The quaternionic Gauss-Lucas Theorem

Riccardo Ghiloni
Alessandro Perotti
Department of Mathematics, University of Trento
Via Sommarive 14, I-38123 Povo Trento, Italy
riccardo.ghiloni@unitn.it, alessandro.perotti@unitn.it

Abstract

The classic Gauss-Lucas Theorem for complex polynomials of degree $d \geq 2$ has a natural reformulation over quaternions, obtained via rotation around the real axis. We prove that such a reformulation is true only for $d=2$. We present a new quaternionic version of the Gauss-Lucas Theorem valid for all $d \geq 2$, together with some consequences.

1 Introduction

Let p be a complex polynomial of degree $d \geq 2$ and let p^{\prime} be its derivative. The Gauss-Lucas Theorem asserts that the zero set of p^{\prime} is contained in the convex hull $\mathcal{K}(p)$ of the zero set of p. The classic proof uses the logarithmic derivative of p and it strongly depends on the commutativity of \mathbb{C}.

This note deals with a quaternionic version of such a classic result. We refer the reader to [3] for the notions and properties concerning the algebra \mathbb{H} of quaternions we need here. The ring $\mathbb{H}[X]$ of quaternionic polynomials is defined by fixing the position of the coefficients w.r.t. the indeterminate X (e.g. on the right) and by imposing commutativity of X with the coefficients when two polynomials are multiplied together (see e.g. [5, §16]). Given two polynomials $P, Q \in$ $\mathbb{H}[X]$, let $P \cdot Q$ denote the product obtained in this way. If P has real coefficients, then $(P \cdot Q)(x)=$ $P(x) Q(x)$. In general, a direct computation (see $[5, \S 16.3]$) shows that if $P(x) \neq 0$, then

$$
\begin{equation*}
(P \cdot Q)(x)=P(x) Q\left(P(x)^{-1} x P(x)\right), \tag{1}
\end{equation*}
$$

while $(P \cdot Q)(x)=0$ if $P(x)=0$. In this setting, a (left) root of a polynomial $P(X)=\sum_{h=0}^{d} X^{h} a_{h}$ is an element $x \in \mathbb{H}$ such that $P(x)=\sum_{h=0}^{d} x^{h} a_{h}=0$.

Given $P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$, consider the polynomial $P^{c}(X)=\sum_{k=0}^{d} X^{k} \bar{a}_{k}$ and the normal polynomial $N(P)=P \cdot P^{c}=P^{c} \cdot P$. Since $N(P)$ has real coefficients, it can be identified with a polynomial in $\mathbb{R}[X] \subset \mathbb{C}[X]$. We recall that a subset A of \mathbb{H} is called circular if, for each $x \in A, A$ contains the whole set (a 2 -sphere if $x \notin \mathbb{R}$, a point if $x \in \mathbb{R}$)

$$
\begin{equation*}
\mathbb{S}_{x}=\left\{p x p^{-1} \in \mathbb{H} \mid p \in \mathbb{H}^{*}\right\} \tag{2}
\end{equation*}
$$

where $\mathbb{H}^{*}:=\mathbb{H} \backslash\{0\}$. In particular, for any imaginary unit $I \in \mathbb{H}, \mathbb{S}_{I}=\mathbb{S}$ is the 2-sphere of all imaginary units in \mathbb{H}. For every subset B of \mathbb{H} we define its circularization as the set $\bigcup_{x \in B} \mathbb{S}_{x}$. It is well-known $([3, \S 3.3])$ that the zero set $V(N(P)) \subset \mathbb{H}$ of the normal polynomial is the circularization of the zero set $V(P)$, which consists of isolated points or isolated 2-spheres of the form (2) if $P \neq 0$.

Let the degree d of P be at least 2 and let $P^{\prime}(X)=\sum_{k=1}^{d} X^{k-1} k a_{k}$ be the derivative of P. It is known (see e.g. [2]) that the Gauss-Lucas Theorem does not hold directly for quaternionic polynomials. For example, the polynomial $P(X)=(X-i) \cdot(X-j)=X^{2}-X(i+j)+k$ has zero set $V(P)=\{i\}$, while P^{\prime} vanishes at $x=(i+j) / 2$.

Since the zero set $V(P)$ of P is contained in the set $V(N(P))$, a natural reformulation in $\mathbb{H}[X]$ of the classic Gauss-Lucas Theorem is the following: $V\left(N\left(P^{\prime}\right)\right) \subset \mathcal{K}(N(P))$ or equivalently

$$
\begin{equation*}
V\left(P^{\prime}\right) \subset \mathcal{K}(N(P)) \tag{3}
\end{equation*}
$$

where $\mathcal{K}(N(P))$ denotes the convex hull of $V(N(P))$ in \mathbb{H}. This set is equal to the circularization of the convex hull of the zero set of $N(P)$ viewed as a polynomial in $\mathbb{C}[X] \subset \mathbb{H}[X]$. Recently two proofs of the above inclusion (3) were presented in [7, 2].

Our next two propositions prove that inclusion (3) is correct in its full generality only when $d=2$.

2 Gauss-Lucas polynomials

Definition 1. Given a polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$ we say that P is a Gauss-Lucas polynomial if P satisfies (3).

Proposition 2. If P is a polynomial in $\mathbb{H}[X]$ of degree 2 , then $V(N(P))=\mathbb{S}_{x_{1}} \cup \mathbb{S}_{x_{2}}$ for some $x_{1}, x_{2} \in \mathbb{H}$ (possibly with $\mathbb{S}_{x_{1}}=\mathbb{S}_{x_{2}}$) and

$$
V\left(P^{\prime}\right) \subset \bigcup_{y_{1} \in \mathbb{S}_{x_{1}}, y_{2} \in \mathbb{S}_{x_{2}}}\left\{\frac{y_{1}+y_{2}}{2}\right\}
$$

In particular every polynomial $P \in \mathbb{H}[X]$ of degree 2 is a Gauss-Lucas polynomial.
Proof. Let $P(X)=X^{2} a_{2}+X a_{1}+a_{0} \in \mathbb{H}[X]$ with $a_{2} \neq 0$. Since $P \cdot a_{2}^{-1}=P a_{2}^{-1},\left(P \cdot a_{2}^{-1}\right)^{\prime}=$ $P^{\prime} \cdot a_{2}^{-1}=P^{\prime} a_{2}^{-1}$, we can assume $a_{2}=1$. Consequently, $P(X)=\left(X-x_{1}\right) \cdot\left(X-x_{2}\right)=$ $X^{2}-X\left(x_{1}+x_{2}\right)+x_{1} x_{2}$ for some $x_{1}, x_{2} \in \mathbb{H}$. Then $x_{1} \in V(P)$ and $\bar{x}_{2} \in V\left(P^{c}\right)$, since $P^{c}(X)=$ $\left(X-\bar{x}_{2}\right) \cdot\left(X-\bar{x}_{1}\right)$. Therefore $x_{1}, x_{2} \in V(N(P))$. On the other hand $V\left(P^{\prime}\right)=\left\{\left(x_{1}+x_{2}\right) / 2\right\}$ as desired.

Remark 3. Let $P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$ of degree $d \geq 2$ and let $Q:=P \cdot a_{d}^{-1}$ be the corresponding monic polynomial. Since $V(P)=V(Q)$ and $V\left(P^{\prime}\right)=V\left(Q^{\prime}\right), P$ is a Gauss-Lucas polynomial if and only if Q is.

Proposition 4. Let $P \in \mathbb{H}[X]$ of degree $d \geq 3$. Suppose that $N(P)(X)=X^{2 e} \cdot\left(X^{2}+1\right)^{d-e}$ for some $e<d$ and that $N\left(P^{\prime}\right)(X)=\sum_{k=0}^{2 d-2} X^{k} b_{k}$ contains a unique monomial of odd degree, that is, $b_{k} \neq 0$ for a unique odd k. Then P is not a Gauss-Lucas polynomial.

Proof. Since $V(N(P)) \subset\{0\} \cup \mathbb{S}, \mathcal{K}(N(P)) \subset \operatorname{Im}(\mathbb{H})=\{x \in \mathbb{H} \mid \operatorname{Re}(x)=0\}$. Then it suffices to show that $N\left(P^{\prime}\right)$ has at least one root in $\mathbb{H} \backslash \operatorname{Im}(\mathbb{H})$. Let $G, L \in \mathbb{R}[X]$ be the unique real polynomials such that $G(t)+i L(t)=N\left(P^{\prime}\right)(i t)$ for every $t \in \mathbb{R}$. Since $N\left(P^{\prime}\right)$ contains a unique monomial of odd degree, say $X^{2 \ell+1} b_{2 \ell+1}$, then $L(t)=(-1)^{\ell} b_{2 \ell+1} t^{2 \ell+1}$ and hence $V\left(N\left(P^{\prime}\right)\right) \cap i \mathbb{R} \subset$ $\{0\}$. Being $V\left(N\left(P^{\prime}\right)\right)$ a circular set, it holds $V\left(N\left(P^{\prime}\right)\right) \cap \operatorname{Im}(\mathbb{H}) \subset\{0\}$. Since $N\left(P^{\prime}\right)$ contains at least two monomials, namely those of degrees $2 \ell+1$ and $2 d-2$, we infer that it must have a nonzero root. Therefore $V\left(N\left(P^{\prime}\right)\right) \not \subset\{0\}$ and hence $V\left(N\left(P^{\prime}\right)\right) \not \subset \operatorname{Im}(\mathbb{H})$, as desired.

Corollary 5. Let $d \geq 3$ and let

$$
P(X)=X^{d-3} \cdot(X-i) \cdot(X-j) \cdot(X-k)
$$

Then $N(P)(X)=X^{2 d-6} \cdot\left(X^{2}+1\right)^{3}$ and $N\left(P^{\prime}\right)$ contains a unique monomial of odd degree, namely $-4 X^{2 d-5}$. In particular P is not a Gauss-Lucas polynomial.

Proof. By a direct computation we obtain:

$$
\begin{align*}
P(X) & =X^{d}-X^{d-1}(i+j+k)+X^{d-2}(i-j+k)+X^{d-3} \tag{4}\\
P^{\prime}(X) & =d X^{d-1}-(d-1) X^{d-2}(i+j+k)+(d-2) X^{d-3}(i-j+k)+(d-3) X^{d-4}, \tag{5}\\
N\left(P^{\prime}\right)(X) & =d^{2} X^{2 d-2}+3(d-1)^{2} X^{2 d-4}-4 X^{2 d-5}+3(d-2)^{2} X^{2 d-6}+(d-3)^{2} X^{2 d-8} \tag{6}
\end{align*}
$$

Proposition 4 implies the thesis.
Let $I \in \mathbb{S}$ and let $\mathbb{C}_{I} \subset \mathbb{H}$ be the complex plane generated by 1 and I. Given a polynomial $P \in \mathbb{H}[X]$, we will denote by $P_{I}: \mathbb{C}_{I} \rightarrow \mathbb{H}$ the restriction of P to \mathbb{C}_{I}. If P_{I} is not constant, we will denote by $\mathcal{K}_{\mathbb{C}_{I}}(P)$ the convex hull in the complex plane \mathbb{C}_{I} of the zero set $V\left(P_{I}\right)=V(P) \cap \mathbb{C}_{I}$. If P_{I} is constant, we set $\mathcal{K}_{\mathbb{C}_{I}}(P)=\mathbb{C}_{I}$.

If \mathbb{C}_{I} contains every coefficient of $P \in \mathbb{H}[X]$, then we say that P is a \mathbb{C}_{I}-polynomial.
Proposition 6. The following holds:
(1) Every \mathbb{C}_{I}-polynomial of degree ≥ 2 is a Gauss-Lucas polynomial.
(2) Let $d \geq 3$, let $\mathbb{H}_{d}[X]=\{P \in \mathbb{H}[X] \mid \operatorname{deg}(P)=d\}$ and let $E_{d}[X]$ be the set of all elements of $\mathbb{H}_{d}[X]$ that are not Gauss-Lucas polynomials. Identify each $P(X)=\sum_{k=0}^{d} X^{k} a_{k}$ in $\mathbb{H}_{d}[X]$ with $\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{H}^{d} \times \mathbb{H}^{*} \subset \mathbb{R}^{4 d+4}$ and endow $\mathbb{H}_{d}[X]$ with the relative Euclidean topology. Then $E_{d}[X]$ is a nonempty open subset of $\mathbb{H}_{d}[X]$. Moreover $E_{d}[X]$ is not dense in $\mathbb{H}_{d}[X]$, being $X^{d}-1$ an interior point of its complement.

Proof. If P is a \mathbb{C}_{I}-polynomial, then P_{I} can be identified with an element of $\mathbb{C}_{I}[X]$. Consequently, the classic Gauss-Lucas Theorem gives $V\left(P^{\prime}\right) \cap \mathbb{C}_{I}=V\left(P_{I}^{\prime}\right) \subset \mathcal{K}_{\mathbb{C}_{I}}(P)$. The zero set of the $\mathbb{C}_{I^{-}}$ polynomial P^{\prime} has a particular structure (see [3, Lemma 3.2]): $V\left(P^{\prime}\right)$ is the union of $V\left(P^{\prime}\right) \cap \mathbb{C}_{I}$ with the set of spheres \mathbb{S}_{x} such that $x, \bar{x} \in V\left(P_{I}^{\prime}\right)$. It follows that

$$
V\left(P^{\prime}\right) \subset \mathcal{K}(N(P))
$$

This proves (1).
Now we prove (2). By Corollary 5 we know that $E_{d}[X] \neq \emptyset$. If $P \in E_{d}[X]$, then $V\left(N\left(P^{\prime}\right)\right) \not \subset$ $\mathcal{K}(N(P)) . N(P)$ and $N\left(P^{\prime}\right)$ are polynomials with real coefficients. Since the roots of $N(P)$ and of $N\left(P^{\prime}\right)$ depend continuously on the coefficients of P and $\mathcal{K}(N(P))$ is closed in \mathbb{H}, for every $Q \in \mathbb{H}_{d}[X]$ sufficiently close to $P, V\left(N\left(Q^{\prime}\right)\right)$ is not contained in $\mathcal{K}(N(Q))$, that is $Q \in E_{d}[X]$.

To prove the last statement, observe that $P(X)=X^{d}-1$ is not in $E_{d}[X]$ from part (1). Since $V\left(P^{\prime}\right)=V\left(N\left(P^{\prime}\right)\right)=\{0\}$ is contained in the interior of the set $\mathcal{K}(N(P))$, for every $Q \in \mathbb{H}_{d}[X]$ sufficiently close to $P, V\left(Q^{\prime}\right)$ is still contained in $\mathcal{K}(N(Q))$.

3 A quaternionic Gauss-Lucas Theorem

Let $P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$ of degree $d \geq 2$. For every $I \in \mathbb{S}$, let $\pi_{I}: \mathbb{H} \rightarrow \mathbb{H}$ be the orthogonal projection onto \mathbb{C}_{I} and $\pi_{I}^{\perp}=i d-\pi_{I}$. Let $P^{I}(X):=\sum_{k=1}^{d} X^{k} a_{k, I}$ be the \mathbb{C}_{I}-polynomial with coefficients $a_{k, I}:=\pi_{I}\left(a_{k}\right)$.

Definition 7. We define the Gauss-Lucas snail of P as the following subset $\mathfrak{s n}(P)$ of \mathbb{H} :

$$
\mathfrak{s n}(P):=\bigcup_{I \in \mathbb{S}} \mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)
$$

Our quaternionic version of the Gauss-Lucas Theorem reads as follows.
Theorem 8. For every polynomial $P \in \mathbb{H}[X]$ of degree ≥ 2,

$$
\begin{equation*}
V\left(P^{\prime}\right) \subset \mathfrak{s n}(P) \tag{7}
\end{equation*}
$$

Proof. Let $P(X)=\sum_{k=0}^{d} X^{k} a_{k}$ in $\mathbb{H}_{d}[X]$ with $d \geq 2$. We can decompose the restriction of P to \mathbb{C}_{I} as $P_{I}=\pi_{I} \circ P_{I}+\pi_{I}^{\perp} \circ P_{I}=P^{I}{ }_{\mid \mathbb{C}_{I}}+\pi_{I}^{\perp} \circ P_{I}$. If $x \in \mathbb{C}_{I}$, then $P^{I}(x) \in \mathbb{C}_{I}$ while $\left(\pi_{I}^{\perp} \circ P_{I}\right)(x) \in$ \mathbb{C}_{I}^{\perp}. The same decomposition holds for P^{\prime}. This implies that $V\left(P^{\prime}\right) \cap \mathbb{C}_{I} \subset V\left(\left(P^{I}\right)^{\prime}\right) \cap \mathbb{C}_{I}$. The classic Gauss-Lucas Theorem applied to P^{I} on \mathbb{C}_{I} gives $V\left(P^{\prime}\right) \cap \mathbb{C}_{I} \subset \mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$. Since $V\left(P^{\prime}\right)=\bigcup_{I \in \mathbb{S}}\left(V\left(P^{\prime}\right) \cap \mathbb{C}_{I}\right)$, the inclusion (7) is proved.

If P is monic Theorem 8 has the following equivalent formulation: For every monic polynomial $P \in \mathbb{H}[X]$ of degree ≥ 2, it holds

$$
\begin{equation*}
\mathfrak{s n}\left(P^{\prime}\right) \subset \mathfrak{s n}(P) \tag{8}
\end{equation*}
$$

Remark 9. If P is a nonconstant monic polynomial in $\mathbb{H}[X]$, then two properties hold:
(a) $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ is a compact subset of \mathbb{C}_{I} for every $I \in \mathbb{S}$.
(b) $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ depends continuously on I.

Let $I \in \mathbb{S}$. Since P is monic, also P^{I} is a monic, nonconstant polynomial and then $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ is a compact subset of \mathbb{C}_{I}. This prove property (a). To see that (b) holds, one can apply the Continuity theorem for monic polynomials (see e.g. [6, Theorem 1.3.1]). The roots of P^{I} depend continuously on the coefficients of P^{I}, which in turn depend continuously on I. Therefore the convex hull $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ depends continuously on I. Observe that (a) and (b) can not hold for polynomials that are not monic. For example, let $P(X)=X^{2} i$. Then, given $I=\alpha_{1} i+\alpha_{2} j+\alpha_{3} k \in$ $\mathbb{S}, \mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)=\{0\}$ if $\alpha_{1} \neq 0$ and $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)=\mathbb{C}_{I}$ if $\alpha_{1}=0$, since in this case P^{I} is constant.
Remark 10. If P is a monic polynomial in $\mathbb{H}[X]$ of degree ≥ 2, then its Gauss-Lucas snail is a closed subset of \mathbb{H}. To prove this fact, consider $q \in \mathbb{H} \backslash \mathfrak{s n}(P)$ and choose $I \in \mathbb{S}$ such that $q \in \mathbb{C}_{I}$. Write $q=\alpha+I \beta \in \mathbb{C}_{I}$ for some $\alpha, \beta \in \mathbb{R}$ and define $z:=\alpha+i \beta \in \mathbb{C}$. Since P is monic, $\mathfrak{s n}(P) \cap \mathbb{C}_{I}=\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ is a compact subset of \mathbb{C}_{I}. Moreover, $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ depends continuously on I, and then there exist an open neighborhood U_{I} of z in \mathbb{C} and an open neighborhood W_{I} of I in \mathbb{S} such that the set

$$
\left[U_{I}, W_{I}\right]:=\bigcup_{J \in W_{I}}\left\{a+J b \in \mathbb{C}_{J} \mid a+i b \in U_{I}\right\}
$$

is an open neighborhood of q in $\bigcup_{J \in W_{I}} \mathbb{C}_{J}$, and it is disjoint from $\mathfrak{s n}(P)$. If $q \notin \mathbb{R}$ then q is an interior point of $\mathbb{H} \backslash \mathfrak{s n}(P)$, because $\left[U_{I}, W_{I}\right]$ is a neighborhood of q in \mathbb{H} as well. Now assume that $q \in \mathbb{R}$. Since \mathbb{S} is compact there exist $I_{1}, \ldots, I_{n} \in \mathbb{S}$ such that $\bigcup_{\ell=1}^{n} W_{I_{\ell}}=\mathbb{S}$. It follows that $\left[\bigcap_{\ell=1}^{n} U_{\ell}, \mathbb{S}\right]$ is a neighborhood of q in \mathbb{H}, which is disjoint from $\mathfrak{s n}(P)$. Consequently q is an interior point of $\mathbb{H} \backslash \mathfrak{s n}(P)$ also in this case. This proves that $\mathfrak{s n}(P)$ is closed in \mathbb{H}.

In Proposition 13 below we will show that the Gauss-Lucas snail of a monic polynomial in $\mathbb{H}[X]$ of degree ≥ 2 is also a compact subset of \mathbb{H}.

If all the coefficients of P are real, then $\mathfrak{s n}(P)$ is a circular set. In general, $\mathfrak{s n}(P)$ is neither closed nor bounded nor circular, as shown in the next example.

Figure 1: Cross-sections of $\mathfrak{s n}(P)$ (gray), of $V\left(P^{\prime}\right)$ and $\mathcal{K}(N(P))$ (dashed).

Example 11. Let $P(X)=X^{2} i+X$. Given $I=\alpha_{1} i+\alpha_{2} j+\alpha_{3} k \in \mathbb{S}, P^{I}(x)=X^{2} I \alpha_{1}+X$ and then $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)=\{0\}$ if $\alpha_{1}=0$ while $\mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$ is the segment from 0 to $I \alpha_{1}{ }^{-1}$ if $\alpha_{1} \neq 0$. It follows that $\mathfrak{s n}(P)=\left\{x_{1} i+x_{2} j+x_{3} k \in \operatorname{Im}(\mathbb{H}) \mid 0<x_{1} \leq 1\right\} \cup\{0\}$. Finally, observe that the monic polynomial $Q(X)=-P(X) \cdot i=X^{2}-X i$ corresponding to P has compact Gauss-Lucas snail $\mathfrak{s n}(Q)=\left\{x_{1} i+x_{2} j+x_{3} k \in \operatorname{Im}(\mathbb{H}) \mid\left(x_{1}-1 / 2\right)^{2}+x_{2}^{2}+x_{3}^{2} \leq 1 / 4\right\}$.

Remark 12. Even for \mathbb{C}_{I}-polynomials, the Gauss-Lucas snail of P can be strictly smaller than the circular convex hull $\mathcal{K}(N(P))$. For example, consider the \mathbb{C}_{i}-polynomial $P(X)=X^{3}+3 X+2 i$, with zero sets $V(P)=\{-i, 2 i\}$ and $V\left(P^{\prime}\right)=\mathbb{S}$. The set $\mathcal{K}(N(P))$ is the closed three-dimensional disc in $\operatorname{Im}(\mathbb{H})$, with center at the origin and radius 2 . The Gauss-Lucas snail $\mathfrak{s n}(P)$ is the subset of $\operatorname{Im}(\mathbb{H})$ obtained by rotating around the i-axis the following subset of the coordinate plane $L=\left\{x=x_{1} i+x_{2} j \in \operatorname{Im}(\mathbb{H}) \mid x_{1}, x_{2} \in \mathbb{R}\right\}:$

$$
\{x=\rho \cos (\theta) i+\rho \sin (\theta) j \in L \mid 0 \leq \theta \leq \pi, 0 \leq \rho \leq 2 \cos (\theta / 3)\}
$$

Therefore $\mathfrak{s n}(P)$ is a proper subset of $\mathcal{K}(N(P))$ (the boundaries of the two sets intersect only at the point $2 i$). Its boundary is obtained by rotating a curve that is part of the limaçon trisectrix (see Figure 1).

3.1 Estimates on the norm of the critical points

Let $p(z)=\sum_{k=0}^{d} a_{k} z^{k}$ be a complex polynomial of degree $d \geq 1$. The norm of the roots of p can be estimated making use of the norm of the coefficients $\left\{a_{k}\right\}_{k=0}^{d}$ of p. There are several classic results in this direction (see e.g. [6, §8.1]). For instance the estimate [6, (8.1.2)] (with $\lambda=1, p=2$) asserts that

$$
\begin{equation*}
\max _{z \in V(p)}|z| \leq\left|a_{d}\right|^{-1} \sqrt{\sum_{k=0}^{d}\left|a_{k}\right|^{2}} \tag{9}
\end{equation*}
$$

Proposition 13. For every monic polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$, the Gauss-Lucas snail $\mathfrak{s n}(P)$ is a compact subset of \mathbb{H}.

Proof. Since $P=\sum_{k=0}^{d} X^{k} a_{k}$ is monic, every polynomial P^{I} is monic. From (9) it follows that $\max _{x \in V\left(P^{I}\right)}|x|^{2} \leq \sum_{k=0}^{d}\left|\pi_{I}\left(a_{k}\right)\right|^{2} \leq \sum_{k=0}^{d}\left|a_{k}\right|^{2}$ and hence $\mathfrak{s n}(P) \subset\left\{\left.x \in \mathbb{H}\left||x|^{2} \leq \sum_{k=0}^{d}\right| a_{k}\right|^{2}\right\}$ is bounded. Since $\mathfrak{s n}(P)$ is closed in \mathbb{H}, as seen in Remark 10, it is also a compact subset of \mathbb{H}.

Define a function $C: \mathbb{H}[X] \rightarrow \mathbb{R} \cup\{+\infty\}$ as follows: $C(a):=+\infty$ if a is a quaternionic constant and

$$
C(P):=\left|a_{d}\right|^{-1} \sqrt{\sum_{k=0}^{d}\left|a_{k}\right|^{2}} \quad \text { if } P(X)=\sum_{k=0}^{d} X^{k} a_{k} \text { with } d \geq 1 \text { and } a_{d} \neq 0
$$

Proposition 14. For every polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 1$, it holds

$$
\begin{equation*}
\max _{x \in V(P)}|x| \leq C(P) \tag{10}
\end{equation*}
$$

Proof. We follow the lines of the proof of estimate (9) for complex polynomials given in [6]. Let $P(X)=\sum_{k=0}^{d} X^{k} a_{k}$ with $d \geq 1$ and $a_{d} \neq 0$. We can assume that $P(X)$ is not the monomial $X^{d} a_{d}$, since in this case the thesis is immediate. Let $b_{k}=\left|a_{k} a_{d}^{-1}\right|$ for every $k=0, \ldots, d-1$. The real polynomial $h(z)=z^{d}-\sum_{k=0}^{d-1} b_{k} z^{k}$ has exactly one positive root ρ and is positive for real $z>\rho$ (see [6, Lemma 8.1.1]). Let $S:=\sum_{k=0}^{d-1} b_{k}^{2}=C(P)^{2}-1$. From the Cauchy-Schwartz inequality, it follows that

$$
\left(\sum_{k=0}^{d-1} b_{k} C(P)^{k}\right)^{2} \leq S \sum_{k=0}^{d-1} C(P)^{2 k}=\left(C(P)^{2}-1\right) \frac{C(P)^{2 d}-1}{C(P)^{2}-1}<C(P)^{2 d}
$$

Therefore $h(C(P))>0$ and then $C(P)>\rho$. Let $x \in V(P)$. It remains to prove that $|x| \leq \rho$. Since $x^{d}=-\sum_{k=0}^{d-1} x^{k} a_{k} a_{d}^{-1}$, it holds

$$
|x|^{d} \leq \sum_{k=0}^{d-1}|x|^{k}\left|a_{k} a_{d}^{-1}\right|=\sum_{k=0}^{d-1}|x|^{k} b_{k}
$$

This means that $h(|x|) \leq 0$, which implies $|x| \leq \rho$.
From Proposition 14 it follows that for every polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$, it holds

$$
\begin{equation*}
\max _{x \in V\left(P^{\prime}\right)}|x| \leq C\left(P^{\prime}\right) \tag{11}
\end{equation*}
$$

Theorem 8 allows to obtain a new estimate.
Proposition 15. Given any polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$, it holds:

$$
\begin{equation*}
\max _{x \in V\left(P^{\prime}\right)}|x| \leq \sup _{I \in \mathbb{S}}\left\{C\left(P^{I}\right)\right\} \tag{12}
\end{equation*}
$$

Proof. If $x \in V\left(P^{\prime}\right) \cap \mathbb{C}_{I}$, Theorem 8 implies that $x \in \mathcal{K}_{\mathbb{C}_{I}}\left(P^{I}\right)$. Therefore

$$
\max _{x \in V\left(P^{\prime}\right) \cap \mathbb{C}_{I}}|x| \leq C\left(P^{I}\right) \quad \text { for every } I \in \mathbb{S} \text { with } V\left(P^{\prime}\right) \cap \mathbb{C}_{I} \neq \emptyset
$$

from which inequality (12) follows.
Our estimate (12) can be strictly better than classic estimate (11), as explained below.

Remark 16. Let $d \geq 3$ and let $P(X)=X^{d-3} \cdot(X-i) \cdot(X-j) \cdot(X-k)$. Using (5), by a direct computation we obtain:

$$
C\left(P^{\prime}\right)=d^{-1} \sqrt{8 d^{2}-24 d+24}
$$

Moreover, given $I=\alpha_{1} i+\alpha_{2} j+\alpha_{3} k \in \mathbb{S}$ for some $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ with $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=1$, we have $\pi_{I}(i+j+k)=\langle I, i+j+k\rangle I=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) I$ and $\pi_{I}(i-j+k)=\langle I, i-j+k\rangle I=\left(\alpha_{1}-\alpha_{2}+\alpha_{3}\right) I$ and hence

$$
C\left(P^{I}\right)=\sqrt{4+4 \alpha_{1} \alpha_{3}} \leq \sqrt{4+2\left(\alpha_{1}^{2}+\alpha_{3}^{2}\right)} \leq \sqrt{6}
$$

This implies that

$$
\sup _{I \in \mathbb{S}}\left\{C\left(P^{I}\right)\right\} \leq \sqrt{6}
$$

For every $d \geq 11$ it is easy to verify that $\sqrt{6}<C\left(P^{\prime}\right)$ so

$$
\sup _{I \in \mathbb{S}}\left\{C\left(P^{I}\right)\right\}<C\left(P^{\prime}\right)
$$

as announced.
Remark 17. Some of the results presented here can be generalized to real alternative *-algebras, a setting in which polynomials can be defined and share many of the properties valid on the quaternions (see [4]). The polynomials given in Corollary 5 can be defined every time the algebra contains an Hamiltonian triple i, j, k. This property is equivalent to say that the algebra contains \mathbb{H} as a subalgebra (see $[1, \S 8.1]$). For example, this is true for the algebra of octonions and for the Clifford algebras with signature $(0, n)$, with $n \geq 2$. Therefore in all such algebras there exist polynomials for which the zero set $V\left(P^{\prime}\right)$ (as a subset of the quadratic cone) is not included in the circularization of the convex hull of $V(N(P))$ viewed as a complex polynomial.

References

[1] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert. Numbers, volume 123 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1990.
[2] S. Gal, O. González-Cervantes, and I. Sabadini. On the Gauss-Lucas theorem in the quaternionic setting. https://arxiv.org/abs/1711.02157.
[3] G. Gentili, C. Stoppato, and D. C. Struppa. Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, 2013.
[4] R. Ghiloni and A. Perotti. Slice regular functions on real alternative algebras. Adv. Math., 226(2):1662-1691, 2011.
[5] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.
[6] Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials, volume 26 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002.
[7] F. Vlacci. The Gauss-Lucas theorem for regular quaternionic polynomials. In Hypercomplex analysis and applications, Trends Math., pages 275-282. Birkhäuser/Springer Basel AG, Basel, 2011.

