Using Macaulay’s correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.

On polynomials with given Hilbert function and applications / Bernardi, Alessandra; Jelisiejew, Joachim; Macias Marques, Pedro; Ranestad, Kristian. - In: COLLECTANEA MATHEMATICA. - ISSN 2038-4815. - 2018:Volume 69, Issue 1(2018), pp. 39-64. [10.1007/s13348-016-0190-2]

On polynomials with given Hilbert function and applications

Bernardi, Alessandra;
2018-01-01

Abstract

Using Macaulay’s correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
2018
Volume 69, Issue 1
Bernardi, Alessandra; Jelisiejew, Joachim; Macias Marques, Pedro; Ranestad, Kristian
On polynomials with given Hilbert function and applications / Bernardi, Alessandra; Jelisiejew, Joachim; Macias Marques, Pedro; Ranestad, Kristian. - In: COLLECTANEA MATHEMATICA. - ISSN 2038-4815. - 2018:Volume 69, Issue 1(2018), pp. 39-64. [10.1007/s13348-016-0190-2]
File in questo prodotto:
File Dimensione Formato  
20161222BJMR.pdf

accesso aperto

Descrizione: This is a post-peer-review, pre-copyedit version of an article published in Collectanea Mathematica. The final authenticated version is available online at: https://doi.org/10.1007/s13348-016-0190-2
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 381.86 kB
Formato Adobe PDF
381.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/192218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact