We show that every Carnot group Gof step 2 admits a Hausdorff dimension one ‘universal differentiability set’ Nsuch that every Lipschitz map f:G →Ris Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of fat a point ximplies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.

Universal differentiability sets and maximal directional derivatives in Carnot groups / Pinamonti, Andrea; Gareth James, Speight; Le Donne, Enrico. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 1776-3371. - STAMPA. - 121:(2019), pp. 83-112. [10.1016/j.matpur.2017.11.006]

Universal differentiability sets and maximal directional derivatives in Carnot groups

Andrea Pinamonti;
2019-01-01

Abstract

We show that every Carnot group Gof step 2 admits a Hausdorff dimension one ‘universal differentiability set’ Nsuch that every Lipschitz map f:G →Ris Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of fat a point ximplies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
2019
Pinamonti, Andrea; Gareth James, Speight; Le Donne, Enrico
Universal differentiability sets and maximal directional derivatives in Carnot groups / Pinamonti, Andrea; Gareth James, Speight; Le Donne, Enrico. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 1776-3371. - STAMPA. - 121:(2019), pp. 83-112. [10.1016/j.matpur.2017.11.006]
File in questo prodotto:
File Dimensione Formato  
LeDonne.pdf

Open Access dal 15/11/2019

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 359.05 kB
Formato Adobe PDF
359.05 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021782417301824-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 584.73 kB
Formato Adobe PDF
584.73 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/188396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact