We show that every Carnot group Gof step 2 admits a Hausdorff dimension one ‘universal differentiability set’ Nsuch that every Lipschitz map f:G →Ris Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of fat a point ximplies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
Universal differentiability sets and maximal directional derivatives in Carnot groups / Pinamonti, Andrea; Gareth James, Speight; Le Donne, Enrico. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 1776-3371. - STAMPA. - 121:(2019), pp. 83-112. [10.1016/j.matpur.2017.11.006]
Universal differentiability sets and maximal directional derivatives in Carnot groups
Andrea Pinamonti;
2019-01-01
Abstract
We show that every Carnot group Gof step 2 admits a Hausdorff dimension one ‘universal differentiability set’ Nsuch that every Lipschitz map f:G →Ris Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of fat a point ximplies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.File | Dimensione | Formato | |
---|---|---|---|
LeDonne.pdf
Open Access dal 15/11/2019
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
359.05 kB
Formato
Adobe PDF
|
359.05 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021782417301824-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
584.73 kB
Formato
Adobe PDF
|
584.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione