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In the context of the binomial decomposition of OWA functions, we investigate the
constraints associated with the 2-additive and 3-additive cases in n dimensions. The
2-additive case depends on one coefficient whose feasible region does not depend on
the dimension n. On the other hand, the feasible region of the 3-additive case
depends on two coefficients and is explicitly dependent on the dimension n. This
feasible region is a convex polygon with n vertices and n edges, which is strictly
expanding in the dimension n. The orness of the OWA functions within the feasible
region is linear in the two coefficients, and the vertices associated with maximum
and minimum orness are identified. Finally, we discuss the 3-additive binomial de-
composition in the asymptotic infinite dimensional limit.

1. INTRODUCTION

The ordered weighted averaging functions have the form A(x ) =
∑n

i=1wi x(i)
where x(1) ≤ x(2) ≤ · · · ≤ x(n) and w1, w2, . . . , wn ≥ 0 with

∑n
i=1wi = 1. These

functions have been introduced by Yager [34] and correspond to the Choquet inte-
grals associated with symmetric capacities, see Fodor et al. [10]. The theory and
applications of OWA functions are widely discussed in the literature, see for instance
Yager and Kacprzyk [35], and Yager et al. [36].

In general, Choquet integration corresponds to a generalization of both weighted
averaging (WA) and ordered weighted averaging (OWA), which remain as special
cases. The seminal papers on Choquet integration are Choquet [8], Murofushi and
Sugeno [31], Chateauneuf [7], Denneberg [9], Grabisch [13, 14], and Marichal [25].
For recent reviews of Choquet integration, on the other hand, see Grabisch and
Labreuche [19, 20, 21], and Grabisch et al. [18].

The complex structure of Choquet capacities can be suitably described in the
k-additivity framework introduced by Grabisch [15, 16], see also Calvo and De Baets
[5], Kim and De Baets [24], and Miranda et al. [30]. The 2-additive case, in par-
ticular, has been examined by Miranda et al. [30], and Mayag et al. [27, 28]. Due
to its low complexity and versatility, the 2-additive case is relevant in a variety of
modelling contexts.

∗Author to whom all corrispondence should be addressed; e-mail silvia.bortot@unitn.it
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The characterization of symmetric Choquet integrals (OWA functions) has been
studied by Fodor et al. [10], Calvo and De Baets [5], Kim and De Baets [24],
and Miranda et al. [30]. It is shown, see Gajdos [12], that in the k-additive case
the generating function of the OWA weights is polynomial of degree k, where the
weights correspond to differences between consecutive generating function values
and are therefore polynomial of degree k − 1. In the symmetric 2-additive case, in
particular, the generating function is quadratic and therefore the weights are linear
(thus equidistant), as in the classical Gini welfare function.

In this paper we review the analysis of symmetric capacities in the Möbius rep-
resentation framework and we recall the binomial decomposition of OWA functions
due to Calvo and De Baets [5], see also Bortot and Marques Pereira [4]. The binomial
decomposition is formulated in terms of the functional basis of the binomial OWA
functions, denoted Cj with j = 1, . . . , n, which have n − j + 1 positive decreasing
weights w1 > w2 > · · · > wn−j+1 > 0 and j−1 null weights wn−j+2 = · · · = wn = 0.

The paper is organized as follows. In Section 2 we review the basic notions of
weighted averaging and ordered weighted averaging functions in n dimensions. In
Section 3 we present the basic definitions and results regarding Choquet capacities
and integration, with reference to the Möbius representation framework. We con-
sider the context of symmetric capacities and we recall the binomial decomposition
of OWA functions due to Calvo and De Baets [5], see also Bortot and Marques
Pereira [4].

In Section 4 we examine the binomial decomposition of OWA functions focusing
on the 2-additive and 3-additive cases. In particular, we investigate the parametric
constraints associated with the 3-additive case in n dimensions. The resulting feasi-
ble region in two coefficients is a convex polygon with n vertices and n edges, which is
strictly expanding in the dimension n. The orness of the OWA functions within the
feasible region is linear in the two coefficients, and the vertices associated with maxi-
mum and minimum orness are identified. Finally, we discuss the 3-additive binomial
decomposition in the asymptotic infinite dimensional limit. Section 5 contains some
conclusive remarks.

2. AVERAGING FUNCTIONS: WA AND OWA FUNCTIONS

We begin by presenting notation and basic definitions regarding averaging func-
tions on the domain Dn, with D = R and n ≥ 2 throughout the text. Points in this
domain are denoted by x ,y ∈ Dn. Comprehensive reviews of averaging functions
can be found in Fodor and Roubens [11], Marichal [25], Marichal et al. [26], Calvo
et al. [6], Beliakov et al. [1], Torra and Narukawa [33], Mesiar et al. [29], Grabisch
et al. [22, 23], and Beliakov et al. [2].

Notation. Points in Dn are denoted x = (x1, . . . , xn), with 0 = (0, . . . , 0) , 1 =
(1, . . . , 1). Accordingly, for every x ∈ D , we have x·1 = (x, . . . , x). Given x ,y ∈ Dn,
by x ≥ y we mean xi ≥ yi for every i = 1, . . . , n, and by x > y we mean x ≥ y and
x ̸= y . Given x ∈ Dn, the increasing and decreasing reorderings of the coordinates
of x are indicated as x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In
particular, x(1) = min{x1, . . . , xn} = x[n] and x(n) = max{x1, . . . , xn} = x[1] . In
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general, given a permutation σ on {1, . . . , n}, we denote xσ = (xσ(1), . . . , xσ(n)).
Finally, the arithmetic mean is denoted x̄ = (x1 + · · ·+ xn)/n.

Definition 1 Let A : Dn −→ D be a function.

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x,y ∈ Dn. Moreover, A is
strictly monotonic if x > y ⇒ A(x) > A(y), for all x,y ∈ Dn.

2. A is idempotent if A(x · 1) = x, for all x ∈ D. On the other hand, A is
nilpotent if A(x · 1) = 0, for all x ∈ D.

3. A is symmetric if A(xσ) = A(x), for any permutation σ on {1, . . . , n} and all
x ∈ Dn.

4. A is invariant for translations if A(x+ t ·1) = A(x), for all t ∈ D and x ∈ Dn.
On the other hand, A is stable for translations if A(x+ t · 1) = A(x) + t, for
all t ∈ D and x ∈ Dn.

Definition 2 A function A : Dn −→ D is an (n-ary) averaging function if it is
monotonic and idempotent. An averaging function is said to be strict if it is strictly
monotonic. Note that monotonicity and idempotency implies that min(x) ≤ A(x) ≤
max(x), for all x ∈ Dn.

Particular cases of averaging functions are weighted averaging (WA) functions,
ordered weighted averaging (OWA) functions, and Choquet integrals, which contain
the former as special cases.

Definition 3 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1wi

= 1, the Weighted Averaging (WA) function associated with w is the averaging
function A : Dn −→ D defined as

A(x) =
n∑

i=1

wi xi. (1)

Definition 4 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1wi

= 1, the Ordered Weighted Averaging (OWA) function associated with w is the
averaging function A : Dn −→ D defined as

A(x) =
n∑

i=1

wi x(i). (2)

Weighted Averaging functions and Ordered Weighted Averaging functions are
continuous and stable for translations. The traditional form of OWA functions as
introduced by Yager [34] is as follows, A(x ) =

∑n
i=1 w̃i x[i] where w̃i = wn−i+1. In

[35, 36] the theory and applications of OWA functions are discussed in detail.
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Definition 5 Let A the OWA function associated with the weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n. The orness of A is defined as

Orness (A) =
1

n− 1

n∑
i=1

(i− 1)wi . (3)

The orness of A coincides with the value A(x 0), where x0i = (i− 1)/(n− 1),

Orness (A) =
1− 1

n− 1
w1 +

2− 1

n− 1
w2 + · · ·+ (n− 1)− 1

n− 1
wn−1 +

n− 1

n− 1
wn . (4)

The orness takes values in [0, 1] interval, with zero orness corresponding to the
weighting vector w = (1, 0, . . . , 0) ∈ [0, 1]n and unit orness corresponding to the
weighting vector w = (0, . . . , 0, 1) ∈ [0, 1]n.

The following result regards a form of dominance relation between weighting
structures and OWA function values, see for instance Calvo and De Baets [5], and
Bortot and Marques Pereira [4].

Proposition 1 Consider two OWA functions A,B : Dn −→ D associated with
weighting vectors u = (u1, . . . , un) ∈ [0, 1]n and v = (v1, . . . , vn) ∈ [0, 1]n, respec-
tively. It holds that A(x) ≤ B(x) for all x ∈ Dn if and only if

k∑
i=1

ui ≥
k∑

i=1

vi for k = 1, . . . , n (5)

where the case k = n is an equality due to weight normalization.

The classical Gini welfare function Ac
G is an important example of the OWA

averaging functions,

Ac
G(x ) =

n∑
i=1

2(n− i) + 1

n2
x(i) (6)

where the weights of Ac have unit sum, since
∑n

i=1(2(n− i)+1) = n2. The classical
Gini inequality index Gc, related with the classical Gini welfare function by means
of Gc(x ) = x̄−Ac

G(x ), is given by

Gc(x ) = −
n∑

i=1

n− 2i+ 1

n2
x(i) (7)

where the coefficients of Gc have zero sum, since
∑n

i=1(n− 2i+ 1) = 0. Notice that
Gc is not an OWA function, for further reading see for instance Bortot and Marques
Pereira [4].
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3. THE BINOMIAL DECOMPOSITION OF OWA FUNCTIONS

In this section we present a brief review of the basic facts on Choquet integration,
focusing on the Möbius representation framework. For recent reviews of Choquet
integration see Grabisch and Labreuche [19, 20, 21], and Grabisch et al. [18] for the
general case, Miranda et al. [30], and Mayag et al. [27, 28] for the 2-additive case
in particular.

Consider a finite set of interacting elements N = {1, 2, . . . , n}. Any subsets
S, T ⊆ N with cardinalities 0 ≤ s, t ≤ n are usually called coalitions. The concepts
of capacity and Choquet integral in the definitions below are due to Choquet [8],
Sugeno [32], Denneberg [9], and Grabisch [13, 14].

Definition 6 A capacity on the set N is a set function µ : 2N −→ [0, 1] satisfying

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions)

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ) (monotonicity conditions).

Definition 7 Let µ be a capacity on N . The Choquet integral Cµ : Dn −→ D with
respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) x = (x1, . . . , xn) ∈ Dn (8)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ · · · ≤ x(n). Moreover,
A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

Definition 8 Let µ be a capacity on the set N . The Möbius transform mµ : 2N −→
R associated with the capacity µ is defined as

mµ(T ) =
∑
S⊆T

(−1)t−sµ(S) T ⊆ N (9)

where s and t denote the cardinality of the coalitions S and T , respectively.

Conversely, given the Möbius transformmµ, the associated capacity µ is obtained
as

µ(T ) =
∑
S⊆T

mµ(S) T ⊆ N . (10)

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑
T⊆N

mµ(T ) = 1 (11)

and the monotonicity conditions can be expressed as follows: for each i = 1, . . . , n
and each coalition T ⊆ N \ {i}, the monotonicity condition is written as∑

S⊆T

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (12)
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This form of the monotonicity conditions derives from the original monotonicity
conditions in Definition 6, expressed as µ(T ∪ {i}) − µ(T ) ≥ 0 for each i ∈ N and
T ⊆ N \ {i}.

Defining a capacity µ on a set N of n elements requires 2n − 2 real coefficients,
corresponding to the capacity values µ(T ) for T ⊆ N . In order to control exponential
complexity, Grabisch [15] introduced the concept of k-additive capacities.

Definition 9 A capacity µ on the set N is said to be k-additive if its Möbius
transform satisfies mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at least
one coalition T ⊆ N with t = k such that mµ(T ) ̸= 0.

In the k-additive case, with k = 1, . . . , n, the capacity µ is expressed as follows
in terms of the Möbius transform mµ,

µ(T ) =
∑

S⊆T, s≤ k

mµ(S) T ⊆ N (13)

and the boundary and monotonicity conditions (11) and (12) take the form

mµ(∅) = 0
∑

T⊆N, t≤ k

mµ(T ) = 1 (14)

∑
S⊆T, s≤ k−1

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (15)

Finally, we examine the particular case of symmetric capacities and Choquet
integrals, which play a crucial role in this paper.

Definition 10 A capacity µ is said to be symmetric if it depends only on the car-
dinality of the coalition considered, in which case we use the simplified notation

µ(T ) = µ(t) where t = |T | . (16)

Accordingly, for the Möbius transform mµ associated with a symmetric capacity µ
we use the notation

mµ(T ) = mµ(t) where t = |T | . (17)

In the symmetric case, the expression (10) for the capacity µ in terms of the
Möbius transform mµ reduces to

µ(t) =

t∑
s=1

(
t

s

)
mµ(s) t = 1, . . . , n (18)

and the boundary and monotonicity conditions (11) and (12) take the form

mµ(0) = 0

n∑
s=1

(
n

s

)
mµ(s) = 1 (19)
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t∑
s=1

(
t− 1

s− 1

)
mµ(s) ≥ 0 t = 1, . . . , n . (20)

The monotonicity conditions correspond to µ(t)− µ(t− 1) ≥ 0 for t = 1, . . . , n.
The Choquet integral (8) with respect to a symmetric capacity µ reduces to an

Ordered Weighted Averaging (OWA) function, see Fodor et al. [10], and Yager [34],

Cµ(x ) =
n∑

i=1

[µ(n− i+ 1)− µ(n− i)]x(i) =

n∑
i=1

wi x(i) = A(x ) (21)

where the weights wi = µ(n− i+1)− µ(n− i) satisfy wi ≥ 0 for i = 1, . . . , n due to
the monotonicity of the capacity µ, and

∑n
i=1wi = 1 due to the boundary conditions

µ(0) = 0 and µ(n) = 1. Comprehensive reviews of OWA functions can be found in
Yager and Kacprzyk [35] and Yager et al. [36].

The weighting structure of the OWA function (21) is of the general form wi =
f(n−i+1

n ) − f(n−i
n ) where f is a continuous and increasing function on the unit

interval, with f(0) = 0 and f(1) = 1. Gajdos [12] shows that the OWA function
A is associated with a k-additive capacity µ, with k = 1, . . . , n, if and only if f is
polynomial of order k. In fact, in (18), the k-additive case is obtained simply by
taking mµ(k + 1) = · · · = mµ(n) = 0, and the binomial coefficient of the Möbius
value mµ(k) corresponds to t(t − 1) . . . (t − k + 1)/k!, which is polynomial of order
k in the coalition cardinality t.

We now consider OWA functions A : Dn −→ D and we recall the binomial
decomposition of OWA functions due to Calvo and De Baets [5], with the addition
of a uniqueness result, see also Bortot and Marques Pereira [4].

We begin by introducing the convenient notation

αj =

(
n

j

)
mµ(j) j = 1, . . . , n . (22)

In this notation the upper boundary condition (19) reduces to

n∑
j=1

αj = 1 (23)

and the monotonicity conditions (20) take the form

i∑
j=1

(
i−1
j−1

)(
n
j

) αj ≥ 0 i = 1, . . . , n . (24)

Definition 11 The binomial OWA functions Cj : Dn −→ D, with j = 1, . . . , n, are
defined as

Cj(x) =
n∑

i=1

wji x(i) =
n∑

i=1

(
n−i
j−1

)(
n
j

) x(i) j = 1, . . . , n (25)

where the binomial weights wji, i, j = 1, . . . , n are null when i+ j > n+1 according
to the usual convention that

(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . .
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Except for C1(x ) = x̄, the binomial OWA functions Cj , j = 2, . . . , n have an
increasing number of null weights, in correspondence with x(n−j+2), . . . , x(n). The
weight normalization of the binomial OWA functions,

∑n
i=1wji = 1 for j = 1, . . . , n,

is due to the column-sum property of binomial coefficients,

n∑
i=1

(
n− i

j − 1

)
=

n−1∑
i=0

(
i

j − 1

)
=

(
n

j

)
j = 1, . . . , n . (26)

Proposition 2 [Binomial decomposition] Any OWA function A : Dn −→ D can be
written uniquely as

A(x) = α1C1(x) + α2C2(x) + · · ·+ αnCn(x) (27)

where the coefficients αj, j = 1, . . . , n are subject to conditions (23) and (24). In
the binomial decomposition the k-additive case, with k = 1, . . . , n, is obtained simply
by taking αk+1 = · · · = αn = 0.

Example 1 Consider the case n = 3. Using the boundary condition α1+α2+α3 = 1
as in (23), we can write the monotonicity conditions (24) only in terms of α2, α3 as
follows, 

α2 + α3 ≤ 1
α3 ≤ 1
α2 + 2α3 ≥ −1

(28)

and the corresponding feasible region is illustrated in Fig. 1.

− −2 0 2 4

−
4

−
2

0
2

4

2

3

(0,1)(-3,1)

(3,-2)

Figure 1: Feasible region associated with conditions (28).

The origin in Fig. 1 is associated with α1 = 1, α2 = α3 = 0, which corresponds in
the binomial decomposition (27) to A(x ) = C1(x ) = x̄.
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Given that the coefficients αj , j = 1, . . . , n are constrained by the boundary and
monotonicity conditions (23) and (24), the binomial decomposition (27) does not
express a free (vector space) linear combination of the binomial OWA functions Cj ,
j = 1, . . . , n, or even a simple convex combination of the binomial OWA functions,
as the boundary condition α1+ · · ·+αn = 1 might suggest. In fact, the monotonicity
conditions allow for negative α values, as illustrated by the feasible region in Fig. 1.

The following interesting result concerning the cumulative properties of binomial
weights is due to Calvo and De Baets [5], see also Bortot and Marques Pereira [4].

Proposition 3 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the
following cumulative property,

i∑
k=1

wj−1,k ≤
i∑

k=1

wjk i = 1, . . . , n j = 2, . . . , n . (29)

Given that binomial weights have the cumulative property (29), Proposition 1
implies that the binomial OWA functions Cj , j = 1, . . . , n satisfy the relations
x̄ = C1(x ) ≥ C2(x ) ≥ · · · ≥ Cn(x ) ≥ 0, for any x ∈ Dn.

Proposition 4 The orness of the binomial OWA functions Cj, with j = 1, . . . , n,
is given by

Orness (Cj) =
n− j

(n− 1)(j + 1)
j = 1, . . . , n . (30)

Proof : From the definition of Cj (25) and the general definition of orness (3), we
have

Orness (Cj) = Cj(x 0) =

n∑
i=1

(
n−i
j−1

)(
n
j

) i− 1

n− 1
j = 1, . . . , n . (31)

Using the formula

n∑
i=1

(
n− i

j − 1

)
(i− 1) =

(
n

j + 1

)
j = 1, . . . , n (32)

and substituting in (31), we obtain

Orness (Cj) =
1

n− 1

(
n

j+1

)(
n
j

) =
n− j

(n− 1)(j + 1)
j = 1, . . . , n . (33)

Notice that the orness of the binomial OWA function is strictly decreasing with
respect to j = 1, . . . , n, from Orness (C1) = 1/2 to Orness (Cn) = 0. 2

Proposition 5 In relation with the binomial decomposition, the orness of an OWA
function A : Dn −→ D is given by

Orness (A) =

n∑
j=1

(n− j)

(n− 1)(j + 1)
αj . (34)
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Proof : Considering the binomial decomposition as in Proposition 2,

Orness (A) = A(x 0) =

n∑
j=1

αj Cj(x 0) =

n∑
j=1

(n− j)

(n− 1)(j + 1)
αj (35)

where we have used that Cj(x 0) = Orness (Cj) as in Proposition 4. 2

Summarizing, the binomial decomposition (27) holds for any OWA function A
in terms of the binomial OWA functions Cj , j = 1, . . . , n and the corresponding
coefficients αj , j = 1, . . . , n subject to conditions (23) and (24).

Consider the binomial OWA functions Cj with j = 1, . . . , n. The binomial
weights wji, i, j = 1, . . . , n as in (25) have regularity properties which have inter-
esting implications at the level of the functions Cj , j = 1, . . . , n, see Bortot and
Marques Pereira [4].

Proposition 6 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the
following properties,

i. for j = 1 1/n = w11 = w12 = · · · = w1,n−1 = w1n

ii. for j = 2 2/n = w21 > w22 > · · · > w2,n−1 > w2n = 0

iii. for j = 3, . . . , n j/n = wj1 > wj2 > · · · > wj,n−j+2 = · · · = wjn = 0 .

Given that the binomial weights are non increasing, wj1 ≥ wj2 ≥ · · · ≥ wjn for
j = 1, . . . , n, the binomial OWA functions Cj , j = 1, . . . , n are Schur-concave, with
strict Schur-concavity applying only to C2. For this reason, the Cj , j = 1, . . . , n
are also called binomial welfare functions, as particular instances of generalized Gini
welfare functions, see Bortot and Marques Pereira [4].

Notice that C1(x ) = x̄ and C2(x ) has n− 1 positive linearly decreasing weights
and one null last weight. In terms of the classical Gini welfare function we have that

Ac(x ) =
1

n
C1(x )+

n− 1

n
C2(x ) Gc(x ) =

n− 1

n
C1(x )−

n− 1

n
C2(x ) . (36)

The remaining Cj(x ), j = 3, . . . , n, have n − j + 1 positive non-linear decreasing
weights and j − 1 null last weights..

In dimensions n = 2, 3, 4, 5, 6 the weights wij ∈ [0, 1], i, j = 1, . . . , n of the
binomial welfare functions Cj , j = 1, . . . , n are as follows,

n = 2 C1 : (12 ,
1
2) n = 3 C1 : (13 ,

1
3 ,

1
3) n = 4 C1 : (14 ,

1
4 ,

1
4 ,

1
4)

C2 : (1, 0) C2 : (23 ,
1
3 , 0) C2 : (36 ,

2
6 ,

1
6 , 0)

C3 : (1, 0, 0) C3 : (34 ,
1
4 , 0, 0)

C4 : (1, , 0, 0)
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n = 5 C1 : (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5) n = 6 C1 : (16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

C2 : ( 4
10 ,

3
10 ,

2
10 ,

1
10 , 0) C2 : ( 5

15 ,
4
15 ,

3
15 ,

2
15 ,

1
15 , 0)

C3 : ( 6
10 ,

3
10 ,

1
10 , 0, 0) C3 : (1020 ,

6
20 ,

3
20 ,

1
20 , 0, 0)

C4 : (45 ,
1
5 , 0, 0, 0) C4 : (1015 ,

4
15 ,

1
15 , 0, 0, 0)

C5 : (1, 0, 0, 0, 0) C5 : (56 ,
1
6 , 0, 0, 0, 0)

C6 : (1, 0, 0, 0, 0, 0)

In the welfare context, the binomial welfare functions Cj , j = 1, . . . , n have null
weights associated with the j−1 richest individuals in the population and therefore,
as j increases from 1 to n, they behave in analogy with poverty measures which
progressively focus on the poorest individuals in the population, see Bortot and
Marques Pereira [4].

4. THE BINOMIAL DECOMPOSITION: 2-ADDITIVE AND
3-ADDITIVE CASES

In this section we use the boundary condition (23) to write the binomial decom-
position in Proposition 2 only in terms of α2, . . . , αn, plus the corresponding OWA
welfare functions Cj(x ), with j = 2, . . . , n.

Proposition 7 Any OWA function A : Dn −→ D can be written uniquely as

A(x) = (1− α2 − · · · − αn) x̄+ α2C2(x) + · · ·+ αnCn(x) (37)

where the coefficients αj, j = 2, . . . , n are subject to the boundary and monotonicity
(BM) conditions

n∑
j=2

[
1− n

(
i−1
j−1

)(
n
j

) ]
αj ≤ 1 i = 1, . . . , n . (38)

Proof : The expression of the binomial decomposition (37) is obtained directly from
(27) in Proposition 2 by substituting for α1 = 1 − α2 − α3 − · · · − αn, as in the
boundary condition (23).

Consider now the monotonicity conditions (24). Writing for α1 = 1− α2 − α3 −
· · · − αn we obtain

1

n
+

[(
i−1
1

)(
n
2

) − 1

n

]
α2 +

[(
i−1
2

)(
n
3

) − 1

n

]
α3 + · · ·+

[(
i−1
i−1

)(
n
i

) − 1

n

]
αi

− 1

n
(αi+1 + · · ·+ αn) ≥ 0 i = 1, . . . , n (39)

which correspond to the following n combined boundary and monotonicity (BM)
conditions in terms of the n− 1 coefficients αj , j = 2, . . . , n,

n∑
j=2

[
1− n

(
i−1
j−1

)(
n
j

) ]
αj ≤ 1 i = 1, . . . , n . (40)
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The first and the last of these BM conditions are always of the form α2 +α3 + · · ·+
αn ≤ 1 and α2 + 2α3 + · · ·+ (n− 1)αn ≥ −1, respectively. 2

In the binomial decomposition (37) the level of k-additivity of the OWA function
A is controlled by the coefficients α2, ..., αn subject to the conditions (38). As k-
additivity increases, the binomial decomposition of A includes an increasing number
of binomial OWA functions.

4.1. The 2-additive case

We now examine the binomial decomposition of OWA functions (37) in the 2-
additive case, focusing on the particular form of the BM conditions (38).

In the 2-additive case, with n ≥ 2, the BM conditions (38) take the form[
1−

n
(
i−1
1

)(
n
2

) ]
α2 ≤ 1 i = 1, . . . , n . (41)

These conditions can be written as (n + 1 − 2i)α2 ≤ n − 1 for i = 1, . . . , n, which
reduce to

−1 ≤ α2 ≤ 1 (42)

corresponding to the first and last of the n conditions (41), the others been dom-
inated by these two. Notice that in the 2-additive case the BM conditions are
independent of n.

Example 2 Consider the 2-additive case for n = 3, 4, 5, 6. We have the following BM
conditions (41) in terms of the coefficient α2,

n = 3


α2 ≤ 1
0 ≤ 2
α2 ≥ −1

n = 4


α2 ≤ 1
α2 ≤ 3
α2 ≥ −3
α2 ≥ −1

(43)

n = 5


α2 ≤ 1
α2 ≤ 2
0 ≤ 2
α2 ≥ −2
α2 ≥ −1

n = 6



α2 ≤ 1
3α2 ≤ 5
α2 ≤ 5
α2 ≥ −5
3α2 ≥ −5
α2 ≥ −1

(44)

Notice the invariance of the first and last BM conditions, the remaining being dom-
inated by these two.

As an immediate consequence of Proposition 2 and Proposition 7, we have the
following result.

Proposition 8 Any 2-additive OWA function A : Dn −→ D can be written uniquely
as

A(x) = (1− α2) x̄+ α2C2(x) (45)
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where C2(x) is the binomial OWA function

C2(x) =
n∑

i=1

w2i x(i) =
n∑

i=1

2(n− i)

n(n− 1)
x(i) (46)

and the coefficient α2 is subject to the BM conditions (41), which reduce to (42).

Given that C2 is related with the classical Gini inequality index by means of

Gc(x ) =
n− 1

n
x̄− n− 1

n
C2(x ) (47)

we know from Proposition 8 that any 2-additive OWA function can be written as

A(x ) = x̄− n

n− 1
α2G

c(x ) (48)

where α2 is a free parameter subject to the conditions −1 ≤ α2 ≤ 1. The strict case
α2 > 0 in (48) corresponds to the well-known Ben Porath and Gilboa’s formula [3] for
Weymark’s generalized Gini welfare functions, with linearly decreasing (inequality
averse) weight distributions, see also Grabisch [17].

In particular, with α2 = (n − 1)/n in (48), we obtain the classical Gini welfare
function

A(x ) = Ac
G(x ) α2 =

n− 1

n
. (49)

Other interesting parametric choices for α2 could be α2 = (n − l)/n with l =
0, 1, . . . , n. In the case l = 0 all the Choquet capacity structure lies in the non-
additive Möbius values mµ(2), the case l = 1 corresponds to the classical absolute
Gini inequality index, and the remaining cases correspond to increasingly weak struc-
ture being associated with the values mµ(2), towards the additive case l = n. In
other words, the parametric choices associated with l = 0, 1, . . . , n correspond to an
interpolation between A(x ) = x̄ = C1(x ) (with l = n) and A(x ) = C2(x ) (with
l = 0) through the intermediate (with l = 1) case A(x ) = Ac(x ), the classical Gini
welfare function.

Proposition 9 Considering the binomial decomposition (45), the orness of the 2-
additive OWA function associated with coefficient α2 is given by

Orness (A) =
1

2
− 1

6

n+ 1

n− 1
α2 (50)

where the coefficient α2 is subject to the BM conditions (41), which reduce to (42).

Proof : It follows immediately from Proposition 5 and 2-additivity.

4.2. The 3-additive case

We now examine the binomial decomposition of OWA functions (37) in the 3-
additive case, focusing on the particular form of the BM conditions (38).
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In the 3-additive case, with n ≥ 3, the BM conditions (38) take the form[
1− n

(
i−1
1

)(
n
2

) ]
α2 +

[
1− n

(
i−1
2

)(
n
3

) ]
α3 ≤ 1 i = 1, . . . , n . (51)

In contrast with the 2-additive case, notice that in the 3-additive case the BM
conditions depend on n.

As an immediate consequence of Proposition 2 and Proposition 7, we have the
following result.

Proposition 10 Any 3-additive OWA function A : Dn −→ D can be written
uniquely as

A(x) = (1− α2 − α3) x̄+ α2C2(x) + α3C3(x) (52)

where C2(x) is as in (46), C3(x) is the binomial OWA function

C3(x) =
n∑

i=1

w3i x(i) =
n∑

i=1

3(n− i)(n− i− 1)

n(n− 1)(n− 2)
x(i) (53)

and the coefficients α2 and α3 are subject to the BM conditions (51).

The weight distribution of the OWA function A in (52) is thus given by

wi = (1− α2 − α3)w1i + α2w2i + α3w3i

= (1− α2 − α3)

(
n−i
0

)(
n
1

) + α2

(
n−i
1

)(
n
2

) + α3

(
n−i
2

)(
n
3

)
= (1− α2 − α3)

1

n
+ α2

2(n− i)

n(n− 1)
+ α3

3(n− i)(n− i− 1)

n(n− 1)(n− 2)
(54)

where the coefficients α2 and α3 are subject to the BM conditions (51).
We now illustrate the 3-additive case for dimension n = 3, 4, 5, 6. The feasible

regions in Fig. 2 refer to the binomial decomposition of 3-additive OWA functions
in Proposition 10.

Example 3 Consider the 3-additive case for n = 3, 4, 5, 6. We have the following BM
conditions (51) in terms of the two coefficients α2 and α3,

n = 3


α2 + α3 ≤ 1
α3 ≤ 1
α2 + 2α3 ≥ −1

n = 4


α2 + α3 ≤ 1
α2 + 3α3 ≤ 3
α2 ≥ −3
α2 + 2α3 ≥ −1

(55)

n = 5


α2 + α3 ≤ 1
α2 + 2α3 ≤ 2
α3 ≤ 2
α2 + α3 ≥ −2
α2 + 2α3 ≥ −1

n = 6



α2 + α3 ≤ 1
3α2 + 5α3 ≤ 5
2α2 + 7α3 ≤ 10
2α2 − α3 ≥ −10
3α2 + 4α3 ≥ −5
α2 + 2α3 ≥ −1

(56)
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and the corresponding feasible regions are illustrated in Fig. 2. Notice the invariance
of the first and last BM conditions, as explained in the final part of the proof of
Proposition 10.

− −2 0 2 4

−
4

−
2

0
2

4

2

3

(0,1)(-3,1)

(3,-2)

(a) n = 3

− −2 0 2 4

−
4

−
2

0
2

4

2

3

(0,1)

(-3,2)

(-3,1)

(3,-2)

(b) n = 4

−4 −2 0 2 4

−
4

−
2

0
2

4

α2

α
3

(0.1)

(-2.2)(-4.2)

(-3.1)

(3,-2)

(c) n = 5

− −2 0 2 4

−
4

−
2

0
2

4
3

2

(3,-2)

(0,1)

(-15/11,20/11)

(-15/4,5/2)

(-45/11,20/11)

(-3,1)

(d) n = 6

Figure 2: Feasible regions associated with conditions (55) and (56).

In relation to the binomial decomposition of OWA functions in the 3-additive
case as illustrated in Fig. 2, we observe that the increasing dimension n = 3, 4, 5, 6
has the effect of extending the feasible region associated with the BM constraints.
This effect emerges clearly when comparing the feasible regions in Fig. 2. Notice
that the extension of the feasible region regards only its upper left portion, since the
edges e1 and en associated with the first and last BM conditions remain unchanged.

Proposition 11 Considering the binomial decomposition (52), the orness of the
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3-additive OWA function A associated with coefficients α2 and α3 is given by

Orness (A) =
1

2
− 1

2

n+ 1

n− 1

(1
3
α2 +

1

2
α3

)
(57)

where the coefficients α2 and α3 are subject to the BM conditions (51).

Proof : It follows immediately from Proposition 5 and 3-additivity.

−4 −2 0 2 4

−
4

−
2

0
2

4

α
2

α
3

=

e
1

v
5

e
2

e
3

e
4

e
5

v
0

v
1

v
2

v
3

v
4

Figure 3: Vertices and edges of the feasible region in the case n = 5.

Proposition 12 Consider the feasible region associated with the 3-additive BM
conditions (51) in dimension n ≥ 3. The feasible region is convex and is delim-
ited by n vertices vi with i = 1, . . . , n, and n edges ei, with i = 1, . . . , n as illus-
trated in Fig. 3 in the particular case n = 5. The coordinates of vertices vi, with
i = 1, . . . , n− 1, are given by

α
(i)
2 = − 3(i− 1)(n− 1)

n2 − 1− 3i(n− i)
α
(i)
3 =

(n− 1)(n− 2)

n2 − 1− 3i(n− i)
i = 1, . . . , n− 1 (58)

and the coordinates of vertex vn, which for convenience is also denoted v0, are
(3,−2).

Proof : The feasible region is obtained as the intersection of n linear inequality

constraints and thus it is convex. The coordinates of vertex vi = (α
(i)
2 , α

(i)
3 ) , with

i = 1, . . . , n − 1, are obtained by jointly solving the line equations associated with
the BM conditions i and i+ 1 in (51), given by
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[
1− n

(
i−1
1

)(
n
2

) ]
α
(i)
2 +

[
1− n

(
i−1
2

)(
n
3

) ]
α
(i)
3 = 1 (59)[

1− n

(
(i+1)−1

1

)(
n
2

) ]
α
(i)
2 +

[
1− n

(
(i+1)−1

2

)(
n
3

) ]
α
(i)
3 = 1 (60)

which reduce to[
1− 2

(i− 1)

n− 1

]
α
(i)
2 +

[
1− 3

(i− 1)(i− 2)

(n− 1)(n− 2)

]
α
(i)
3 = 1 (61)[

1− 2
i

n− 1

]
α
(i)
2 +

[
1− 3

i(i− 1)

(n− 1)(n− 2)

]
α
(i)
3 = 1 . (62)

Now subtracting the two equations above, we obtain α
(i)
2 = −[3(i− 1)/(n− 2)]α

(i)
3

which yields (58). In particular, we obtain v1 = (0, 1) and vn−1 = (−3, 1) in every
dimension n ≥ 3.

On the other hand, the coordinates of vertex vn = (α
(n)
2 , α

(n)
3 ) are obtained

by jointly solving the line equations associated with the BM conditions i = 1 and
i = n in (51) which, in the 3-additive case, are the same in all dimension n ≥ 3, as
illustrated in (55)-(56). 2

Proposition 13 Consider the feasible region associated with the 3-additive BM
conditions (51) in dimension n ≥ 3. The feasible region is strictly increasing with
n, and the following holds:

1. The vertex vi in dimension n, with i = 2, . . . , n − 2, lies on the edge ei+1 in
dimension n+ 1, with n ≥ 4.

2. The vertex vi in dimension n, with i = 2, . . . , n − 2, is external to edge ei in
dimension n− 1, with n ≥ 4.

Proof : We now prove each statement separately.

1. For instance, vertex v2 in dimension n = 4 lies on the edge e3 in dimension

n+1 = 5, as illustrated in Fig. 3 . Consider the coordinates α
(i)
2 , α

(i)
3 of vertex

vi in dimension n as in (58), with i = 2, . . . , n− 2. The fact that it lies on the
edge ei+1 in dimension n+ 1 can be written as[

1− (n+ 1)

(
i
1

)(
n+1
2

) ]α(i)
2 +

[
1− (n+ 1)

(
i
2

)(
n+1
3

) ]α(i)
3 = 1 (63)

where we refer to BM condition i+1 in dimension n+1, see (51). This equation
can be verified straightforwardly.
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2. For instance, vertex v2 in dimension n = 5 is external to edge e2 in dimension

n− 1 = 4, as illustrated in Fig. 3. Consider the coordinates α
(i)
2 , α

(i)
3 of vertex

vi in dimension n as in (58), with i = 2, . . . , n− 2. The fact that it is external
to edge ei in dimension n− 1 can be written as[

1− (n− 1)

(
i−1
1

)(
n−1
2

) ]α(i)
2 +

[
1− (n− 1)

(
i−1
2

)(
n−1
3

) ]α(i)
3 > 1 (64)

where we refer to BM condition i in dimension n− 1, see (51). This inequality
reduces to

6(i− 1)(n− i− 1)

(n− 2)(n− 3)(3i2 − 3ni+ n2 − 1)
> 0 (65)

which holds since the lowest value of both i − 1 and n − i − 1 is 1 for i =
2, . . . , n−2, and the lowest value of (3i2−3ni+n2−1) is (n2−4)/4 corresponding
to i = n/2. Notice that here n ≥ 4.

The fact that the feasible region is strictly increasing in n is a direct consequence of
the two statements, particularly the latter. 2

Proposition 14 Consider the feasible region associated with the 3-additive BM
conditions (51) in dimension n ≥ 3. Given that the feasible region is convex and the
orness is linear in the coefficients α2 and α3, the minimum and maximum orness
values correspond to vertices of the feasible region. The vertex associated with min-
imum orness value is m = vi with i = floor (h−(n)) or i = ceiling (h−(n)), and the
vertex associated with maximum orness value is M = vj with j = floor (h+(n)) or
j = ceiling (h+(n)), where h−(3) = 1 and h+(3) = 2, and

h±(n) =
3n±

√
3(n2 − 4)

6
n ≥ 4 . (66)

In this way 1 ≤ h±(n) ≤ n − 1 and therefore the vertices associated with minimum
and maximum orness are among v1, . . . , vn−1, with n ≥ 3.

Proof : According to Proposition 11, the orness is linear in the coefficients α2 and
α3,

Orness (A) =
1

2
− 1

2

n+ 1

n− 1

(1
3
α2 +

1

2
α3

)
∈ [0, 1] (67)

and the orness level lines

2α2 + 3α3 = 6(1− 2c)
n− 1

n+ 1
c ∈ [0, 1] (68)

have slope −2/3 independent of n.
According to Proposition 12, the feasible region is convex and the orness of the

3-additive OWA function A associated with the vertex vi = (α
(i)
2 , α

(i)
3 ), with i =

1, . . . , n− 1, is given by

Orness (A) =
1

4

(6i2 + (2− 4n)i+ n2 − n− 2)

(3i2 − 3ni+ n2 − 1)
= orness (i) i = 1, . . . , n− 1

(69)
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where the denominator (3i2 − 3ni + n2 − 1) is always positive and its lowest value
is (n2 − 4)/4, corresponding to i = n/2.
Considering the continuous domain i ∈ [1, n − 1], the critical points of orness (i)
correspond to the roots of

orness′(i) = −1

4

(6i2 − 6ni+ n2 + 2)

(3i2 − 3ni+ n2 − 1)2
(n+ 1) = 0 i ∈ [1, n− 1] (70)

which are given by i = h±(n), where h+(3) = 2, h−(3) = 1 in the n = 3 case, and

h±(n) =
3n±

√
3(n2 − 4)

6
n ≥ 4 . (71)

The two critical points i = h±(n) of orness (i) can be classified according to the
second derivative orness′′(i), which is given by

orness′′(i) =
9

2

(2i− n)(i2 − ni+ 1)

(3i2 − 3ni+ n2 − 1)3
(n+ 1) i ∈ [1, n− 1] (72)

which takes the following values at the two critical points,

orness′′(i = h+(n)) = −2
√
3

(n+ 1)

(n2 − 4)3/2
< 0 (73)

orness′′(i = h−(n)) = 2
√
3

(n+ 1)

(n2 − 4)3/2
> 0 . (74)

We therefore obtain that i = h−(n) corresponds to the minimum orness value, and
i = h+(n) corresponds to the maximum orness value, in the continuous domain
i ∈ [1, n− 1].

The graph of orness (i) on the extended continuous domain i ∈ [0, n] is shown in
Fig. 4 for dimensions n = 3, 4, 5, 6. As the dimensions n increases, we observe that
the minimum orness value increases, whereas the maximum orness value decreases.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
n = 3

n = 4

n = 5

n = 6

Figure 4: The orness of the 3-additive OWA function of dimensions n = 3, 4, 5, 6.
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In the case n = 3 we observe a small range of the continuous variable in which the
function orness (i) takes negative values, due to the sign of the numerator in (69).
This small range is in any case outside the relevant continuous domain i ∈ [1, n−1].

In relation with the feasible region associated with the 3-additive BM conditions
(51) in dimension n ≥ 3, the actual vertex associated with minimum orness value
is thus m = vi with i = floor (h−(n)) or i = ceiling (h−(n)), and the actual vertex
associated with maximum orness value is thus M = vj with j = floor (h+(n)) or
j = ceiling (h+(n)).

The vertex v0 = vn is in any case excluded because its orness 1/2 is always
intermediate between orness (i = 1) = 1/2− (n+1)/4(n− 1) associated with v1 and
orness (i = n− 1) = 1/2 + (n+ 1)/4(n− 1) associated with vn−1. 2

4.3. The 3-additive asymptotic case

We now re-examine the binomial decomposition of OWA functions (37) in the
3-additive case, with the corresponding BM conditions (51) which explicitly depend
on n.

We begin by illustrating the 3-additive case for increasing dimension n = 3, . . . , 12.
The feasible regions in Fig. 5 refer to the binomial decomposition of 3-additive OWA
functions in Proposition 10.

It is clear in Fig. 5 that the progressive development of the border of the ex-
panding feasible region with increasing n suggests an asymptotic curve form for the
upper-left polygonal border. This is in fact the subject of the following proposition.

Proposition 15 Consider the feasible region associated with the 3-additive BM
conditions (51) in dimension n ≥ 3. The asymptotic form of the feasible region
in the infinite dimensional limit is given by the parametric curve

x(t) = − 3t

3t2 − 3t+ 1
y(t) =

1

3t2 − 3t+ 1
(75)

with parameter t ∈ [0, 1], as illustrated in Fig. 6. The five important points indicated
in Fig. 6 are

• point P1 is associated with the maximum value of x(t) + y(t), for t = 0,

• point P2 is associated with the maximum value of y(t), for t = 1/2,

• point P3 is associated with the minimum value of x(t), for t = 1/
√
3,

• point P4 is associated with the minimum value of x(t) + y(t), for t = 2/3,

• point P5 is associated with t = 1.

Proof : The parametric coordinate functions x(t) and y(t) are obtained from (58) by
substituting i = 1+t(n−2) and taking the asymptotic limit n → ∞. In this way the
parametric curve starts with vertex v1 associated with t = 0 and ends with vertex
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Figure 5: Feasible regions associated with conditions (51).
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Figure 6: Asymptotic form of the feasible region.

vn−1 associated with t = 1. The points P1, P2, P3, P4 correspond to the critical
points of the parametric functions x(t), y(t), and x(t) + y(t), as indicated below

x′(t) =
9t2 − 3

(3t2 − 3t+ 1)2
y′(t) =

3− 6t

(3t2 − 3t+ 1)2
(76)

x′(t) + y′(t) =
3t(3t− 2)

(3t2 − 3t+ 1)2
. (77)

It follows that the point the point P1 has coordinates (x(t = 0), y(t = 0)) = (0, 1),
the point P2 has coordinates (x(t = 1/2), y(t = 1/2)) = (−6, 4), the point P3 has
coordinates (x(t = 1/

√
3), y(t = 1/

√
3)) = (−3 − 2

√
3, 2 +

√
3), and the point P4

has coordinates (x(t = 2/3), y(t = 2/3)) = (−6, 3). Finally, the points P4 has
coordinates (x(t = 1), y(t = 1)) = (−3, 1). 2

In the asymptotic infinite dimensional limit, each point (x, y) in the feasible
region depicted in Fig. 6 corresponds to an OWA function A = (1 − x − y)C1 +
xC2 + y C3 whose weight density is expressed by

ω(γ) = (1− x− y) + 2x (1− γ) + 3y (1− γ)2 γ ∈ [0, 1] (78)

which is obtained from (54) as follows: the equation is multiplied by n, the left hand
side nwi is substituted by ω(γ) with γ ∈ [0, 1], and the right hand side is transformed
as

• x, y substitute α2, α3,

• i = 1, . . . , n is substituted by 1 + γ(n− 1) ∈ [1, n] with γ ∈ [0, 1],

• the asymptotic limit n → ∞ is taken.

Naturally, the definite integral of the weight density ω(γ) over γ ∈ [0, 1] has value 1
for any point (x, y) in the feasible region.

In Fig. 7 we depict the weight densities of the OWA functions corresponding to
the important points P0, P1, . . . , P5 on the border of the asymptotic feasible region
as in Fig. 6.
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Figure 7: Weight density of important OWA functions.
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Proposition 16 Consider the feasible region associated with the 3-additive BM
conditions (51) in dimension n ≥ 3. In the asymptotic infinite dimensional limit, the
orness of the 3-additive OWA function associated with a point (x, y) in the feasible
region is given by

Orness (A) =
1

2
− 1

2

(1
3
x+

1

2
y
)
. (79)

The orness is a linear function of the coordinates x, y and therefore the minimum
and maximum orness values are associated with points in the border of the feasible
region. In the asymptotic case, in particular, the points associated with minimum
and maximum orness are m = (−3 +

√
3, 2) and M = (−3−

√
3, 2), as indicated in

Fig. 6. The corresponding orness values are

min = (3−
√
3)/6 ≈ 0.211325 Max = (3 +

√
3)/6 ≈ 0.788675 . (80)

Proof : According to Proposition 11, in the asymptotic limit n → ∞ the level lines
of the orness function are

Orness (A(x, y)) =
1

2
− 1

2

(1
3
x+

1

2
y
)
= c c ∈ [0, 1] (81)

2x+ 3y = 6(1− 2c) c ∈ [0, 1] (82)

with slope −2/3 independent of n, as illustrated in Fig. 8. The pointsm andM along
the border of the feasible region corresponding to the minimum and maximum orness
values are those for which the slope of the parametric curve (x(t), y(t)) coincides with
the slope of the level curve,

y′(t)

x′(t)
= − 1− 2t

1− 3t2
= −2

3
(83)

assuming t ̸= 1/
√
3, the parameter value associated with the point P3. The two

solutions of (83), associated with the points m and M , are t = 1
2

(
1± 1√

3

)
. 2

Figure 8: Asymptotic form of the feasible region, the orness level lines.
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Moreover, along the parametric curve (x(t), y(t)) with t ∈ [0, 1], from point P1 to
point P5, the orness as in (79) varies as indicated in Fig. 9. Notice that the values
of the parameter t associated with the points m and M correspond precisely with
the associated minimum and maximum orness values. Point P2 is associated with
parameter t = 1/2 and orness value 1/2.

Figure 9: The orness values along the upper left border of the asymptotic feasible
region.

The orness (79) of the 3-additive OWA functions associated with the important
points indicated in Fig. 8 is as follows: P0 = (3,−2) with orness 1/2, P1 = (0, 1)
with orness 1/4, m = (−3+

√
3, 2) with orness 1/2−

√
3/6, P2 = (−6, 4) with orness

1/2, P3 = (−3 − 2
√
3, 2 +

√
3) with orness 1/2 +

√
3/12, P4 = (−6, 3) with orness

3/4, M = (−3−
√
3, 2) with orness 1/2 +

√
3/6, and P5 = (−3, 1) with orness 3/4.

6. CONCLUSIONS

In the context of the binomial decomposition of OWA functions in terms of the
binomial OWA functions Cj , with j = 1, . . . , n, we have investigated the constraints
associated with the 2-additive and 3-additive cases in n dimensions. We have de-
scribed the corresponding forms of the feasible regions, in terms of the coefficient α2

in the 2-additive case, and in terms of the coefficients α2, α3 in the 3-additive case.
In the 2-additive case we have shown that the feasible region does not depend on
the dimension n.

In the 3-additive case, on the other hand, the feasible region expands with the
increasing dimension n. The orness of the OWA functions within the feasible region
is linear in the coefficients α2 and α3, and the vertices associated with maximum
and minimum orness have been identified.

Interestingly, whereas the triangular lower-right border of the feasible region
remains unchanged, the polygonal upper-left border of the feasible region in the
asymptotic infinite dimensional limit tends to a smooth curve with parameter t ∈
[0, 1]. We have derived the parametric equation of this asymptotic curve and we have
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examined in detail the orness values along the curve, establishing the maximum and
minimum orness points along the asymptotic curve.
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