In the context of the binomial decomposition of OWA functions, we investigate the constraints associated with the 2-additive and 3-additive cases in n dimensions. The 2-additive case depends on one coefficient whose feasible region does not depend on the dimension n. On the other hand, the feasible region of the 3-additive case depends on two coefficients and is explicitly dependent on the dimension n. This feasible region is a convex polygon with n vertices and n edges, which is strictly expanding in the dimension n. The orness of the OWA functions within the feasible region is linear in the two coefficients, and the vertices associated with maximum and minimum orness are identied. Finally, we discuss the 3-additive binomial de-composition in the asymptotic innite dimensional limit.

The binomial decomposition of OWA functions, the 2-additive and 3-additive cases in n dimensions / Bortot, Silvia; Marques Pereira, Ricardo Alberto; Nguyen, Hong Thuy. - In: INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS. - ISSN 1098-111X. - STAMPA. - 33:1(2018), pp. 187-212. [10.1002/int.21947]

The binomial decomposition of OWA functions, the 2-additive and 3-additive cases in n dimensions

Bortot, Silvia;Marques Pereira, Ricardo Alberto;Nguyen, Hong Thuy
2018-01-01

Abstract

In the context of the binomial decomposition of OWA functions, we investigate the constraints associated with the 2-additive and 3-additive cases in n dimensions. The 2-additive case depends on one coefficient whose feasible region does not depend on the dimension n. On the other hand, the feasible region of the 3-additive case depends on two coefficients and is explicitly dependent on the dimension n. This feasible region is a convex polygon with n vertices and n edges, which is strictly expanding in the dimension n. The orness of the OWA functions within the feasible region is linear in the two coefficients, and the vertices associated with maximum and minimum orness are identied. Finally, we discuss the 3-additive binomial de-composition in the asymptotic innite dimensional limit.
2018
1
Bortot, Silvia; Marques Pereira, Ricardo Alberto; Nguyen, Hong Thuy
The binomial decomposition of OWA functions, the 2-additive and 3-additive cases in n dimensions / Bortot, Silvia; Marques Pereira, Ricardo Alberto; Nguyen, Hong Thuy. - In: INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS. - ISSN 1098-111X. - STAMPA. - 33:1(2018), pp. 187-212. [10.1002/int.21947]
File in questo prodotto:
File Dimensione Formato  
Bortot-MarquesPereira-Nguyen IJIS-2018.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 670.61 kB
Formato Adobe PDF
670.61 kB Adobe PDF   Visualizza/Apri
Binomial_IJIS 2018 - Bortot-MarquesPereira-Nguyen - AAM.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 646.82 kB
Formato Adobe PDF
646.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/188222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact