8) gives

∫
Ω

Ric(∇u, ∇u) dV ≤ 0,

which implies that

Ric(∇u, ∇u) = 0 in Ω.

Thus, the conclusion follows from Lemma 3.4.
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