We study locally recoverable codes on algebraic curves. In the first part of the manuscript, we provide a bound on the generalized Hamming weight of these codes. In the second part, we propose a new family of algebraic geometric LRC codes, which are LRC codes from the Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds on the distance proposed in Barg et al. (2015) [1] of some Hermitian LRC codes. © 2016 Elsevier Inc. All rights reserved.

Higher Hamming weights for locally recoverable codes on algebraic curves / Ballico, Edoardo; Marcolla, Chiara. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - STAMPA. - 40:(2016), pp. 61-72. [10.1016/j.ffa.2016.03.004]

Higher Hamming weights for locally recoverable codes on algebraic curves

Ballico, Edoardo;Marcolla, Chiara
2016-01-01

Abstract

We study locally recoverable codes on algebraic curves. In the first part of the manuscript, we provide a bound on the generalized Hamming weight of these codes. In the second part, we propose a new family of algebraic geometric LRC codes, which are LRC codes from the Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds on the distance proposed in Barg et al. (2015) [1] of some Hermitian LRC codes. © 2016 Elsevier Inc. All rights reserved.
2016
Ballico, Edoardo; Marcolla, Chiara
Higher Hamming weights for locally recoverable codes on algebraic curves / Ballico, Edoardo; Marcolla, Chiara. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - STAMPA. - 40:(2016), pp. 61-72. [10.1016/j.ffa.2016.03.004]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1071579716000381-main.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 340.06 kB
Formato Adobe PDF
340.06 kB Adobe PDF Visualizza/Apri
1505.05041.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 346.9 kB
Formato Adobe PDF
346.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/153572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact