We give an upper bound for the rank of the border rank 3 partially symmetric tensors. In the special case of border rank 3 tensors T∈V1⊗⋯⊗Vk (Segre case) we can show that all ranks among 3 and k−1 arise and if dimVi≥3 for all i's, then also all the ranks between k and 2k−1 arise.

On the ranks of the third secant variety of Segre-Veronese embeddings / Ballico, Edoardo; Bernardi, Alessandra. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - 2019, 67:3(2019), pp. 583-597. [10.1080/03081087.2018.1430117]

On the ranks of the third secant variety of Segre-Veronese embeddings

Edoardo Ballico;Alessandra Bernardi
2019-01-01

Abstract

We give an upper bound for the rank of the border rank 3 partially symmetric tensors. In the special case of border rank 3 tensors T∈V1⊗⋯⊗Vk (Segre case) we can show that all ranks among 3 and k−1 arise and if dimVi≥3 for all i's, then also all the ranks between k and 2k−1 arise.
2019
3
Ballico, Edoardo; Bernardi, Alessandra
On the ranks of the third secant variety of Segre-Veronese embeddings / Ballico, Edoardo; Bernardi, Alessandra. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - 2019, 67:3(2019), pp. 583-597. [10.1080/03081087.2018.1430117]
File in questo prodotto:
File Dimensione Formato  
last.pdf

Open Access dal 01/01/2021

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 367.69 kB
Formato Adobe PDF
367.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/197087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact