The classic Gauss-Lucas theorem for complex polynomials of degree $dge2$ has a natural reformulation over quaternions, obtained via rotation around the real axis. We prove that such a reformulation is true only for $d=2$. We present a new quaternionic version of the Gauss-Lucas theorem valid for all $dgeq2$, together with some consequences.
The quaternionic Gauss-Lucas theorem / Ghiloni, Riccardo; Perotti, Alessandro. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - STAMPA. - 197:6(2018), pp. 1679-1686. [10.1007/s10231-018-0742-z]
The quaternionic Gauss-Lucas theorem
Riccardo Ghiloni;Alessandro Perotti
2018-01-01
Abstract
The classic Gauss-Lucas theorem for complex polynomials of degree $dge2$ has a natural reformulation over quaternions, obtained via rotation around the real axis. We prove that such a reformulation is true only for $d=2$. We present a new quaternionic version of the Gauss-Lucas theorem valid for all $dgeq2$, together with some consequences.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Gauss-Lucas-quaternions arXiv v2.pdf
accesso aperto
Descrizione: arxiv v2
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
275.32 kB
Formato
Adobe PDF
|
275.32 kB | Adobe PDF | Visualizza/Apri |
Gauss-Lucas-quaternions author copy.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
708.9 kB
Formato
Adobe PDF
|
708.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione