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Abstract. Using Macaulay’s correspondence we study the family of Artinian Gorenstein
local algebras with fixed symmetric Hilbert function decomposition. As an application

we give a new lower bound for the dimension of cactus varieties of the third Veronese

embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.

Introduction

Macaulay established a correspondence between polynomials and Artinian local Gorenstein
algebras. In particular, any polynomial is a dual socle generator of an Artinian local Gorenstein
algebra. In this paper we interpret the Hilbert function of the algebra as a Hilbert function of
the corresponding polynomial, and give a description of the set of polynomials with given sym-
metric Hilbert function decomposition, in a fixed polynomial ring. We consider polynomials f
in a divided power ring S = Kdp[x1, . . . , xn], and a polynomial ring T = K[y1, . . . , yn] acting
on S by contraction (see Section 0.1). The Artinian local Gorenstein algebra A associated to
f ∈ S is the quotient T/f⊥ where f⊥ is the annihilator ideal of f . Thus Spec(T/f⊥) ⊂ Spec(T )
is a local Gorenstein scheme supported at the origin of the affine space Spec(T ).

The application we have in mind is that of apolarity and the dimension of cactus varieties
of cubic forms. Cactus varieties are generalizations of secant varieties.

Definition 1. Let X ⊂ PN be a projective variety. The r-th cactus variety Cactusr(X) of X
is the closure of the union of the linear spaces spanned by length r subschemes on X.

Here we abuse slightly the notation of variety, since the cactus variety is often a reducible

algebraic set. We are interested in the case when X ' Pn is embedded into P(n+3
3 )−1 by the

third Veronese embedding.
Consider, like above, a divided power ring S̄ = Kdp[x0, . . . , xn], and a polynomial ring

T̄ = K[y0, . . . , yn] acting on S̄ by contraction. A cubic form F ∈ S̄3 up to multiplication
by scalars is a point in P(S̄3). The pure cubes form a n-dimensional subvariety V3,n ⊂ P(S̄3).
The least length of a subscheme Z ⊂ V3,n whose linear span contains F is called the cactus
rank of F . This notion was introduced in [Iarrobino 1995, Definition 4D] under the name
scheme length. The closure of the set of cubic forms with cactus rank r is the r-th cactus vari-
ety of V3,n, denoted Cactusr(V3,n). Via the contraction action, T̄ is the natural homogeneous
coordinate ring on P(S̄1), and a Z ⊂ V3,n contains F in its span, if and only if its homogeneous
ideal IZ ⊂ T̄ is contained in F⊥. This classical fact is called the apolarity lemma and is the
motivation for defining a subscheme Z ⊂ P(S̄1) apolar to F if IZ ⊂ F⊥.
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We apply Macaulay’s correspondence to investigate local Gorenstein schemes that are apolar
to F . Our main result is the following lower bound on the dimension of cactus varieties of
cubic forms.

Theorem 2 (Corollary 44). Let n ≥ 8 and 18 ≤ r ≤ 2n+ 2 and let V3,n be the third Veronese

embedding of Pn in PN , with N =
(
n+3

3

)
. Then

dim Cactusr(V3,n) ≥

{
(rn+ r − 1) + r(r−2)(r−16)

48 − 1 if r ≥ 18 even,

(rn+ r − 1) + (r−1)(r−3)(r−17)
48 − 2 if r ≥ 19 odd.

Hence, under these assumptions the r-th secant variety of V3,n is strictly contained in the r-th
cactus variety of V3,n.

The r-th secant variety of V3,n is σr(V3,n) =
⋃
P1,...,Pr∈V3,n

〈P1, . . . , Pr〉. The fact that the

inclusion of σr(V3,n) in Cactusr(V3,n) is strict is a consequence of the inequality

dimσr(V3,n) ≤ rn+ r − 1.

The right-hand side is the expected dimension of the secant variety, and it is an easy parameter
count that gives an upper bound. The actual dimension of the secant variety is known thanks
to the Alexander and Hirschowitz Theorem [Alexander, Hirschowitz 1995].

For r ≥ 2n+2 the variety Cactusr(V3,n) fills the ambient space, see [Bernardi, Ranestad 2012].
Observe that σr(V3,n) = Cactusr(V3,n), for r ≤ 13, see [Casnati, Notari 2011] for the cases
r ≤ 11, and [Casnati, Jelisiejew, Notari 2015] for the remaining cases.

The link between the Artinian local Gorenstein algebras and apolar schemes to a homoge-
neous form F ∈ S̄ is provided by the fact that if f = F (1, x1, . . . , xn), then

Spec(K[y1, . . . , yn]/f⊥) ⊂ P(S̄1)

is a local scheme supported at [1 : 0 : · · · : 0] that is apolar to F . We define

Definition 3. The minimal length of a local apolar scheme to F is called the local cactus rank
of F .

That link is strengthened by the following result, where we call the sum of the homogeneous
terms of a polynomial g of degree at most d the degree-d tail of g.

Proposition 4. Let F be a homogeneous polynomial of degree d, and let f = F (1, x1, . . . , xn).
Let Γ be a zero-dimensional scheme of minimal length among local schemes supported at
[l] = [1 : 0 : · · · : 0] that are apolar to F . Then Γ is the affine apolar scheme of a polynomial g
whose degree-d tail equals f .

A particularly important problem is to find the cactus rank of a general form in S̄d,
i.e. the minimal r such that Cactusr(Vd,n) = P(S̄d). Our results do not improve previous
known bounds, so this remains a major open problem in this theory. We refer the interested
reader to [Iarrobino, Kanev 1999, Proposition 5.67], [Bernardi, Ranestad 2012, Theorem 3],
[Buczyńska, Buczyński 2014], and [Bernardi, Brachat, Mourrain 2014].

Now, the first step in order to be able to compute the cactus rank, is to describe the structure
of minimal apolar schemes. If we start by considering a minimal zero-dimensional scheme Γ
apolar to a form F and decompose it as Γ = Γ1 ∪ · · · ∪ Γk, where each Γi is a scheme supported
on one point, then we take the corresponding decomposition F = F1 + · · ·+ Fk, where Γi is a
minimal local scheme apolar to Fi for i = 1, . . . , k. According to Proposition 4, one would like
to find invariants for local apolar Gorenstein schemes, parameterizing the degree-d tails of all
polynomials that define a scheme with given invariant. Iarrobino’s analysis ([Iarrobino 1994]),
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that we recall in the first section, provides one such discrete invariant: the symmetric Hilbert
function decomposition. Then, if one wants to estimate the dimension of the sets of polynomials
with the same local cactus rank, one needs to understand the structure of the polynomials with
the same symmetric Hilbert function decomposition. This is what we do in Section 2 by the use
of standard and exotic forms, that explain the unlucky behavior that the number of variables
involved in each homogeneous summand of a given polynomial f may be larger than what is
expected from the Hilbert function and its symmetric decomposition. Motivated by this, we
describe the family Frf of polynomials g whose linear partials and Hilbert function coincide
with those of f , and such that g − f is part of an exotic summand for g. In Proposition 21 we
show that the polynomials in Frf define isomorphic apolar algebras and compute in Corollary 23
its dimension. In Proposition 24 we give a decomposition of any polynomial as a sum of a
polynomial in standard form and an exotic summand. In Section 3 we focus on the local cactus
rank by proving Proposition 4 and computing the local cactus rank of a general cubic surface.
Finally in Section 4 we use this description in order to estimate the dimension of the set of
all the polynomials with the same symmetric Hilbert function decomposition, which allows us
to estimate the dimension of the Cactus variety. In particular, we apply these results to the
special cases of Hilbert functions (1,m− 1,m− 1, 1) and (1,m− 1,m− 1, 1, 1) to prove our
lower bound for this dimension in Corollary 44.

0.1. Notations. For main applications we consider homogeneous forms in S̄ = Kdp[x0, . . . , xn]
and their dehomogenization in S = Kdp[x1, . . . , xn]:

πx0
: S̄ → S; F (x0, x1, ..., xn) 7→ F (1, x1, ..., xn).

We consider the action of the polynomial ring T̄ := K[y0, . . . , yn] on S̄ by contraction: if
α = (α0, . . . , αn) and β = (β0, . . . , βn) are multi-indices, then

yα
(
xβ
)

=

{
xβ−α if β ≥ α,
0 otherwise.

Similarly, we consider the action of the polynomial ring T := K[y1, . . . , yn] on S:

T × S → S; (ψ, f) 7→ ψ(f)

defined by this contraction restricted to yα, xβ , when α0 = β0 = 0.
Note that we are using the same notation for ordinary powers in T and divided powers in

S, unlike what is usually done in the literature (for properties of divided power rings see for
instance [Iarrobino, Kanev 1999, Appendix A], where the divided power xβ would be written
as x[β]).

In characteristic 0 we could have used ordinary differentiation, and therefore, by abuse of
language, we call ψ(f) ∈ S a partial of a polynomial f ∈ S for any ψ ∈ T .

1. Preliminaries

We begin this section by presenting the Macaulay correspondence between polynomials and
Artinian Gorenstein local rings, which is the starting point of our theory.

1.1. Macaulay correspondence. Let K be an algebraically closed field of characteristic
other than 2, 3 and consider the divided power ring S := Kdp[x1, . . . , xn]. Consider the action
of the polynomial ring T := K[y1, . . . , yn] on S defined in Subsection 0.1.

Let S1 and T1 be the degree-one parts of S and T respectively. With respect to the action
above (classically known as apolarity), S1 and T1 are natural dual spaces and 〈x1, . . . , xn〉 and
〈y1, . . . , yn〉 are dual bases. The annihilator of a polynomial f of degree d is an ideal in T
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which we denote by f⊥ ⊂ T . The quotient Tf := T/f⊥ is a local Artinian Gorenstein ring (see
e.g. [Iarrobino, Kanev 1999, Lemma 2.14]). In fact, Tf is finitely generated as a K-module so
it is Artinian. The image of T1 in Tf generates the unique maximal ideal m, so Tf is local.
Furthermore Tf has a 1-dimensional socle, the annihilator of the maximal ideal, namely md,
so Tf is Gorenstein. In addition, if f is a form, f⊥ is a homogeneous ideal and therefore Tf is
an Artinian Gorenstein graded local ring.

1.2. Symmetric decomposition of the Hilbert function of a polynomial. We consider
now a polynomial f ∈ S = Kdp[x1, . . . , xn] and let f⊥ ⊂ T = K[y1, . . . , yn] be its annihila-
tor with respect to contraction. We shall interpret a Hilbert function for the local Artinian
Gorenstein quotient Tf = T/f⊥ in terms of a filtration of the space of partials of the polynomial
f . In particular we recall and interpret Iarrobino’s analysis of Hilbert functions on associated
graded algebras of Tf and their symmetric decomposition. We will apply this analysis in the
next section to characterize the polynomials with a given Hilbert function.

The local Artinian Gorenstein quotient ring Tf = T/f⊥ is naturally isomorphic to

Diff(f) = {ψ(f) | ψ ∈ T}

the space of all partials of f , as a T -module.
Following [Iarrobino 1994], we consider Hilbert functions on graded rings associated to two

filtrations of Tf . Let m be the maximal ideal of Tf . The m-adic filtration

Tf = m0 ⊃ m ⊃ m2 ⊃ · · · ⊃ md ⊃ md+1 = 0

where d = deg f , defines an associated graded ring

T ∗f = ⊕di=0m
i/mi+1

whose Hilbert function we denote by Hf . The Löewy filtration

Tf = (0 : md+1) ⊃ (0 : md) ⊃ · · · ⊃ (0 : m2) ⊃ (0 : m) ⊃ 0

induces the following sequence of ideals of T ∗f : For each a = 0, 1, 2, . . . let

Ca = ⊕d−ai=0 Ca,i = ⊕d−ai=0

(
(0 : md+1−a−i) ∩mi

)
/
(
(0 : md+1−a−i) ∩mi+1

)
⊂ T ∗f ,

and consider the T ∗f -modules

Qa = Ca/Ca+1, a = 0, 1, 2, . . .

and their respective Hilbert functions

∆Q,a = H
(
Qa
)
.

Each Qa decomposes as a sum Qa = ⊕di=0Qa,i, where Qa,i = Ca,i/Ca+1,i. We can check from
the definitions that for d ≥ 2 and any a > d− 2, we have Ca = Qa = 0. The following is an
important result on the structure of these modules.

Proposition 5. [Iarrobino 1994, Theorem 1.5] The T ∗f -modules Qa, a = 0, 1, 2, . . . , satisfy
the following reflexivity condition

Q∨a,i
∼= Qa,d−a−i.

In particular, the Hilbert function ∆Q,a = H
(
Qa
)

is symmetric about (d− a)/2, and thus the
Hilbert function H(T ∗f ) of T ∗f has a symmetric decomposition

H(T ∗f ) =
∑
a

∆Q,a.
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The possible symmetric decompositions of the Hilbert function is restricted by the fact that
the partial sums of the symmetric decomposition are Hilbert functions of suitable quotients of
T ∗f .

Corollary 6. [Iarrobino 1994, Section 5B, p. 69] The Hilbert function of T ∗f /Cα+1 satisfies

H(T ∗f /Cα+1) =

α∑
a=0

∆Q,a.

In particular every partial sum
∑α
a=0 ∆Q,a is the Hilbert function of a K-algebra generated in

degree 1.

Iarrobino has listed all possible symmetric decompositions of Hilbert functions of rings T ∗f
with dimT ∗f ≤ 16, see [Iarrobino 1994, Section 5].

We now interpret the ideal Ca and the module Qa in terms of the space Diff(f) of partials
of f . This interpretation depends on the isomorphism

τ : T/f⊥ → Diff(f), ψ 7→ ψ(f),

of T -modules and thus K-vector spaces. Let Diff(f)i be the subspace of Diff(f) of partials of
degree at most i. The image of (0 : mi) under the map τ is precisely Diff(f)i−1, so the Löewy
filtration

(0 : m) ⊂ (0 : m2) ⊂ (0 : m3) ⊂ · · · ⊂ (0 : md) ⊂ (0 : md+1) = Tf

of Tf is mapped to the degree filtration

K = Diff(f)0 ⊂ Diff(f)1 ⊂ Diff(f)2 ⊂ · · · ⊂ Diff(f)d = Diff(f)

of Diff(f). Now
(0 : mi)/(0 : mi−1) ∼= (mi−1/mi)∨,

so the integral function

Hf (0) = 1, Hf (i) = dimK Diff(f)i − dimK Diff(f)i−1, i = 1, . . . , d,

coincides with the Hilbert function of T ∗f :

Hf (i) = H(T ∗f )(i).

On the other hand, the m-adic filtration

Tf ⊃ m ⊃ m2 ⊃ · · · ⊃ md ⊃ md+1 = 0

corresponds to an order filtration on Diff(f). We call the order of ψ ∈ T the smallest degree
of a non-zero homogeneous term of ψ, and denote it by ord(ψ). We call the order of a partial
f ′ of f the largest order of a ψ ∈ T such that f ′ = ψ(f). Thus the image

τ(mi) ⊆ Diff(f)d−i

is simply the space of partials of order at least i of f .
The isomorphism Q∨a,i

∼= Qa,d−a−i allows us to interpret the vector space Q∨a,i as parame-
terizing partials of f of degree i and order d−a− i, modulo partials of lower degree and larger
order.

More precisely, let Diff(f)ai ⊂ Diff(f) be the subspace of partials of degree at most i and
order at least d− i− a, then

Q∨a,i
∼= Diff(f)ai /

(
Diff(f)ai−1 + Diff(f)a−1

i

)
.

So

(1) ∆f,a(i) = dimK

(
Q∨a,i

)
= dimK

(
Diff(f)ai /(Diff(f)ai−1 + Diff(f)a−1

i )
)
.
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Notation 7. We denote by ∆f the symmetric decomposition Hf =
∑
a ∆f,a of the Hilbert

function Hf .

Consider the space of linear forms that are partials of f ,

Lin(f) := Diff(f)1 ∩ S1,

and the linear subspaces

Lin(f)a = {l ∈ S1 | l is a partial of f of order at least d− a− 1} = Diff(f)a1 ∩ S1.

We easily see that for each a ≥ 0, we have an isomorphism Lin(f)a ' Diff(f)a1/Diff(f)0, so
∆f,a(1) = dimK Lin(f)a − dimK Lin(f)a−1. We obtain a canonical flag of subspaces of S1:

Lin(f)0 ⊆ Lin(f)1 ⊆ · · · ⊆ Lin(f)d−2 = Lin(f) ⊆ S1.

Example 8. Let f = x 3
1 x2 + x 3

3 + x 2
4 . Its space of partials is generated by the elements in

the following table, where the generators of each Q∨a are arranged by degree; next to it, we
have the symmetric decomposition of its Hilbert function:

Generators of the space of partials Hilbert function decomposition

degree 0 1 2 3 4

Q∨0 1 x1, x2 x 2
1 , x1x2 x 3

1 , x 2
1 x2 f

Q∨1 x3 x 2
3

Q∨2 x4

degree 0 1 2 3 4

∆f,0 = 1 2 2 2 1

∆f,1 = 0 1 1 0 0

∆f,2 = 0 1 0 0 0

Hf = 1 4 3 2 1

For instance x 2
3 is a partial of order 1, since it is obtained as y3(f) = x 2

3 and cannot be attained
by a higher order element of T , so it is a generator of Q∨1,2. Here we have Lin(f)0 = 〈x1, x2〉,
Lin(f)1 = 〈x1, x2, x3〉, and Lin(f)2 = 〈x1, x2, x3, x4〉.

In the next section we shall enumerate polynomials f with a given Hilbert function Hf

using this symmetric decomposition ∆f . For this purpose we denote a Hilbert function H by
its values

H =
(
H(0), H(1), . . . ,H(d)

)
and the decomposition ∆f ,

H =
∑
a

∆a,

by its summands

∆ = (∆0, . . . ,∆d−2),

where each ∆a is symmetric around (d− a)/2, i.e. ∆a(i) = ∆a(d− a− i).
By Corollary 6, both H and each partial sum

∆≤α =

α∑
a=0

∆a

are Hilbert functions of K-algebras generated in degree 1, so there are some immediate restric-
tions on these functions. First, Hilbert functions H and ∆≤α have positive values and satisfy
the Macaulay growth condition (cf. [Macaulay 1927]): If the i-binomial expansion of ∆≤α(i)
is

∆≤α(i) =

(
mi

i

)
+

(
mi−1

i− 1

)
+ · · ·+

(
mj

j

)
; mi > mi−1 > · · · > mj ≥ j ≥ 1,
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then

(2) ∆≤α(i+ 1) ≤
(
mi + 1

i+ 1

)
+

(
mi−1 + 1

i

)
+ · · ·+

(
mj + 1

j + 1

)
.

Example 9. For H(1) = 8, H(2) ≥ 5 and 1 + H(1) + · · · + H(d − 1) + 1 = 17 the possible
Hilbert functions H and their decompositions H =

∑
i ∆i that satisfy the Macaulay growth

conditions are the following:

H = 1 8 7 1
∆0 = 1 7 7 1
∆1 = 0 1 0

,

H = 1 8 6 1 1
∆0 = 1 1 1 1 1
∆1 = 0 5 5 0
∆2 = 0 2 0

,

H = 1 8 5 1 1 1
∆0 = 1 1 1 1 1 1
∆1 = 0 0 0 0 0
∆2 = 0 4 4 0
∆3 = 0 3 0

H = 1 8 5 2 1
∆0 = 1 2 3 2 1
∆1 = 0 2 2 0
∆2 = 0 4 0

,

H = 1 8 5 2 1
∆0 = 1 2 2 2 1
∆1 = 0 3 3 0
∆2 = 0 3 0

.

2. Standard forms and exotic forms

At this point of the analysis we would like to find a precise description of all the polynomials
having the same symmetric Hilbert function decomposition. To this purpose we have firstly to
deal with the fact that the number of variables involved in each homogeneous summand of a
given polynomial f may be larger than what is expected from the Hilbert function. This will
be explained by the appearance of what we will call exotic summands of f . We will analyze
their role in a description of all polynomials that have a given Hilbert function.

Let us start with some examples clarifying the kind of phenomena that we have to treat.

2.1. Standard and “ Exotic ” examples. Let A be a local Artinian Gorenstein algebra. As
explained before it can be represented as a quotient A ' T/I where I = f⊥ for a polynomial
f ∈ S. If the ideal I is fixed, then f is unique up to action by a unit of T , but clearly the
choice of I such that A ' T/I is not unique. In this section we wish to shed some light on
how this choice can be made.

Example 10. Consider the ring A = K[ε]/(ε4) and polynomials f = x 3
1 and h = x 3

1 + x1x2

in Kdp[x1, x2]. Then

A ' K[y1, y2]

(y 4
1 , y2)

=
K[y1, y2]

f⊥
,

but also

A ' K[y1, y2]

(y 4
1 , y2 − y 2

1 )
=
K[y1, y2]

h⊥
.

Note that both x1 and x2 occur in h, but while x1 is a partial of this polynomial, x2 is not,
since its space of partials is Diff(h) = 〈h, x 2

1 + x2, x1, 1〉.
Now consider the ring B = K[y1, y2]/(y 4

1 − y 2
2 , y1y2) and polynomials p = x 4

1 + x 2
2 and

q = x 4
1 + x 2

1 x2 in Kdp[x1, x2]. Then

B =
K[y1, y2]

p⊥
,

and

B ' K[y1, y2]

(y 3
1 − y1y2, y 2

2 )
=
K[y1, y2]

q⊥
.
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In this case, x2 is an order-one partial of both p and q, since y2(p) = x2 and (−y2 + y 2
1 )(q) = x2.

However, x2 occurs in q in degree 3, which may be surprising for a linear form that is a partial
of order one.

As we will see in the remainder of this section, the most common behaviour is the one we
can observe in Example 8: both x1 and x2 are partials of order 3 and they occur in f4; x3 and
x4 are partials of orders 2 and 1, and they occur in f3 and f2, respectively.

2.2. Description of the standard and the “ exotic ” phenomena. Referring the notation
of Example 10, we want to distinguish polynomials like g and p that have a “standard” behavior
from the ones like h and q where either one finds a variable that does not occur in the partials
or a partial whose order does not “match” with the degree of the corresponding variable.
To this end, in Definition 11 we will define standard forms of polynomials. Intuitively, they
correspond to minimal embeddings of algebras, in terms of variables appearing in the related
polynomials f . Let f ∈ S and A = T/f⊥. Moreover let

(3) f = fd + fd−1 + · · ·+ f0

be the decomposition in homogeneous summands.
In Section 1 we defined the Hilbert function of A and its symmetric decomposition ∆. In

particular, we saw that ∆a(1) = dimK(Lin(f)a/Lin(f)a−1), which is space of linear partials
of f of order exactly d− a− 1. Let

ni =

i∑
j=0

∆j(1) = dimK Lin(f)i,

i.e. the dimension of the space of linear partials of f of order at least d− i− 1. By degree
reasons this space is contained in the space of linear partials of fd−i + fd−i−1 + · · ·+ fd. But,
as we have seen in Example 10, a linear form may occur in fd−i and be a partial of f of order
less than d− i− 1 or not be a partial of f at all.

First of all let us fix here a basis of linear forms x1, . . . , xn in S1 that agrees with the
filtration by Lin(f)i:

(4) Lin(f)0 = 〈x1, . . . , xn0
〉 ⊆ Lin(f)1 = 〈x1, . . . , xn1

〉 ⊆ · · ·

· · · ⊆ Lin(f)d−2 = 〈x1, . . . , xnd−2
〉 ⊆ S1 = 〈x1, . . . , xn〉.

Definition 11. Let f ∈ S be a polynomial with homogeneous decomposition f = fd + · · ·+ f0.
Let ∆ be the symmetric decomposition of the Hilbert function of T/f⊥. We say that f ∈ S is
in standard form if

fd−i ∈ Kdp

[
Lin(f)i

]
= Kdp [x1, . . . , xni ] , for all i,

where x1, . . . , xn is any choice of basis for S1 as in (4).

We define the linear space of standard forms.

StandardForms =
{
f ∈ P≤d | ∀i fd−i ∈ Kdp

[
Lin(f)i

]}
=
{
f ∈ P≤d | ∀i fi ∈ Kdp

[
Lin(f)d−i

]}
.

A first important property of standard forms is the following:

Proposition 12. The leading summand of a partial of f of degree d − i and order j lies in
Kdp[Lin(f)i−j ].

Proof. Let g be the leading summand of a partial of f of degree d − i and order j, then any
partial x of degree one of g is a partial of order at least d− i+ j − 1 of f and therefore lies in
Lin(f)i−j . Therefore g ∈ Kdp[Lin(f)i−j ]. �
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There may be variables appearing in f that do not show up in the leading summands
of partials of f . It is tempting to call them exotic variables, but we reserve exotic for the
non-standard part of f .

Definition 13. Let f = fd + · · ·+ f0 ∈ S be the homogeneous decomposition of f , and choose
a basis for S1 as in (4). The exotic summand of degree d− i of f is the form

fd−i,∞ ∈ 〈xni+1, . . . , xn〉Kdp[x1, . . . , xn]

such that the degree d− i homogeneous summand of f can be written as

fd−i = fd−i,i + fd−i,∞,

with fd−i,i ∈ Kdp[x1, . . . , xni ].

Thus f is in standard form if and only if all its exotic summands are zero.

Example 14. Let us see how the above definitions work in the cases of Example 10. We have
HA = (1, 1, 1, 1) and ∆0 = (1, 1, 1, 1), ∆i = 0 for i > 0. Therefore ni = 1 for all i.

Now we have f = x 3
1 ∈ Kdp[x1] so that x 3

1 is in standard form. On the other hand,
x1x2 /∈ Kdp[x1] so that h = x 3

1 + x1x2 is not in standard form. In fact x1x2 is an exotic
summand for h.

For the ring B, we get HB = (1, 2, 1, 1, 1), with symmetric decomposition ∆0 = (1, 1, 1, 1, 1),
∆1 = (0, 0, 0, 0, 0), ∆2 = (0, 1, 0, 0, 0), ∆i = 0 for i > 2. Therefore n0 = n1 = 1, and ni = 2 for
all i ≥ 2. As above we can check that p is in standard form, but q is not, having x 2

1 x2 as an
exotic summand.

2.3. Existence of standard forms and their presentation. Let A = T/f⊥ be an Artinian
Gorenstein algebra. One could ask:

(1) if there exists a presentation A ' T/g⊥ with g in standard form.
(2) in case such a presentation exists, whether there are any relations between g and f .

Fortunately, these questions have quite satisfactory answers, as we explain below. We need
some notation.

Notation 15. Let T̂ denote the power series ring obtained by completing T at the ideal of
the origin. In coordinates, T̂ := K[[y1, . . . , yn]]. We may interpret S as subset of functionals

on T̂ via the pairing defined by 〈
yα, xβ

〉
=

{
1 if α = β

0 otherwise.

Note that

(5) 〈σ, f〉 = 〈1, σ(f)〉 ,
as seen by decomposing σ and f into monomials. In particular if σ(f) = 0, then 〈σ, f〉 = 0.

Let ϕ : T̂ → T̂ be an automorphism of T̂ . It induces a dual map ϕ∨ : S → S defined by the
condition

(6) 〈ϕ(σ), f〉 = 〈σ, ϕ∨(f)〉 , for all σ ∈ T, f ∈ P.

Let I be a finite colength ideal of T supported at the origin. Then T/I = T̂ /I. Clearly, the

quotients T̂ /I and T̂ /ϕ(I) are isomorphic. Moreover if I = f⊥, then ϕ(I) =
(
(ϕ−1)∨(f)

)⊥
.

The fundamental result is that for every f we may find ϕ so that ϕ∨(f) is in standard form.
It fact we prove that ϕ may be chosen “ with no linear part ”.

We now make this precise.
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Definition 16. Let M be the unique maximal ideal of T̂ . Let ϕ : T̂ → T̂ be an automorphism.
We say that ϕ is of order (at least) two if

ϕ(yi) = yi mod (y1, . . . , yn)2

for all i.

Remark 17. Every automorphism of T̂ induces a linear action on M/M2. The order two
automorphisms are precisely those which act trivially. Thus they form a normal subgroup. In
particular an inverse of an order two automorphism is also of order two.

Theorem 18 (Existence of standard forms). Let f ∈ S be a polynomial with symmetric Hilbert

function decomposition ∆. Then there is an automorphism ϕ : T̂ → T̂ such that ϕ∨(f) is in
standard form. Consequently, f = ψ∨(g) for an element g ∈ StandardForms and an automor-
phism ψ = ϕ−1.

Moreover one can choose ϕ and ψ of order two.

Proof. For the existence of ϕ see [Iarrobino 1994, Theorem 5.3AB]. Take one such ϕ. We will
compose ϕ with a linear map to obtain the required order two automorphism.

We have ϕ(yi) =
∑
λijyj + si, where si ∈ (y1, . . . , yn)2. Let τ be the linear automorphism

of T̂ defined by τ(yi) =
∑
λijyj . Then (ϕ ◦ τ−1)(yi) ≡ yi mod M2 so ϕ ◦ τ−1 is an automor-

phism of order two. Let g = ϕ∨(f). By definition g is in standard form. Since τ is a linear

automorphism of T̂ , the map (τ−1)∨ is simply a linear transformation of S, i.e. a change of
variables. The definition of being in standard form is coordinate free, so that (τ−1)∨ preserves
being in standard form. In particular h = (τ−1)∨(g) is in standard form.

But h = (ϕ ◦ τ−1)∨(f), so that ϕ ◦ τ−1 is a required automorphism of order two. �

It is also important and interesting to see an explicit description of the action ϕ∨ : S → S
of an automorphism ϕ : T̂ → T̂ . For this, recall that S is a divided power ring : xα · xβ =(
α+β
α

)
xα+β , where

(
α+β
α

)
=
∏(αi+βi

αi

)
.

Proposition 19. Let ϕ : T̂ → T̂ be an automorphism. Let Di = ϕ(yi) − yi ∈ T̂ . For a
multi-index α denote Dα = Dα1

1 · · ·Dαn
n . Let f ∈ S. Then

ϕ∨(f) =
∑
α∈Nn0

xα ·
(
Dα(f)

)
= f +

n∑
i=1

xi ·
(
Di(f)

)
+ · · · .

Proof. See [Jelisiejew 2015, Proposition 1.8]. �

Example 20. Let us illustrate Theorem 18 in the setup of Example 14. We should find a g
in standard form and an automorphism ψ of K[y1, y2] such that ψ∨(g) = h = x 3

1 + x1x2. We
see that the linear partials of h are spanned by x1, so if we wish ψ to be of order at least
two, we must have g ∈ Kdp[x1]. According to Proposition 19, ψ∨(g) =

∑
α∈Nn0

xα ·
(
Dα(g)

)
,

for some elements of order at least two D1, D2 ∈ K[[y1, y2]]. Since g must have degree three,
(DiDj)(g) = 0, for any i and j, so

x 3
1 + x1x2 = g + x1D1(g) + x2D2(g).

This implies that D1(g) = 0 and D2(g) = x1 (and consequentely that g = x 3
1 ), so we must

have D1 = 0 mod (y1, y2)4 and D2 = y 2
1 mod (y1, y2)4. Therefore we can choose ψ : T̂ → T̂

to be the automorphism defined by ψ(y1) = y1 and ψ(y2) = y2 + y 2
1 .
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2.4. Description of exotic summands. For parameterization purposes and dimension counts,
it is interesting to consider families of polynomials yielding isomorphic algebras, or at least shar-
ing the same Hilbert and symmetric decomposition. Given a polynomial f ∈ Kdp[x1, . . . , xk]
such that Lin(f) = 〈x1, . . . , xk〉, we consider the family

(7)
Frf :=

{
g ∈ Kdp[x1, . . . , xk+r] | g − f ∈ (xk+1, . . . , xk+r),

Hg = Hf , Lin(g) = Lin(f) = 〈x1, . . . , xk〉
}
.

The next result gives a characterisation of the elements in this family. We will use the
notation ls(f) for the leading summand of a polynomial f , i.e. if f = fd + · · ·+ f0 is its
decomposition into homogeneous summands, ls(f) = fd.

Proposition 21. Let f ∈ Kdp[x1, . . . , xk] and assume

Lin(f) = 〈x1, . . . , xk〉.

Let g ∈ Kdp[x1, . . . , xk+r] be any polynomial. Then g ∈ Frf if and only if there are elements

φ1, . . . , φr ∈ K[y1, . . . , yk] of order at least two such that

(8) g =
∑

i1,...,ir≥0

x i1
k+1 · · ·x

ir
k+r ·

(
φ i1

1 · · ·φ ir
r

)
(f).

In particular, for each g ∈ Frf , the algebras K[y1, . . . , yk+r]/g
⊥ and K[y1, . . . , yk]/f⊥ are iso-

morphic.

Proof. Let l be the dimension of Diff(f) and choose a basis h1, . . . , hl for this vector space such
that ls(h1), . . . , ls(hl) are linearly independent. Choose elements ψ1, . . . , ψl ∈ K[y1, . . . , yk]
such that for each i, ψi(f) = hi. Let g ∈ Frf and write

g = f + xk+1g1 + · · ·+ xk+rgr

in such a way that for each j, we have gj ∈ Kdp[x1, . . . , xk+j ]. Then for each i,

ψi(g) = ψi(f) + xk+1ψi(g1) + · · ·+ xk+rψi(gr).

Now Proposition 12 tells us that ls
(
ψi(g)

)
∈ Kdp[x1, . . . , xk] and since ψi(f) cannot be can-

celled by the terms in xk+1ψi(g1) + · · ·+ xk+rψi(gr), we must have

ls
(
ψi(g)

)
= ls

(
ψi(f)

)
= ls(hi).

But this implies that ψ1(g), . . . , ψl(g) form a linearly independent set, and since the dimension
of Diff(g) is also l (since g and f yield algebras with the same Hilbert function), we get

Diff(g) = 〈ψ1(g), . . . , ψl(g)〉.

In addition, we know that the variables xk+1, . . . , xk+r cannot occur in the leading summand
of g, also by Proposition 12, so the polynomials g1, . . . , gr have degree at most d− 2. Now
yk+r(g) = gr, so gr is a partial of g, which means that there is some φr ∈ 〈ψ1, . . . , ψl〉 such
that gr = φr(g). Moreover φr has order at least one, because deg gr ≤ d− 2, so φ d+1

r (g) = 0.
Denote ĝj = xk+1g1 + · · ·+ xk+jgj , and observe that yk+s(ĝj) = gs, if s ≤ j, and yk+s(ĝj) = 0,
otherwise. So,

g = f + ĝr−1 + xk+r · φr(g)

= f + ĝr−1 + xk+r · φr
(
f + ĝr−1 + xk+r · φr(g)

)
= f + ĝr−1 + xk+r · φr(f + ĝr−1) + x 2

k+r · φ 2
r (g)
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and iterating this further we get

g =
∑
i≥0

x ik+r · φ ir (f + ĝr−1).

Applying yk+r−1 to both sides of this equality, we get

yk+r−1(g) =
∑
i≥0

x ik+r · φ ir
(
yk+r−1(f + ĝr−1)

)
=
∑
i≥0

x ik+r · φ ir (gr−1).

Again there must be some φr−1 ∈ 〈ψ1, . . . , ψl〉 such that
∑
i≥0 x

i
k+r · φ ir (gr−1) = φr−1(g). So,

g =
∑
i≥0

x ik+r · φ ir (f + ĝr−2 + xk+r−1gr−1)

=
∑
i≥0

x ik+r · φ ir (f + ĝr−2) + xk+r−1

∑
i≥0

x ik+r · φ ir (gr−1)

=
∑
i≥0

x ik+r · φ ir (f + ĝr−2) + xk+r−1 · φr−1(g).

Iterating we get

g =
∑

ir−1,ir≥0

x
ir−1

k+r−1x
ir
k+r · φ

ir−1

r−1 φ
ir
r (f + ĝr−2).

Applying the remaining operators yk+r−2, . . . , yk+1 the same way, we obtain (8). It remains to
show that φ1, . . . , φr have order at least two. Without loss of generality, suppose that φ1 has
order one, and write φ1 = φ′ + φ′′, where φ′ ∈ 〈y1, . . . , yk〉 and ordφ′′ ≥ 2. Let t ∈ 〈x1, . . . , xk〉
be such that φ′(t) = 1. Since t is a partial of f , there exists η ∈ K[y1, . . . , yk] such that η(f) = t.
Note that (φuη)(f) = φu(t) is a constant, for all u > 1. So

η(g) =
∑

i1,...,ir≥0

x i1
k+1 · · ·x

ir
k+r · φ

i1
1 · · ·φ ir

r η(f) = t+ xk+1 +
∑
u>1

xk+uφu(t),

and therefore η(g) is a partial of g of degree one that does not belong to 〈1, x1, . . . , xk〉, a
contradiction.

For the converse, suppose that g admits a presentation as in (8). Then clearly we have
g − f ∈ (xk+1, . . . , xk+r). Let ϕ be the automorphism of K[y1, . . . , yk+r] defined by ϕ(yi) = yi
for 1 ≤ i ≤ k and ϕ(yk+i) = yk+i + φi, for 1 ≤ i ≤ r. Then by Proposition 19, we see that
g = ϕ∨(f). So ϕ induces an isomorphism between K[y1, . . . , yk+r]/g

⊥ and K[y1, . . . , yk]/f⊥,
which proves the last statement, and shows that Hg = Hf . Finally, if t ∈ Lin(f) and we take
η ∈ K[y1, . . . , yk] such that η(f) = t, we may apply η to both sides of (8) to get η(g) = t. So
Lin(g) ⊆ Lin(f) and since they have the same dimension, equality must hold, and g ∈ Frf . �

Remark 22. We can get an alternative proof of Proposition 21 if we take g ∈ Frf and use

Proposition 12 to see that since the linear partials of g lie in 〈x1, . . . , xk〉, the leading terms of
partials of g only involve these variables, like we did in the proof. Now if we denote (g⊥)∗ the
ideal generated by the initial forms of elements of g⊥, we know that (g⊥)∗ is the annihilator
of the set of leading summands of all partials of g (see a discussion on this at the beginning
of Section 2 in [Casnati, Notari 2013], but also Proposition 3 in [Emsalem 1978]). Therefore
for each j > k, yj ∈ (g⊥)∗, which means that there is an element Dj ∈ T of order at least two
such that yj −Dj ∈ g⊥. If a variable yj1 occurs in a Dj2 , with j1, j2 > k then we may replace
yj1 by Dj1 in Dj2 . Each time we do this, the minimal degree of yj1 in Dj2 grows. When
this degree exceeds deg g, we may discard the remaining part, so the process eventually ends
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and we may assume that each Dj ∈ k[y1, . . . , yk]. We can then consider the automorphism

ϕ : T̂ → T̂ which sends yj to itself for j ≤ k and yj to yj −Dj for j > k. We can now show
that ϕ∨(g) = f by showing that for any element φ ∈ T ,

〈
φ, ϕ∨(g)

〉
= 〈φ, f〉.

Note that in the definition of the family Frf and the hypotheses of Proposition 21, the
polynomial f need not be in standard form. This result gives us a way of adding exotic
summands to a polynomial without changing the Hilbert function of the algebra it yields. It
also gives us the following result:

Corollary 23. Let f ∈ Kdp[x1, . . . , xk] ⊂ Kdp[x1, . . . , xk+r] be a polynomial of degree d and
assume Lin(f) = 〈x1, . . . , xk〉. Then the family Frf ⊂ Kdp[x1, . . . , xk+r]≤d has dimension

dimFrf = r ·
∑
a≥0

i≤d−a−2

∆f,a(i)

The next result shows that all exotic summands may be obtained in a similar description.

Proposition 24. Let f ∈ S be a polynomial of degree d and choose a basis x1, . . . , xn for
S1 that agrees with the filtration in (4). Then we can write f = fst + fex such that fst is in
standard form and

(9) fex =
∑
α>0

α1=···=αn1=0

xα ·
(
Dα(fst)

)
.

where Dn1+1, . . . , Dn ∈ T have order at least two and

(1) d− a ≤ degDk(fst) ≤ d− 2, if Dk(fst) 6= 0 and na−1 < k ≤ na, for any a ≥ 2;
(2) degDk(fst) ≤ d− 2, if k > nd−2.

Proof. Applying Theorem 18 and Proposition 19 to f , we know that there exists a polynomial
g in standard form such that

(10) f = ϕ∨(g) =
∑
α∈Nn0

xα ·Dα(g),

with D1, . . . , Dn ∈ T of order at least two.
Claim. The basis x1, . . . , xn also satisfies the filtration in (4) for the polynomial g. To see

this, let t ∈ 〈x1, . . . , xn〉 be a linear partial of g of order j, and η ∈ T an element of order j
such that η(g) = t. If 〈 , 〉 : T × S is the usual pairing, using the rule in (6), we have〈

φ,
(
ϕ−1(η)

)
(f)
〉

=
〈(
ϕ−1(η)

)
· φ, f

〉
= 〈ϕ(φ), t〉,

for any φ ∈ T . Since ϕ is of order at least two, this implies
(
ϕ−1(η)

)
(f) = t. We also know

that ordϕ−1(η) = ord η, so t is also a linear partial of f of order j. So f and g have the same
linear partials and those partials have the same order, which proves the claim.

Now we wish to show that g can be replaced by a polynomial g′, also in standard form, so
that we do not need the first operators D1, . . . , Dn1

. We consider expression (10) , and we start
by factoring the power of any variable, say x α1

1 , and the power of the corresponding operator,
D α1

1 . Note that D α1
1 obviously commutes with the remaining operators D α2

2 · · ·D αn
n . In

order to move also the term x α1
1 to the right side of D α2

2 · · ·D αn
n , we can apply the rule

xi
(
φ(h)

)
= φ(xih)− φ(i)(h), for any φ ∈ T and h ∈ S,
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where φ(i) = ∂
∂yi

φ. We obtain

f =
∑
α∈Nn0

(x α2
2 · · ·x αnn )x α1

1 ·
(
(D α2

2 · · ·D αn
n )D α1

1 (g)
)
,

=
∑
i≥0

∑
α2,...,αn

(x α2
2 · · ·x αnn ) ·

((
D2 −D (1)

2 D1

) α2 · · ·
(
Dn −D (1)

n D1

) αn)(
x i1 ·D i

1 (g)
)
,

=
∑

α2,...,αn

(x α2
2 · · ·x αnn ) ·

(
(D′2) α2 · · · (D′n) αn

)
(g′),

where g′ =
∑
i≥0 x

α1
1 ·D α1

1 (g) and D′i = Di −D (1)
i D1. The equality between the first and the

second lines can be checked by hand in a straightforward, even if cumbersome, computation.

Observe that in this way we get an extra piece D
(1)
i , but this does not change the fact that the

new elements D′1, . . . , D
′
n have order at least two. Repeating this procedure, we can rewrite

f =
∑
α∈Nn0

α1=···=αn1=0

xα ·
(
D′′α(g′′)

)
, where g′′ =

∑
α∈Nn1

0

xα ·
(
(D′′)α(g)

)
,

with some modified D′′1 , . . . , D
′′
n ∈ T of order at least two. Since any terms of f and any

terms of g involving only the variables x1, . . . , xn1
are not exotic (because the choice of basis

x1, . . . , xn agrees with the filtration in (4) for both f and g) we have that g′′ is in standard
form.

Now we know that for any k > n1, D′′k(g′′) is a partial of degree at most d− 2, otherwise xk
would occur in the leading summand of f , and all such linear partials belong to 〈x1, . . . , xn0

〉.
Finally, suppose that for some k we have na−1 < k ≤ na but degD′′k(g′′) < d− a. Then the
term xkD

′′
k(g′′) has degree at most d− a and belongs to Kdp[x1, . . . , xna ], so it is not part of an

exotic summand. The terms x 2
kD
′′
k

2
(g′′), . . . , x d−1

k D′′k
d−1

(g′′) have lower degree so are also not
part of exotic summands. Therefore we can perform another modification as above, with the
variable xk and the corresponding operator D′′k . Doing this for every such k, we may replace
g′′ by some g′′′ also in standard form, and f will be written as in (9), with fst = g′′′. �

Example 25. Let f be a polynomial of degree five such that Hf = (1, 1, 1, 1, 1, 1); this is the
minimal possible Hilbert function. Then Hf is symmetric, so that the only possible symmetric
decomposition is ∆f,0 = Hf = (1, 1, 1, 1, 1, 1) and all other ∆f,i equal to zero vectors.

By Theorem 18 we see that f = ϕ∨(g), where g is in standard form and ϕ is of order at
least two. We have ∆g,i = ∆f,i for all i, so dimK Lin(g)i = 1 for all i. Choose a generator x
for this space. Let g = g5 + · · ·+ g0 be the decomposition into homogeneous summands. From
the definition of standard form we see that gi ∈ K[x] for all i, i.e. g ∈ K[x]. So we may write
g = a5x

5 + a4x
4 + · · · + a0 for constants ai. Since g has degree five, we have a5 6= 0 and by

changing x we may assume that a5 = 1.
Now f =

∑
α∈Nn0

xα ·
(
Dα(g)

)
, where Di = ϕ(yi) − yi ∈ M2. Then DiDjDk(g) = 0 for all

i, j, k and the sum becomes shorter: f = g +
∑
i xi ·Di(g) +

∑
i,j xixj ·DiDj(g). We see that

deg
(
Di(g)

)
≤ 3 so that

f = x5 +

n∑
i=1

λixi · x3 +

n∑
i=1

µixix
2 +

∑
i,j

λiλjxixjx+Q,

where λi, µi are constants and Q is a polynomial of degree at most two, partially depending on
λi and µi. What is the dimension of possible f obtained this way? Each Di may be chosen as
an element of the square of the maximal ideal of T/(x5)⊥, therefore we have (5−2)-dimensional
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choice. Together with the choice of x, we obtain at most a 4(dim Spec(T )) = 4n-dimensional
family.

3. Apolarity and local cactus rank

We shall now apply our analysis of Hilbert functions of polynomials to apolar subschemes
of a homogeneous form. Recall from Section 0.1 that we denote by S̄ = Kdp[x0, . . . , xn] and
T̄ = K[y0, . . . , yn].

Definition 26. A subscheme Z ⊂ P(S̄1) is apolar to a form F ∈ S̄ if its homogeneous ideal
IZ ⊂ T̄ is contained in F⊥.

Apolarity for a subscheme Z ⊂ P(S̄1) to a form F of degree d may be given by the following
natural interpretation in terms of the d-uple embedding of Z, the image νd(Z) ⊂ P(S̄d) where
νd : P(S̄1)→ P(S̄d), [l] 7→ [ld].

Lemma 27. (Apolarity Lemma). A scheme Z ⊂ P(S̄1) is apolar to F ∈ S̄d if and only if
[F ] ∈ 〈νd(Z)〉 ⊂ P(S̄d).

Proof. If Z is apolar to F , then (IZ)d ⊆ (F⊥)d and we get [F ] ∈ V
(
(IZ)d

)
= 〈νd(Z)〉 ⊂ P(S̄d),

so the “ only if ” part follows. For the “ if ” part, (IZ)e ⊂ (F⊥)e = T̄e when e > d, so it remains
to consider Ψ ∈ (IZ)e, for some e ≤ d. In this case, T̄d−eΨ ⊂ (IZ)d. So if [F ] ∈ 〈νd(Z)〉, then
T̄d−eΨ ⊂ (F⊥)d. But T̄d−eΨ(F ) = 0 only if Ψ(F ) = 0, so the “ if” part follows also. �

We are particularly interested in minimal apolar zero-dimensional subschemes to a form,
their length is called the cactus rank of the form. The closure of the set of forms with a given
cactus rank is called a cactus variety of forms, although it may be reducible. Minimal apolar
zero-dimensional schemes are locally Gorenstein, so our first aim is to describe the forms that
have a given minimal length local Gorenstein scheme. For any form F a minimal apolar zero-
-dimensional scheme decomposes into local Artinian Gorenstein schemes. This decomposition
corresponds to an additive decomposition of the form F . In particular, the cactus variety is
the join of varieties of forms whose minimal apolar scheme is local.

Let F be a form of degree d in S̄ and [l] ∈ P(S̄1). Consider the family Z ⊂ Hilb
(
P(S̄1)

)
of

subschemes apolar to F and supported at [l]. We construct a particular subscheme ZF,l ∈ Z
that we will call the natural apolar subscheme of F at [l]. The element [l] ∈ P(S̄1) defines
a hyperplane V (l) ⊂ P(T̄1). The complement U of this hyperplane is isomorphic to an affine
space Spec(S̄l). Moreover, we get a homomorphism π = π[l] : S̄ → S̄l corresponding to passing

from the homogeneous coordinate ring S of P(T̄1) to the coordinate ring of U .
Choose dual bases 〈l, l1, . . . , ln〉 and 〈l′, l′1, . . . , l′n〉 for S̄1 and T̄1, respectively. Let S̄l =

K[l1, . . . , ln] and let T̄l = K[l′1, . . . , l
′
n]. Then (S̄l)1 and (T̄l)1 are natural dual spaces like S̄1

and T̄1 above, and T̄l is the coordinate ring of the affine space U ′ that contains the point
[l] and is the complement of the hyperplane V (l′) ⊂ P(S̄1). Given any polynomial g ∈ S̄l we
denote by Zg the subscheme V (g⊥) ⊆ U ′ ⊂ P(S̄1).

Definition 28. Let F ∈ S be any form and l ∈ S̄1 a linear form. Take f := π[l](F ) and

f⊥ ⊆ T̄l . We define ZF,l to be the subscheme Zf = V (f⊥) ⊆ U ′ ⊂ P(S̄1).

Since ZF,l is finite, it is a closed subset of P(S̄1). By construction, the support of ZF,l is
[l] ∈ P(S̄1).

In the definition of ZF,l we have not used any particular coordinate system. However,
to simplify the following proofs we fix coordinates. First, note that for every lifting l ∈ S̄1

of [l] we have a canonical isomorphism S̄l ' S̄/(l − 1). Changing x0, . . . , xn if necessary we
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may assume that l = x0. Then S̄l may be identified with S = Kdp[x1, . . . , xn] and T̄l with
T = K[y1, . . . , yn]. The homomorphism

π := πx0
: S̄ → S

sends x0 to 1 and xi to itself for i > 0. Note that π induces an isomorphism between the space
S̄d of homogeneous polynomials of degree d and the space (S)≤d of polynomials of degree d.
Furthermore we fix a “dual” homomorphism

π∗ : T̄ → T

sending y0 to 1 and yi to itself for i > 0.
Let G ∈ S̄ be a homogeneous polynomial, let Ψ ∈ T̄ be a homogeneous differential operator,

and denote g = π(G) and ψ = π∗(Ψ). In general, π
(
Ψ(G)

)
and ψ(g) are different polynomials,

but the following lemma gives the basic relation between them.

Lemma 29. Let G ∈ S̄ be a homogeneous polynomial, let Ψ ∈ T̄ be a homogeneous opera-
tor, with degG ≥ deg Ψ, and let d = degG− deg Ψ. Let g = π(G) and ψ = π∗(Ψ), then the
degree-d tails of π

(
Ψ(G)

)
and ψ(g) are equal. Moreover, if G is divisible by x0

deg Ψ, then

π
(
Ψ(G)

)
= ψ(g).

Proof. The first statement is equivalent to saying that the images of π
(
Ψ(G)

)
and ψ(g) are

equal in the linear space S/(S)>d. Therefore, both statements are linear with respect to Ψ and
G and it is enough to prove them in the case when G and Ψ are monomials. Let G = xα0

0 . . . xαnn
and Ψ = yβ0

0 . . . yβnn . By definition

Ψ(G) =

{
xα0−β0

0 xα1−β1

1 · · ·xαn−βnn if αi ≥ βi for all i ≥ 0,

0 otherwise,

ψ(g) =

{
xα1−β1

1 · · ·xαn−βnn if αi ≥ βi for all i ≥ 1,

0 otherwise.

We consider two cases. First, suppose α0 ≥ β0. Then the conditions ∀i ≥ 0, αi − βi ≥ 0
and ∀i ≥ 1, αi − βi ≥ 0 are equivalent. Thus π

(
Ψ(G)

)
= ψ(g) and so their images in S/(S)>d

agree.
Next, suppose that α0 < β0. Then Ψ(G) = 0. Suppose ψ(g) 6= 0 in S. Then ψ(g) =

xα1−β1

1 . . . xαn−βnn is a monomial of degree
∑
i≥1 αi− βi = d− (α0− β0) > d, thus its image in

S/(S)>d is zero, i.e. equal to the image of Ψ(G). This finishes the proof of the first claim.
For the second claim, note that by assumption α0 ≥ deg Ψ ≥ β0, thus the proof of the first

case above applies, giving π(Ψ(G)) = ψ(g). �

Corollary 30. Let G ∈ S̄ and Ψ ∈ T̄ be homogeneous polynomials. Let g = π(G) and
ψ = π∗(Ψ). If ψ(g) = 0, then Ψ(G) = 0.

Proof. Let b = deg(Ψ), d = degG− deg Ψ, and G′ := xb0G. Then g = π(G′) and G′, Ψ, g, ψ
satisfy assumptions of Lemma 29, therefore π

(
Ψ(G′)

)
= ψ(g) = 0. Since π is an isomorphism

between S̄d and (S)≤d we have Ψ(G′) = 0. But G = yb0(G′), so that

Ψ(G) = Ψ
(
yb0(G′)

)
= yb0Ψ(G′) = 0. �

Corollary 31. Let F ∈ S be a homogeneous polynomial and l ∈ S̄1 any linear form. Then the
scheme ZF,l (see Definition 28) is apolar to F .

Proof. Take any homogeneous form Ψ ∈ I(ZF,l). Then ψ = π∗(Ψ) is an element annihilating
f = π(F ). By Corollary 30 we have Ψ(F ) = 0, i.e. Ψ ∈ F⊥. �
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Remark 32. It is easy to characterize the d-uple embedding νd(ZF,l) in a manner similar to
the proof of the Apolarity Lemma 27.

For l ∈ S̄1, let l⊥ ∩ T̄1 be the subspace of linear forms in T̄1 that annihilate l, and let (l⊥)e

be its e-th symmetric product. Then (l⊥)e(F ) ⊂ S̄d−e for e ≤ d is a subspace of partials of F
or degree d− e, and the linear span of νd(ZF,l) is given by

〈νd(ZF,l)〉 = P
(
ld ⊕ ld−1 · (l⊥)d−1(F )⊕ · · · ⊕ l · (l⊥)1(F )⊕ F

)
.

Furthermore νd(ZF,l) = 〈νd(ZF,l)〉 ∩ Vd,n ⊂ P(S̄d).

The following lemma is a private communication from Jaros law Buczyński.

Lemma 33 (Buczyński). If Z is any local scheme in P(S̄1) apolar to a homogeneous polynomial
F ∈ S and supported at [l] = [1 : 0 : · · · : 0], then there exists a closed subscheme Z ′ ⊆ Z, apolar
to F , such that Z ′ = ZG,l, for some G ∈ S̄. Moreover, F = Ψ(G) for some Ψ ∈ T̄ .

Proof. By [Buczyńska, Buczyński 2014, Proposition 2.2, Lemma 2.3], the scheme Z contains
a closed Gorenstein subscheme Z ′ apolar to F .

Let g ∈ S be a polynomial such that Z ′ = V (g⊥) and let G ∈ S̄ be a homogenization of g
such that G is divisible by xd0, where d = deg(F ). Then g = π(G) and Z ′ = ZG,l. Lemma 29
asserts that (G⊥)s = (IZG,l)s for any s ≤ d, and therefore (G⊥)s = (IZG,l)s ⊆ (F⊥)s. Since F

is of degree d, it follows that G⊥ ⊆ F⊥, so F is a partial of G. �

We may now prove Proposition 4.

Proof (Proposition 4). By Lemma 33, we may assume that Γ = ZG,l and that F = Ψ(G) for
some homogeneous Ψ ∈ K[y0, . . . , yn]. Let g = π(G) and ψ = π∗(Ψ). By Lemma 29 the
polynomial f is the degree-d tail of ψ(g).

Clearly Diff
(
ψ(g)

)
⊆ Diff(g), thus Zψ(g) is a closed subscheme of Zg = Γ. By minimality of

Γ it is enough to prove that Zψ(g) is a scheme apolar to F . Let ψ′ be such that ψ′
(
ψ(g)

)
= 0

and let Ψ′ ∈ T̄ be a homogeneous polynomial such that ψ′ = π∗(Ψ′). Then π∗(Ψ′Ψ) = ψ′ψ.
By Corollary 30 we have Ψ′

(
Ψ(G)

)
= 0. Since F = Ψ(G) we get that Ψ′(F ) = 0, thus Zψ(g)

is apolar to F . �

3.1. The local cactus rank of a general cubic surface. In this subsection we restrict to
characteristic 0. First we present an example of a quartic polynomial whose cubic tail has
more partials than the polynomial itself. Similar examples play a role in our computation of
the local cactus rank of a general cubic surface, the main issue in this section.

Example 34. Let f = x 2
1 x2 + x 2

2 and g = x 4
1 + f . Then Diff(f) has a basis

f, x 2
1 + x2, x1x2, x1, x2, 1,

thus dimK Diff(f) = 6. On the other hand, Diff(g) is spanned by

g, x 3
1 + x1x2, x

2
1 + x2, x1, 1,

so that dimK Diff(g) = 5. Notice that y2− y 2
1 ∈ g⊥, so that x2 does not appear in the leading

summand of any partial of g (cf. Proposition 12).

For our computation of the local cactus rank of a general cubic surface V (F ), we need
to translate the generality assumptions on F into properties of its partials. First note the
following algebraic–geometric correspondences for Ψ ∈ T̄1:

(1) Ψ3(F ) = 0 if and only if [Ψ] ∈ V (F ) ⊆ P(T̄1),
(2) Ψ2(F ) = 0 if and only if [Ψ] is a singular point of the (hyper)surface V (F ),
(3) Ψ(F ) = 0 if and only if [Ψ] is a cone point of V (F ).
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Lemma 35. Let F ∈ S be a general cubic form in four variables. Then

(1) The set of [Ψ] ∈ P(T̄1) such that the quadric Ψ(F ) has rank less than 4 is an irreducible
surface of degree 4. Furthermore, the quadric Ψ(F ) has rank less than 4 if and only if
there exist a Ψ′ ∈ T̄1 such that (ΨΨ′)(F ) = 0.

(2) There are no points [Ψ] ∈ V (F ) ⊂ P(T̄1), such that Ψ(F ) is a quadric of rank less than
3 i.e. if Ψ 3

3 (F ) = 0 and (Ψ2Ψ3)(F ) = 0, then Ψ 3
2 (F ) 6= 0.

(3) The cubic surface V (F ) is smooth, i.e. Ψ2(F ) 6= 0 for every nonzero Ψ ∈ T̄1.
(4) The cubic surface V (F ) has no Eckhardt points, i.e. no plane section is a cone.

Proof. These facts are classical. For a good recent reference see [Dolgachev 2012, 9.4]. �

Proposition 36. Let F ∈ S̄3 be a general smooth cubic form in four variables. Then the local
cactus rank of F is 7. For every linear form l ∈ S̄1, the apolar scheme of the dehomogenization
π[l](F ) has length 8, while if {l = 0} defines a singular curve section of V (F ) ⊂ P(T̄1) whose
tangent cone at the singular point is a square, then there is a length 7 scheme supported at
[l] ∈ P(S̄1) that is apolar to F .

Proof. Let F ∈ S̄ = Kdp[x0, x1, x2, x3] be a general cubic form in the sense of Lemma 35.
We claim that for all non-zero l ∈ S̄1, the Hilbert function is

(11) HFl = (1, 3, 3, 1).

Indeed, suppose it is not so, then HFl ≤ (1, 3, 2, 1) for some non-zero l ∈ S̄1 and there ex-
ists a non-zero linear form Ψ ∈ l⊥, such that ψ(Fl) has degree at most one, where ψ =
π∗(Ψ). Let Fl = f3 + f2 + f1 + f0 be the decomposition into homogeneous components, then
F = f3 + lf2 + l2f1 + l3f0. Since degψ(Fl) ≤ 1 we have Ψ(f3) = 0. But then Ψ(F ) is divisible
by l, so it is a quadric of rank at most 2. On the other hand Ψ(l) = 0, so Ψ2

(
Ψ(F )

)
= Ψ3(F ) = 0,

so [Ψ] ∈ V (F ) ⊂ P(T̄1). This contradicts the generality assumption Lemma 35.2 of F .
The cubic surface V (F ) has a one dimensional family of plane cuspidal cubic sections,

and finitely many reducible plane sections that are unions of a smooth conic and a tangent
line. In either case, the tangent cone at the singular point is a square. We pick one such
plane section. After a linear change of coordinates, we may assume that this plane section is
V (F, x0), that it is singular at V (x0, x1, x2) and that V (x0, x

2
1 ) is the tangent cone, so that

the dehomogenization π[x0](F ) has the form

π[x0](F ) = f + x 2
1 x3 + x 2

3 + x3l

where f and l are polynomials in Kdp[x1, x2] of degree three and one respectively. The plane
section V (F, x0) = V (f3 + x 2

1 x3, x0) where f3 is the cubic summand of f . By Lemma 35.4,
the linear partials of f3 + x2

1x3 fill 〈x1, x2, x3〉. For later use we note that y2
1 is the only

monomial quadric such that y2
1(f3+x2

1x3) contains x3. Hence we have (y2, y3) · (y1, y2, y3)(f) =
〈1, x1, x2〉. Since l− y2

1(f) ∈ Kdp[x1, x2] we can find σ0 ∈ (y2, y3)(y1, y2, y3) such that σ0(f) =
l− y2

1(f) mod 〈x1〉. Then there also exists σ = σ0 + ay3
1 ∈ (y1, y2, y3)2 such that σ(x4

1 + f) =
l − y2

1(f). Clearly σ0x
4
1 = 0.

Let G = x 4
1 + x0F . Then y0(G) = F , hence G⊥ ⊆ F⊥. By Lemma 31 we have I(ZG,x0

) ⊆
G⊥, so we conclude that I(ZG,x0

) ⊆ F⊥, i.e. that the local Gorenstein scheme ZG,x0
is apolar

to F . We claim that length(ZG,x0) ≤ 7, and hence that the local cactus rank of F is at most 7.
We prove the claim, by showing that x 2

1 x3 + x 2
3 + x3l is an exotic summand for Gx0 :=

π[x0](G) = x 4
1 + f + x 2

1 x3 + x 2
3 + x3l. For this we consider the partials

y3(Gx0
) = x 2

1 + x3 + l, y 2
1 (Gx0

) = x 2
1 + x3 + y 2

1 (f).
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We have (y3 − y2
1)(Gx0

) = l − y2
1(f) = σ(Gx0

), so y3 − y 2
1 − σ annihilates Gx0

. If we take
ψ = y 2

1 + σ, then ψ2Gx0 = y4
1(Gx0) = 1 and we may write

Gx0
= x 4

1 + f + x3ψ(x 4
1 + f) + x 2

3 ψ
2(x 4

1 + f)

which shows, by Proposition 19, that x 2
1 x3 + x 2

3 + x3l is an exotic summand for Gx0
. Thus

Gx0
has the Hilbert function of the binary polynomial x 4

1 + f . The maximal values of this
function is clearly (1, 2, 2, 1, 1), so this proves the claim that length(ZG,x0

) ≤ 7.
Finally, suppose that there exists a local Gorenstein scheme of length at most 6 apolar to F .

It must be defined by some polynomial g whose cubic tail coincides with Fl for some l. Thus
g has degree at least four, and its Hilbert function is Hg = (1, 2, 1, 1, 1), Hg = (1, 1, 1, 1, 1)
or Hg = (1, 1, 1, 1, 1, 1). In the first two cases, g has degree 4 and the leading summand of
g is a pure power l 4. Each order-one partial of the cubic summand Fl,3 of Fl is therefore
proportional to l 2. In particular π∗(Ψ)(Fl,3) = 0 for some Ψ ∈ l⊥ ⊂ T̄1, so Ψ(F ) is divisible
by l contradicting, as above, the generality assumption on F .

In the case Hg = (1, 1, 1, 1, 1, 1) we see that Fl is the degree-at-most-three part of g and the
standard form of g is x5. By Example 25, we have a 4 · 3-dimensional choice of Fl. Together
with the choice of l, we obtain a 16-dimensional variety of possible F , thus such F is not
general. �

4. On the dimension of the cactus varieties of cubic forms

In this section we consider polynomials with Hilbert function (1,m− 1,m− 1, 1) and
(1,m− 1,m− 1, 1, 1) and derive lower bounds on the dimension of the Cactus variety of cubic
forms Cactus2m(V3,n) and Cactus2m+1(V3,n), respectively.

The cactus variety Cactusr(V3,n) of the third Veronese embedding V3,n ⊂ P(S̄3) is, according
to Proposition 4, the closure of the family of cubic forms [F ] admitting a decomposition
F = F1 + · · ·+Fs and distinct linear forms l1, . . . , ls ∈ S̄1 and forms G1, . . . , Gs ∈ S, such that
ZG1,l1 ∪ · · · ∪ZGs,ls has length at most r, and the dehomogenization fi = π[li](F ) of F at li is
the cubic tail of the dehomogenization of Gi at li (see Definition 28).

To get a lower bound on the dimension of the cactus variety, we consider the extreme
opposite to the higher secants, namely linear spaces that intersect V3,n in a local scheme. In
particular we consider the closure

W2m(V3,n) ⊂ Cactusr(V3,n) ⊂ P(S̄3)

of the family of cubic forms [F ], for which there exist a linear form l ∈ S̄1 and a form G ∈ S,
such that f = π[l](F ) is the cubic tail of g = π[l](G) and the polynomial g has Hilbert
function (1,m − 1,m − 1, 1). We define W2m+1(V3,n) analogously, using the Hilbert function
(1,m − 1,m − 1, 1, 1). In the first case g is itself a cubic polynomial, i.e. its own cubic tail,
while in the second case, g is a quartic polynomial.

To find the dimension of Wr(V3,n) when r = 2m, we note that it is the union over l ∈ S̄1

of varieties isomorphic to the projectivisation of Vr(n), the family of cubic polynomials f ∈
K[x1, . . . , xn] with Hilbert function (1,m−1,m−1, 1). When r = 2m+1, the variety Wr(V3,n)
is union over l of varieties isomorphic to the projectivisation of Vr(n) of Tailsr (3, n), the family
of cubic polynomials f ∈ K[x1, . . . , xn], that are tails of polynomials g ∈ K[x1, . . . , xn] with
Hilbert function (1,m− 1,m− 1, 1, 1).

Example 37. If f ∈ Kdp[x1, . . . , xn] has Hilbert function Hf = (1,m− 1,m− 1, 1), its only
possible symmetric decomposition is

Hf = ∆ = ∆0 = (1,m− 1,m− 1, 1),
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and therefore deg f = 3, ∆0(1) = m− 1 and

(n0, n1) = (m− 1,m− 1).

If fα is a general cubic polynomial in Kdp[x1, . . . , xm−1], and fβ is any quadratic polynomial
in 〈xm, . . . , xn〉〈x1, . . . , xm−1, 1〉, then fα is in standard form and fβ is an exotic summand for
fα + fβ (cf. Definition 13). Furthermore Hfα+fβ = ∆ and so fα + fβ ∈ V2m(n). The subspace

〈x1, . . . , xm−1〉 = Lin(f)0

is determined by f , and the variety of subspaces 〈x1, . . . , xm−1〉 ⊂ 〈x1, . . . , xn〉 has dimension
(n−m+ 1)(m− 1), so we get

dimV2m(n) =

(
m+ 2

3

)
+ (2m− 1)(n−m+ 1).

Notice furthermore that the affine variety V2m(n) is a cone, so that its projectivisation has
dimension one less.

Example 38. If g ∈ Kdp[x1, . . . , xn] has Hilbert function Hf = (1,m− 1,m− 1, 1, 1), its only
possible symmetric decomposition is

∆ = (∆0,∆1) =
(
(1, 1, 1, 1, 1), (0,m− 2,m− 2, 0)

)
,

and therefore deg g = 4, ∆0(1) = 1, ∆1(1) = m− 2 and

(n0, n1, n2) = (1,m− 1,m− 1).

If fα is a general cubic polynomial in Kdp[x1, . . . , xm−1], and fβ is a cubic polynomial of the
form l0x

2
1 + l 2

0 + f∞, where l0 ∈ 〈xm, . . . , xn〉 and f∞ ∈ 〈xm, . . . , xn〉〈x1, . . . , xm−1, 1〉, then
x 4

1 + fα is in standard form and fβ is an exotic summand for

g = x 4
1 + fα + fβ = x 4

1 + fα + l0x
2
1 + l 2

0 + f∞.

Furthermore

Hg = ∆0 + ∆1 = (1,m− 1,m− 1, 1, 1),

and so fα + fβ ∈ Tails2m+1 (3, n).
The flag of subspaces

〈x1〉 = Lin(g)0 ⊂ 〈x1, . . . , xm−1〉 = Lin(g)1 ⊂ 〈x1, . . . , xn〉

is determined by g, and the variety of such flags has dimension m− 2 + (n−m+ 1)(m− 1),
so we get

dim Tails2m+1 (3, n) =

(
m+ 2

3

)
+ (2m− 1)(n−m+ 1) + n− 1.

Notice that, since the summand l0x
2
1 + l20 is quadratic in the form l0, the affine variety

Tails2m+1 (3, n) is not a cone, so its projectivisation has the same dimension.

We use the Examples 37 and 38 to give a lower bound on the dimension of the union of
linear spaces that intersect V3,n in a local subscheme.

Proposition 39. Let 3 ≤ m ≤ n. The union CactusL2m(V3,n) of linear spans in P(n+3
3 )−1 of

local subschemes in V3,n of length 2m has dimension

dim CactusL2m(V3,n) ≥
(
m+ 2

3

)
+ 2m(n−m) + 3m− 2.
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Let 4 ≤ m ≤ n. The union CactusL2m+1(V3,n) of linear spans in P(n+3
3 )−1 of local subschemes

in V3,n of length 2m+ 1 has dimension

dim CactusL2m+1(V3,n) ≥
(
m+ 2

3

)
+ 2m(n−m) + 3m+ n− 2.

Proof. Clearly W2m(V3,n) ⊂ CactusL2m(V3,n) and W2m+1(V3,n) ⊂ CactusL2m+1(V3,n), so we get
the inequality by computing the dimension of these subvarieties.

Let m > 2. W2m(V3,n) is the union as l varies, of projective varieties whose affine cones are
isomorphic to V2m(n), so W2m(V3,n) has dimension

dimW2m(V3,n) ≤ dimV2m(n)− 1 + n

equal to the right hand side in the lemma. Similarly, W2m+1(V3,n) is the union, as l varies, of
varieties isomorphic to Tails2m+1 (3, n), so

dimW2m+1(V3,n) ≤ dim Tails2m+1 (3, n) + n.

In both cases the right hand side is the dimension of the given parametrization of the variety
Wr(V3,n). To get equality, we show that the parameterization is generically one to one.

When r is even, we show that for a general [F ] ∈ Wr(V3,n) there is a unique l such that
ZF,l has length r. When r is odd, we show that there is a unique l such that f = πl(F ) is the
tail of a quartic polynomial gl whose apolar scheme Zgl has length r.

Let r = 2m ≤ 2n, and assume that [F ] ∈ Wr(V3,n) is general. Let l ∈ S̄1 and f = πl(F )
be the local polynomial of F at l such that f has Hilbert function (1,m− 1,m− 1, 1). Then
F = F3 + lF2 where F3 depends on m − 1 variables. Therefore V (F, l) is a cone inside the
hyperplane V (l). Let [y] be a point in the n −m dimensional linear vertex of V (F, l). Then
y(F3) = y(l) = 0. Furthermore, since all partials of Fl of degree 1 are partials of F3, we have
y2(F2) = 0. In particular, y2(F ) = 0 and y(F ) = l · l′, so V (F ) is singular at [y] with a tangent
cone of rank 2. On the other hand, if V (F ) is singular at [y] with a tangent cone of rank 2,
then

F = F3 + lF2 + l · l′x,
where y(x) = 1, y(F3) = y(F2) = y(l) = y(l′) = 0 and F3 has Hilbert function (1,m−1,m−1, 1)
for some m ≤ n.

If r = 2m+ 1, and assume that [F ] ∈Wr(V3,n) is general. Let l ∈ S̄1 and f = πl(F ) be the
local polynomial of F at l such that f has Hilbert function (1,m,m, 1), but is the cubic tail
of a quartic polynomial g with Hilbert function (1,m− 1,m− 1, 1, 1). When m ≤ n, then

g = α0l
4
0 + g3 + α1l

2
0l
′ + α2(l′)2 + g2

where g3 and l0 depends on m variables and l′ is a hidden variable for g. Thus

f3 = g3 + α1l
2
0l
′, F = g3 + α1l

2
0l
′ + α2l(l

′)2 + lg2

and V (F, l) is a singular cubic hypersurface with a double point whose tangent cone is a square.
In fact, if m < n, then V (F, l) is a cone with linear vertex of dimension n−m− 1 over such a
singular hypersurface.

In both cases, if m < n, let l1, . . . , ln−m are general linear forms. If r = 2m, then the
linear section V (F, l1, . . . , ln−m) still has a singular point whose tangent cone has rank 2. If
r = 2m+ 1, then the linear section V (F3, l, l1, . . . , ln−m) is still a singular cubic hypersurface
inside a (m− 1)-dimensional linear subspace with a non reduced tangent cone at the singular
point. The proof of uniqueness of l may therefore in both cases be reduced to the case, when
n = m.

The following is a classical result.
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Lemma 40. The set of singular cubic hypersurfaces in Pn, n > 2 whose tangent cone at the

singular point has rank at most 2, form a subvariety of codimension
(
n−1

2

)
+ 1 in P(n+3

3 )−1,
and the general member in the set has exactly one singular point.

Proof. It suffices to note that the set of singular cubic hypersurfaces in Pn form a hypersurface

in P(n+3
3 )−1. The general point in this hypersurface, the discriminant, corresponds to a cubic

hypersurface with a quadratic singularity, i.e. the tangent cone is a quadric of rank n. In the
space of quadrics of rank at most n, the quadrics of rank 2 form a subvariety of codimension(
n−1

2

)
. The two codimensions add up to the codimension in the lemma. For uniqueness it

suffices to fix a quadric q of rank 2 and a point p in its vertex,and notice, by Bertini’s theorem,
that the general cubic hypersurface through for which q is the tangent cone at p is smooth
elsewhere. �

Remark 41. Notice that the codimension in lemma is consistent with the dimensions of
W2n(V3,n). When n = m in the proposition, we get

dimW2n,n(V3,n) =

(
n+ 3

3

)
− 1−

(
n− 1

2

)
− 1.

For the case r is odd, we show that

Lemma 42. The set of cubic hypersurfaces in Pn, n > 3 with a singular hyperplane section
whose tangent cone at the singular point is a square, form a subvariety of codimension

(
n−2

2

)
−1

in P(n+3
3 )−1, and when n > 4, the general member in the set has exactly one such hyperplane

section.

Proof. Assume V (F ) is a general cubic of dimension n − 1 > 2 with a singular hyperplane
section V (F, l) whose tangent cone at the singular point is a square. Let p ∈ V (F, l) be a
singular point and V (l, (l′)2) the tangent cone in V (l). We may choose coordinates x0, . . . , xn,
so that l = x0, l

′ = x1 and p = [0 : . . . : 0 : 1]. Then

F = F3 + x2
1xn + x0F2,

where F3 ∈ Kdp[x1, . . . , xn−1] and F3 +x2
1xn is the cubic form defining the singular hyperplane

section V (F, x0) and F2 ∈ Kdp[x0, . . . , xn]. Thus F depends on
(
n+1

3

)
+ 1 +

(
n+2

2

)
coefficients.

Now, p, l and l′ varies in a (n+ (n− 1) + (n− 2)) dimensional variety, so we get that cubics
with a singular hyperplane section whose tangent cone at the singular point is a square form
a variety of codimension(
n+ 3

3

)
−
((

n+ 1

3

)
+ 1 +

(
n+ 2

2

))
− 3(n− 1) =

(
n+ 1

2

)
− 1− 3(n− 1) =

(
n− 2

2

)
− 1

When n > 4, this codimension is positive.
The forms F , when F3 and F2 vary, define a linear system of cubic hypersurfaces with base

locus supported at p = [0 : . . . : 0 : 1]. The general member is smooth, and the tangent
hyperplane section at p is singular only at p, and the tangent cone at p is a square. If this
hyperplane section is not unique with this property, there is another point q distinct from p
such that the tangent hyperplane section at q also has this property. To count dimensions,
we fix two flags p ∈ Lp ⊂ Hp and q ∈ Lq ⊂ Hq, and consider the space of smooth cubic
hypersurfaces through p and q, whose tangent hyperplanes are Hp and Hq and whose tangent
cones at p and q are squares with support along Lp and Lq respectively. Notice that Hp and
Hq are distinct, while Lp ∩ Hq may equal Lq ∩ Hp. This gives two cases for the dimension
count. These are both similar to the dimension count above and show that the variety of
cubic hypersurfaces with two special points as above, has positive codimension in the variety
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of cubics with only one such point when n > 4. Therefore the last statement of the lemma
follows. �

Remark 43. Notice that codimension in the lemma is consistent with the dimension of
W2n+1(V3,n). When n = m in the proposition, we get

dimW2n+1,n(V3,n) =

(
n+ 3

3

)
− 1−

(
n− 2

2

)
+ 1.

We conclude that the parameterization of Wr(V3,n) is birational for any even r with
5 < r < 2n+ 1, and any odd r with 8 < r ≤ 2n+ 1, and hence that the dimension formulas of
Proposition 39 are the dimensions of W2m(V3,n) and W2m+1(V3,n) respectively. �

We rewrite the formulas for the dimensions of W2m(V3,n) and W2m+1(V3,n) in terms of the
lengths r = 2m (resp. r = 2m+ 1):

dimWr(V3,n) =

{
(rn+ r − 1) + r(r−2)(r−16)

48 − 1 if 5 < r < 2n+ 1, r even,

(rn+ r − 1) + (r−1)(r−3)(r−17)
48 − 2 if 8 < r < 2n+ 2, r odd.

Corollary 44. When 18 ≤ r ≤ 2n+ 2, then

dim Cactusr(V3,n) ≥

{
(rn+ r − 1) + r(r−2)(r−16)

48 − 1 if r ≥ 18 even,

(rn+ r − 1) + (r−1)(r−3)(r−17)
48 − 2 if r ≥ 19 odd.

For each possible Hilbert function for local schemes of length r, one may define a variety
analogous to Wr(V3,n). The dimensions of these varieties are in general not known, and this
remains an obstacle to finding a precise dimension for the cactus variety Cactusr(V3,n).

Finally we leave an open question: we know that the cactus rank of a general cubic surface
equals the rank, which is 5, while the local cactus rank is 7 (see Proposition 36), but we do
not know whether for a larger number of variables the local cactus rank and the cactus rank
agree.

Question 45. Is the cactus rank of a cubic form in Kdp[x0, . . . , xn] always computed locally,
when n ≥ 8 and the cactus rank is at least 18?
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OE/MAT/UI0117/2011 and PEst-OE/MAT/UI0117/2014, and by Fundação de Amparo à
Pesquisa do Estado de São Paulo, grant 2014/12558–9. KR was supported by the RCN project
no 239015 “Special Geometries”.

References

[Alexander, Hirschowitz 1995] Alexander, James, Hirschowitz, André: Polynomial interpolation in several vari-
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