We give an upper bound for the rank of the border rank 3 partially symmetric tensors. In the special case of border rank 3 tensors T∈V1⊗⋯⊗Vk (Segre case) we can show that all ranks among 3 and k−1 arise and if dimVi≥3 for all i's, then also all the ranks between k and 2k−1 arise.
On the ranks of the third secant variety of Segre-Veronese embeddings / Ballico, Edoardo; Bernardi, Alessandra. - In: LINEAR & MULTILINEAR ALGEBRA. - ISSN 0308-1087. - 2019, 67:3(2019), pp. 583-597. [10.1080/03081087.2018.1430117]
On the ranks of the third secant variety of Segre-Veronese embeddings
Edoardo Ballico;Alessandra Bernardi
2019-01-01
Abstract
We give an upper bound for the rank of the border rank 3 partially symmetric tensors. In the special case of border rank 3 tensors T∈V1⊗⋯⊗Vk (Segre case) we can show that all ranks among 3 and k−1 arise and if dimVi≥3 for all i's, then also all the ranks between k and 2k−1 arise.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
last.pdf
Open Access dal 01/01/2021
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
367.69 kB
Formato
Adobe PDF
|
367.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione