Higher Hamming weights for locally recoverable codes on algebraic curves

Edoardo Ballico ${ }^{1}$, Chiara Marcolla*
Department of Mathematics, University of Trento, Italy

A R T I C L E I N F O

Article history:

Received 18 May 2015
Received in revised form 30
November 2015
Accepted 11 March 2016
Available online 25 March 2016
Communicated by Chaoping Xing

$M S C$:

primary 11 G 20
secondary 11T71, 14H51, 14H50

Abstract

We study locally recoverable codes on algebraic curves. In the first part of the manuscript, we provide a bound on the generalized Hamming weight of these codes. In the second part, we propose a new family of algebraic geometric LRC codes, which are LRC codes from the Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds on the distance proposed in Barg et al. (2015) [1] of some Hermitian LRC codes.

© 2016 Elsevier Inc. All rights reserved.

Keywords:
Algebraic geometric LRC codes
Higher Hamming weights
Norm-Trace LRC codes

1. Introduction

The v-th generalized Hamming weight $d_{v}(C)$ of a linear code C is the minimum support size of v-dimensional subcodes of C. The sequence $d_{1}(C), \ldots, d_{k}(C)$ of generalized Hamming weights was introduced by Wei [37] to characterize the performance of a linear code on the wire-tap channel of type II. Later, the GHWs of linear codes have been used

[^0]in many other applications regarding the communications, as for bounding the covering radius of linear codes [15], in network coding [26], in the context of list decoding [7,9], and finally for secure secret sharing [18]. Moreover, in [2] the authors show in which way an arbitrary linear code gives rise to a secret sharing scheme, in $[16,17]$ the connection between the trellis or state complexity of a code and its GHWs is found and in [4] the author proves the equivalence to the dimension/length profile of a code and its generalized Hamming weight. For these reasons, the GHWs (and their extended version, the relative generalized Hamming weights [21,19]) play a central role in coding theory. In particular, generalized and relative generalized Hamming weights are studied for Reed-Muller codes [10,23] and for codes constructed by using an algebraic curve [6] as Goppa codes [24,38], Hermitian codes [12,25] and Castle codes [27].

In this paper, we provide a bound on the generalized Hamming weight of locally recoverable codes on the algebraic curves proposed in [1]. Moreover, we introduce a new family of algebraic geometric LRC codes and improve the bounds on the distance for some Hermitian LRC codes.

Locally recoverable codes were introduced in [8] and they have been significantly studied because of their applications in distributed and cloud storage systems [3,13,32, $34,35]$. We recall that a code $C \in\left(\mathbb{F}_{q}\right)^{n}$ has locality r if every symbol of a codeword c can be recovered from a subset of r other symbols of c.

In other words, we consider a finite field $K=\mathbb{F}_{q}$, where q is a power of a prime, and an $[n, k]$ code C over the field K, where $k=\log _{q}(|C|)$. For each $i \in\{1, \ldots, n\}$ and each $a \in K$ set $C(i, a)=\left\{c \in C \mid c_{i}=a\right\}$. For each $I \subseteq\{1, \ldots, n\}$ and each $S \subseteq C$ let S_{I} be the restriction of S to the coordinates in I.

Definition 1. Let C be an $[n, k]$ code over the field K, where $k=\log _{q}(|C|)$. Then C is said to have all-symbol locality \boldsymbol{r} if for each $a \in \mathbb{F}_{q}$ and each $i \in\{1, \ldots, n\}$ there is $I_{i} \subset\{1, \ldots, n\} \backslash\{i\}$ with $\left|I_{i}\right| \leqslant r$, such that for $C_{I_{i}}(i, a) \cap C_{I_{i}}\left(i, a^{\prime}\right)=\emptyset$ for all $a \neq a^{\prime}$. We use the notation (n, k, r) to refer to the parameters of this code.

Note that if we receive a codeword c correct except for an erasure at i, we can recover the codeword by looking at its coordinates in I_{i}. For this reason, I_{i} is called a recovering set for the symbol c_{i}.

Let C be an (n, k, r) code, then the distance of this code has to verify the bound proved in $[28,8]$ that is $d \leqslant n-k-\lceil k / r\rceil+2$. The codes that achieve this bound with equality are called optimal LRC codes $[32,34,35]$. Note that when $r=k$, we obtain the Singleton bound, therefore optimal LRC codes with $r=k$ are MDS codes.

Layout of the paper This paper is divided as follows. In Section 2 we recall the notions of algebraic geometric codes and the definition of algebraic geometric locally recoverable codes introduced in [1]. In Section 3 we provide a bound on the generalized Hamming weights of the latter codes. In Section 4 we propose a new family of algebraic geometric LRC codes, which are LRC codes from the Norm-Trace curve. Finally, in Section 5 we
improve the bounds on the distance proposed in [1] for some Hermitian LRC codes, using some properties of the Hermitian codes.

2. Preliminary notions

2.1. Algebraic geometric codes

Let $K=\mathbb{F}_{q}$ be a finite field, where q is a power of a prime. Let \mathcal{X} be a smooth projective absolutely irreducible nonsingular curve over K. We denote by $K(\mathcal{X})$ the rational functions field on \mathcal{X}. Let D be a divisor on the curve \mathcal{X}. We recall that the Riemann-Roch space associated to D is a vector space $\mathcal{L}(D)$ over K defined as

$$
\mathcal{L}(D)=\{f \in K(\mathcal{X}) \mid(f)+D \geqslant 0\} \cup\{0\}
$$

where we denote by (f) the divisor of f.
Assume that P_{1}, \ldots, P_{n} are rational points on \mathcal{X} and D is a divisor such that $D=$ $P_{1}+\ldots+P_{n}$. Let G be some other divisor such that $\operatorname{supp}(D) \cap \operatorname{supp}(G)=\emptyset$. Then we can define the algebraic geometric code as follows:

Definition 2. The algebraic geometric code (or AG code) $C(D, G)$ associated with the divisors D and G is defined as

$$
C(D, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in \mathcal{L}(G)\right\} \subset K^{n}
$$

The dual $C^{\perp}(D, G)$ of $C(D, G)$ is an algebraic geometric code.

In other words an algebraic geometric code is the image of the evaluation map $\operatorname{Im}\left(e v_{D}\right)=C(D, G)$, where the evaluation map ev $\quad: \mathcal{L}(G) \rightarrow K^{n}$ is given by

$$
e v_{D}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in K^{n}
$$

Note that if $D=P_{1}+\ldots+P_{n}$ and we denote by $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ we can also indicate $e v_{D}$ as $e v_{\mathcal{P}}$.

2.2. Algebraic geometric locally recoverable codes

In this section we consider the construction of algebraic geometric locally recoverable codes of [1].

Let \mathcal{X} and \mathcal{Y} be smooth projective absolutely irreducible curves over K. Let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be a rational separable map of curves of degree $r+1$. Since g is separable, then there exists a function $x \in K(\mathcal{X})$ such that $K(\mathcal{X})=K(\mathcal{Y})(x)$ and that x satisfies the equation $x^{r+1}+b_{r} x^{r}+\ldots+b_{0}=0$, where $b_{i} \in K(\mathcal{Y})$. The function x can be considered as a map $x: \mathcal{X} \rightarrow \mathbb{P}_{K}$. Let $h=\operatorname{deg}(x)$ be the degree of x.

We consider a subset $S=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathcal{Y}(K)$ of \mathbb{F}_{q}-rational points of \mathcal{Y}, a divisor Q_{∞} such that $\operatorname{supp}\left(Q_{\infty}\right) \cap \operatorname{supp}(S)=\emptyset$ and a positive divisor $D=t Q_{\infty}$. We denote by

$$
\mathcal{A}=g^{-1}(S)=\left\{P_{i j}, \text { where } i=0, \ldots, r, j=1, \ldots, s\right\} \subset \mathcal{X}(K)
$$

where $g\left(P_{i j}\right)=P_{i}$ for all i, j and assume that b_{i} are functions in $\mathcal{L}\left(n_{i} Q_{\infty}\right)$ for some natural numbers n_{i} with $i=1, \ldots, r$.

Let $\left\{f_{1}, \ldots, f_{m}\right\}$ be a basis of the Riemann-Roch space $\mathcal{L}(D)$. By the Riemann-Roch Theorem we have that $m \geqslant \operatorname{deg}(D)+1-g_{\mathcal{Y}}$, where $g_{\mathcal{Y}}$ is the genus of \mathcal{Y}.

From now on, we assume that $m=\operatorname{deg}(D)+1-g_{\mathcal{Y}}$, where $\operatorname{deg}(D)=t \ell$, and we consider the K-subspace V of $K(\mathcal{X})$ of dimension $r m$ generated by

$$
\mathcal{B}=\left\{f_{j} x^{i}, i=0, \ldots, r-1, j=1, \ldots, m\right\}
$$

We consider the evaluation map $e v_{\mathcal{A}}: V \rightarrow K^{(r+1) s}$. Then we have the following theorem.
Theorem 1. The linear space $C(D, g)=\operatorname{Span}_{K^{(r+1) s}}\left\langle e v_{\mathcal{A}}(\mathcal{B})\right\rangle$ is an (n, k, r) algebraic geometric LRC code with parameters

$$
\begin{aligned}
n & =(r+1) s \\
k & =r m \geqslant r(t \ell+1-g \mathcal{Y}) \\
d & \geqslant n-t \ell(r+1)-(r-1) h .
\end{aligned}
$$

Proof. See Theorem 3.1 of [1].
The AG LRC codes have an additional property. They are LRC codes (n, k, r) with $(r+1) \mid n$ and $r \mid k$. The set $\{1, \ldots, n\}$ can be divided into $n /(r+1)$ disjoint subsets U_{j} for $1 \leqslant j \leqslant s$ with the same cardinality $r+1$. For each i the set $I_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}$ is the complement of i in the element of the partition U_{j} containing j, i.e. for all $i, j \in\{1, \ldots, n\}$ either $I_{i}=I_{j}$ or $I_{i} \cap I_{j}=\emptyset$.

Moreover, they have also the following nice property. Fix $w \in(K)^{n}$ and denote by $w_{U_{j}}=\left\{w_{\iota}\right.$, for any $\left.\iota \in U_{j}\right\}$. Suppose we receive all the symbols in U_{j}. There is a simple linear parity test on the $r+1$ symbols of U_{j} such that if this parity check fails we know that at least one of the symbols in U_{j} is wrong. If we are guaranteed (or we assume) that at most one of the symbols in U_{j} is wrong and the parity check is OK, then all the symbols in U_{j} are correct. Moreover we can recover an erased symbol w_{ι}, with $\iota \in U_{j}$ using a polynomial interpolation through the points of the recovering set $w_{U_{j}}$.

3. Generalized Hamming weights of AG LRC codes

Let K be a field and let \mathcal{X} be a smooth and geometrically connected curve of genus $g \geqslant 2$ defined over the field K. We also assume $\mathcal{X}(K) \neq \emptyset$. We recall the following definitions:

Definition 3. (See $[29,30]$.) The K-gonality $\gamma_{K}(\mathcal{X})$ of \mathcal{X} over a field K is the smallest possible degree of a dominant rational map $\mathcal{X} \rightarrow \mathbb{P}_{K}^{1}$. For any field extension L of K, we define also the L-gonality $\gamma_{L}(\mathcal{X})$ of \mathcal{X} as the gonality of the base extension $\mathcal{X}_{L}=\mathcal{X} \times{ }_{K} L$. It is an invariant of the function field $L(\mathcal{X})$ of \mathcal{X}_{L}.

Moreover, for each integer $i>0$, the i-th gonality $\gamma_{i, L}(\mathcal{X})$ of \mathcal{X} is the minimal degree z such that there is $R \in \operatorname{Pic}^{z}(\mathcal{X})(L)$ with $h^{0}(R) \geqslant i+1$. The sequence $\gamma_{i, \bar{K}}(\mathcal{X})$ is the usual gonality sequence [20]. Moreover, the integer $\gamma_{1, K}(\mathcal{X})=\gamma_{K}(\mathcal{X})$ is the K-gonality of \mathcal{X}.

Let $K=\mathbb{F}_{q}$ a finite field with q elements. Let $C \subset K^{n}$ be a linear $[n, k]$ code over K. We recall that the support of C is defined as follows

$$
\operatorname{supp}(C)=\left\{i \mid c_{i} \neq 0 \text { for some } c \in C\right\}
$$

So $\sharp \operatorname{supp}(C)$ is the number of nonzero columns in a generator matrix for C. Moreover, for any $1 \leqslant v \leqslant k$, the v-th generalized Hamming weight of C [14, §7.10], [36, §1.1] is defined by

$$
d_{v}(C)=\min \{\sharp \operatorname{supp}(\mathcal{D}) \mid \mathcal{D} \text { is a linear subcode of } C \text { with } \operatorname{dim}(\mathcal{D})=v\} .
$$

In other words, for any integer $1 \leqslant v \leqslant k, d_{v}(C)$ is the v-th minimum support weights, i.e. the minimal integer t such that there are an $[n, v]$ subcode \mathcal{D} of C and a subset $S \subset\{1, \ldots, n\}$ such that $\sharp(S)=t$ and each codeword of \mathcal{D} has zero coordinates outside S. The sequence $d_{1}(C), \ldots, d_{k}(C)$ of generalized Hamming weights (also called weight hierarchy of C) is strictly increasing (see Theorem 7.10 .1 of [14]). Note that $d_{1}(C)$ is the minimum distance of the code C.

Let us consider \mathcal{X} and \mathcal{Y} smooth projective absolutely irreducible curves over K and let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be a rational separable map of curves of degree $r+1$. Moreover we take $r, t, Q_{\infty}, f_{1}, \ldots, f_{m}$ and $\mathcal{A}=g^{-1}(S)$ defined as Section 2.2. So we can construct an (n, k, r) algebraic geometric LRC code C as in Theorem 1. For this code we have the following:

Theorem 2. Let C be an (n, k, r) algebraic geometric LRC code as in Theorem 1. For every integer $v \geqslant 2$ we have that

$$
d_{v}(C) \geqslant n-t \ell(r+1)-(r-1) h+\gamma_{v-1, K}(\mathcal{X}) .
$$

Proof. Take a v-dimensional linear subspace \mathcal{D} of C and call

$$
E \subseteq\left\{P_{i j} \mid i=0, \ldots r, j=1, \ldots, s\right\}
$$

the set of common zeros of all elements of \mathcal{D}. Since $n-d_{v}(C)=\sharp(E)$, we have to prove that $t \ell(r+1)+(r-1) h-\sharp(E) \geqslant \gamma_{v-1, K}(X)$. Fix $u \in \mathcal{D} \backslash\{0\}$ and let F_{u} denote the
zeros of u. Note that F_{u} is contained in the set $\left\{P_{i j} \mid i=0, \ldots r, j=1, \ldots, s\right\}$ by the definition of the code C. We have $F_{u} \supseteq E$. By the definition of the integers t, ℓ and $h:=\operatorname{deg}(x)$, we have $\sharp\left(F_{u}\right) \leqslant t \ell(r+1)+(r-1) h$. The divisors $F_{u}-E, u \in \mathcal{D} \backslash\{0\}$ form a family of linearly equivalent non-negative divisors, each of them defined over K. Since $\operatorname{dim}(\mathcal{D})=v$, the definition of $\gamma_{v-1, \bar{K}}(\mathcal{X})$ gives $\sharp\left(F_{u}\right)-\sharp(E) \geqslant \gamma_{v-1, K}(\mathcal{X})$. This inequality for a single $u \in \mathcal{D} \backslash\{0\}$ proves the theorem.

See Remark 1 for an application of Theorem 2.

4. LRC codes from Norm-Trace curve

In this section we propose a new family of Algebraic Geometric LRC codes, that is, a LRC codes from the Norm-Trace curve. Moreover, we compute the $\mathbb{F}_{q^{u}}$-gonality of the Norm-Trace curve.

Let $K=\mathbb{F}_{q^{u}}$ be a finite field, where q is a power of a prime. We consider the norm $\mathrm{N}_{\mathbb{F}_{q}}^{\mathbb{F}_{q}}$ and the trace $\operatorname{Tr}_{\mathbb{F}_{q}}^{\mathbb{F}_{q}}$, two functions from $\mathbb{F}_{q^{u}}$ to \mathbb{F}_{q} defined as

$$
\mathrm{N}_{\mathbb{F}_{q}}^{\mathbb{F}_{q} u}(x)=x^{1+q+\cdots+q^{u-1}} \text { and } \operatorname{Tr}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{u}}}(x)=x+x^{q}+\cdots+x^{q^{u-1}}
$$

The Norm-Trace curve χ is the curve defined over K by the following affine equation

$$
\mathrm{N}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{u}}}(x)=\operatorname{Tr}_{\mathbb{F}_{q}}^{\mathbb{F}_{q} u}(y)
$$

that is,

$$
\begin{equation*}
x^{\left(q^{u}-1\right) /(q-1)}=y^{q^{u-1}}+y^{q^{u-2}}+\ldots+y \text { where } x, y \in K . \tag{1}
\end{equation*}
$$

The Norm-Trace curve χ has exactly $n=q^{2 u-1} K$-rational affine points (see Appendix A of [5]), that we denote by $\mathcal{P}_{\chi}=\left\{P_{1}, \ldots, P_{n}\right\}$. The genus of χ is $g=\frac{1}{2}\left(q^{u-1}-1\right)\left(\frac{q^{u}-1}{q-1}-1\right)$. Note that if we consider $u=2$, we obtain the Hermitian curve.

Starting from the Norm-Trace curve, we have two different ways to construct NormTrace LRC codes.

Projection on x We have to construct a q^{u}-ary (n, k, r) LRC codes. We consider the natural projection $g(x, y)=x$. Then the degree of g is $q^{u-1}=r+1$ and the degree of y is $h=1+q+\cdots+q^{u-1}$.

To construct the codes we consider $S=\mathbb{F}_{q^{u}}$ and $D=t Q_{\infty}$ for some $t \geqslant 1$. Then, using a construction of Theorem 1 we find the parameters for these Norm-Trace LRC codes.

Proposition 1. A family of Norm-Trace LRC codes has the following parameters:

$$
n=q^{2 u-1}, \quad k=m r=(t+1)\left(q^{u-1}-1\right)
$$

and

$$
d \geqslant n-t q^{u-1}-\left(q^{u-1}-1\right)\left(1+q+\cdots+q^{u-1}\right)
$$

Projection on y We have to construct a q^{u}-ary (n, k, r) LRC codes. We consider the other natural projection $g^{\prime}(x, y)=y$. Then $\operatorname{deg}\left(g^{\prime}\right)=1+q+\cdots+q^{u-1}=r+1$. In this case we take $S=\mathbb{F}_{q^{u}} \backslash M$, where

$$
M=\left\{a \in \mathbb{F}_{q^{u}} \mid a^{q^{u-1}}+a^{q^{u-2}}+\ldots+a=0\right\}
$$

so $r=q+\cdots+q^{u-1}$ and $h=\operatorname{deg}(x)=q^{u-1}$. Then, using Theorem 1 we have the following

Proposition 2. A family of Norm-Trace LRC codes has the following parameters:

$$
n=q^{2 u-1}-q^{u-1}, \quad k=m r=(t+1)\left(q+\cdots+q^{u-1}\right)
$$

and

$$
d \geqslant n-t q^{u-1}-\left(q+\cdots+q^{u-1}\right)-q^{u-1}\left(q^{u-1}+\cdots+q-1\right) .
$$

For the Norm-Trace curve χ we are able to find the K-gonality of χ.
Lemma 1. Let χ be a Norm-Trace curve defined over $\mathbb{F}_{q^{u}}$, where $u \geqslant 2$. We have $\gamma_{1, \mathbb{F}_{q^{u}}}(\chi)=q^{u-1}$.

Proof. The linear projection onto the x axis has degree q^{u-1} and it is defined over \mathbb{F}_{q} and hence over $\mathbb{F}_{q^{u}}$. Thus $\gamma_{1, \mathbb{F}_{q^{u}}}(\chi) \leqslant q^{u-1}$. Denote by $z=\gamma_{1, \mathbb{F}_{q^{u}}}(\chi)$ and assume that $z \leqslant q^{u-1}-1$. By the definition of K-gonality, there is a non-constant morphism $w: \chi \rightarrow \mathbb{P}^{1}$ with $\operatorname{deg}(w)=z$ and defined over $\mathbb{F}_{q^{u}}$. Since $w\left(\chi\left(\mathbb{F}_{q^{u}}\right)\right) \subseteq \mathbb{P}^{1}\left(\mathbb{F}_{q^{u}}\right)$, we get $\sharp\left(\chi\left(\mathbb{F}_{q^{u}}\right)\right) \leqslant z\left(q^{u}+1\right) \leqslant\left(q^{u-1}-1\right)\left(q^{u}+1\right)$, that is a contradiction.

Remark 1. By Lemma 1, we can apply Theorem 2 to the Norm-Trace curve. In fact, we can consider the gonality sequence over K of χ to get a lower bound on the second generalized Hamming weight of the two families of Norm-Trace LRC codes:

- Let $t \geqslant 1$ and let C be a $\left(q^{2 u-1},(t+1)\left(q^{u-1}-1\right), q^{u-1}-1\right)$ Norm-Trace LRC code. Then we have

$$
d_{2}(C) \geqslant q^{2 u-1}+q^{u-1}-t q^{u-1}-\left(q^{u-1}-1\right)\left(1+q+\cdots+q^{u-1}\right)
$$

- Let $t \geqslant 1$ and let C be a Norm-Trace LRC code with parameters $\left(q^{2 u-1}-q^{u-1}\right.$, $\left.(t+1)\left(q+\cdots+q^{u-1}\right), q+\cdots+q^{u-1}\right)$. Then we have

$$
d_{2}(C) \geqslant q^{2 u-1}-(t-1) q^{u-1}-\left(1+q^{u-1}\right)\left(q+\cdots+q^{u-1}\right)
$$

5. Hermitian LRC codes

In this section we improve the bound on the distance of Hermitian LRC codes proposed in [1] using some properties of Hermitian codes which are a special case of algebraic geometric codes.

5.1. Hermitian codes

Let us consider $K=\mathbb{F}_{q^{2}}$ a finite field with q^{2} elements. The Hermitian curve \mathcal{H} is defined over K by the affine equation

$$
\begin{equation*}
x^{q+1}=y^{q}+y \text { where } x, y \in K \tag{2}
\end{equation*}
$$

This curve has genus $g=\frac{q(q-1)}{2}$ and has $q^{3}+1$ points of degree one, namely a pole Q_{∞} and $n=q^{3}$ rational affine points, denoted by $\mathcal{P}_{\mathcal{H}}=\left\{P_{1}, \ldots, P_{n}\right\}$ [31].

Definition 4. Let $m \in \mathbb{N}$ such that $0 \leqslant m \leqslant q^{3}+q^{2}-q-2$. Then the Hermitian code $C(m, q)$ is the code $C\left(D, m Q_{\infty}\right)$ where

$$
D=\sum_{\alpha^{q+1}=\beta^{q}+\beta} P_{\alpha, \beta}
$$

is the sum of all places of degree one (except Q_{∞}, that is a point at infinity) of the Hermitian function field $K(\mathcal{H})$.

By Lemma 6.4.4. of [33] we have that

$$
\mathcal{B}_{m, q}=\left\{x^{i} y^{j} \mid q i+(q+1) j \leqslant m, 0 \leqslant i \leqslant q^{2}-1,0 \leqslant j \leqslant q-1\right\}
$$

forms a basis of $\mathcal{L}\left(m Q_{\infty}\right)$. For this reason, the Hermitian code $C(m, q)$ could be seen as $\operatorname{Span}_{\mathbb{F}_{q^{2}}}\left\langle e v_{\mathcal{P}_{\mathcal{H}}}\left(\mathcal{B}_{m, q}\right)\right\rangle$. Moreover, the dual of $C(m, q)$ denoted by $C\left(m_{\perp}, q\right)=C^{\perp}(m, q)$ is again an Hermitian code and it is well known (Proposition 8.3.2 of [33]) that the degree m of the divisor has the following relation with respect to m_{\perp} :

$$
\begin{equation*}
m_{\perp}=n+2 g-2-m \tag{3}
\end{equation*}
$$

The Hermitian codes can be divided in four phases [11], any of them having specific explicit formulas linking their dimension and their distance [22]. In particular we are interested in the first and the last phase of Hermitian codes, which are:

I Phase: $0 \leqslant m_{\perp} \leqslant q^{2}-2$. Then we have $m_{\perp}=a q+b$ where $0 \leqslant b \leqslant a \leqslant q-1$ and $b \neq q-1$. In this case, the distance is

$$
\left\{\begin{array}{lll}
d=a+1 & \text { if } & a>b \tag{4}\\
d=a+2 & \text { if } & a=b
\end{array}\right.
$$

IV Phase: $n-1 \leqslant m_{\perp} \leqslant n+2 g-2$. In this case $m_{\perp}=n+2 g-2-a q-b$ where a, b are integers such that $0 \leqslant b \leqslant a \leqslant q-2$ and the distance is

$$
\begin{equation*}
d=n-a q-b \tag{5}
\end{equation*}
$$

5.2. Bound on distance of Hermitian LRC codes

Let $K=\mathbb{F}_{q^{2}}$ be a finite field, where q is a power of a prime. Let $\mathcal{X}=\mathcal{H}$ be the Hermitian curve with affine equation as in (2). We recall that this curve has $q^{3} \mathbb{F}_{q^{2}}$-rational affine points plus one at infinity, that we denoted by Q_{∞}.

We consider two of the three constructions of Hermitian LRC codes proposed in [1] and we improve the bound on distance of Hermitian LRC codes using properties of Hermitian codes. In particular, if we find an Hermitian code $C(m, q)=C_{H e r}$ such that $C_{L R C} \subset C_{H e r}$, then we have $d_{L R C} \geqslant d_{H e r}$.

Projection on x By Proposition 4 of [1], we have a family of (n, k, r) Hermitian LRC codes with $r=q-1$, length $n=q^{3}$, dimension $k=(t-1)(q-1)$ and distance $d \geqslant$ $n-t q-(q-2)(q+1)$. Moreover, for these codes, $S=K, D=t Q_{\infty}$ for some $1 \leqslant t \leqslant q^{2}-1$ and the basis for the vector space V is

$$
\begin{equation*}
\mathcal{B}=\left\{x^{j} y^{i} \mid j=0, \ldots, t, i=0, \ldots, q-2\right\} . \tag{6}
\end{equation*}
$$

Using the Hermitian codes, we improve the bound on the distance for any integer t, such that $q^{2}-q+1 \leqslant t \leqslant q^{2}-1$.

To find an Hermitian code $C(m, q)=C_{H e r}$ such that $C_{L R C} \subset C_{H e r}$, we have to compute the set $\mathcal{B}_{m, q}$, that is, we have to find m. After that, to compute the distance of $C(m, q)$ we use (4) and (5). We consider the first Hermitian phase: $0 \leqslant m_{\perp} \leqslant q^{2}-2$, that is, $q^{2}-q+1 \leqslant t \leqslant q^{2}-1$.

For this phase $m_{\perp}=a q+b$, where $0 \leqslant b \leqslant a \leqslant q-1$ and the distance of the Hermitian code is either $d=a+1$ if $a>b$ or $d=a+2$ if $a=b$. By (6), m must be equal to $m=q t+(q+1)(q-2)$ and by (3) we have that $m_{\perp}=n+2 g-2-m=q\left(q^{2}-t\right)$. So $b=0$ and $a=q^{2}-t$ and the distance of the Hermitian code is $d_{H e r}=a+1=q^{2}-t+1$, since $a>b$. This implies that

$$
\begin{equation*}
d_{L R C} \geqslant q^{2}-t+1, \text { for any } t \geqslant q^{2}-q+1 \tag{7}
\end{equation*}
$$

Note that (7) improves the bound on the distance proposed in Proposition 4 of [1] since

$$
q^{2}-t+1>q^{3}-t q-(q-2)(q+1) \Longleftrightarrow t(q-1)>q(q-1)^{2}+1 \Longleftrightarrow t>q^{2}-q
$$

We just proved the following:

Proposition 3. Let $q^{2}-q+1 \leqslant t \leqslant q^{2}-1$. It is possible to construct a family of (n, k, r) Hermitian LRC codes $\left\{C_{t}\right\}_{q^{2}-q+1 \leqslant t \leqslant q^{2}-1}$ with the following parameters:

$$
n=q^{3}, k=(t-1)(q-1), r=q-1 \text { and } d \geqslant q^{2}-t+1 .
$$

Two recovering sets In [1] the authors propose an Hermitian code with two recovering sets of size $r_{1}=q-1$ and $r_{2}=q$, denoted by LRC(2). They consider

$$
L=\operatorname{Span}\left\{x^{i} y^{j}, i=0, \ldots, q-2, j=0, \ldots, q-1\right\}
$$

and a linear code C obtained by evaluating the functions in L at the points of $B=$ $g^{-1}\left(\mathbb{F}_{q^{2}} \backslash M\right)$, where $g(x, y)=x$ and $M=\left\{a \in \mathbb{F}_{q} \mid a^{q}+a=0\right\}$. So $|B|=q^{3}-q$. By Proposition 4.3 of [1], the LRC(2) code has length $n=\left(q^{2}-1\right) q$, dimension $k=(q-1) q$ and distance

$$
\begin{equation*}
d \geqslant(q+1)\left(q^{2}-3 q+3\right)=q^{3}-2 q^{2}+3 . \tag{8}
\end{equation*}
$$

As before, we improve the bound on the distance using Hermitian codes that contains the $\operatorname{LRC}(2)$ code. To do this we have to find m_{\perp}. By L, we have that $m=q(q-1)+$ $(q+1)(q-2)$ so we are in the fourth phase of Hermitian codes because $m_{\perp}=n+2 g-$ $2-m=q^{3}-q^{2}+q$. In this case $d_{H e r}=m_{\perp}-2 g+2=q^{3}+2 q+2$. Since $|B|=q^{3}-q$, we have that

$$
\begin{equation*}
d_{L R C} \geqslant d_{H e r}-q=q^{3}+q+2 \tag{9}
\end{equation*}
$$

Note that this bound improves bound (8). We just proved the following proposition:
Proposition 4. Let C be a linear code obtained by evaluating the functions in L at the points of B. Then C has the following parameters:

$$
n=\left(q^{2}-1\right) q, k=(q-1) q, r_{1}=q-1, r_{2}=q \text { and } d \geqslant q^{3}+q+2 .
$$

Acknowledgment

The authors would like to thank the anonymous referees for their comments.

References

[1] A. Barg, I. Tamo, S. Vlădut, Locally recoverable codes on algebraic curves, arXiv preprint, arXiv: 1501.04904, 2015.
[2] H. Chen, R. Cramer, S. Goldwasser, R. De Haan, V. Vaikuntanathan, Secure computation from random error correcting codes, in: Advances in Cryptology-EUROCRYPT 2007, Springer, 2007, pp. 291-310.
[3] M. Forbes, S. Yekhanin, On the locality of codeword symbols in non-linear codes, Discrete Math. 324 (2014) 78-84.
[4] G.D. Forney, Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. Inf. Theory 40 (6) (1994) 1741-1752.
[5] O. Geil, On codes from Norm-Trace curves, Finite Fields Appl. 9 (2003) 351-371.
[6] O. Geil, S. Martin, R. Matsumoto, D. Ruano, Y. Luo, Relative generalized Hamming weights of one-point algebraic geometric codes, IEEE Trans. Inf. Theory 60 (10) (2014) 5938-5949.
[7] P. Gopalan, V. Guruswami, P. Raghavendra, List decoding tensor products and interleaved codes, SIAM J. Comput. 40 (5) (2011) 1432-1462.
[8] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans. Inf. Theory 58 (11) (2012) 6925-6934.
[9] V. Guruswami, List decoding from erasures: bounds and code constructions, IEEE Trans. Inf. Theory 49 (11) (2003) 2826-2833.
[10] P. Heijnen, R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes, in: IEEE Trans. Inform. Theory, 1998.
[11] T. Høholdt, J.H. van Lint, R. Pellikaan, Algebraic geometry of codes, in: V.S. Pless, W. Huffman (Eds.), Handbook of Coding Theory, vols. I, II, North-Holland, 1998, pp. 871-961.
[12] M. Homma, S.J. Kim, The second generalized hamming weight for two-point codes on a Hermitian curve, Des. Codes Cryptogr. 50 (1) (2009) 1-40.
[13] C. Huang, M. Chen, J. Li, Pyramid codes: flexible schemes to trade space for access efficiency in reliable data storage systems, ACM Trans. Storage (TOS) 9 (1) (2013) 3.
[14] W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[15] H. Janwa, A.K. Lal, On Generalized Hamming Weights and the Covering Radius of Linear Codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 2007, pp. 347-356.
[16] T. Kasami, T. Takata, T. Fujiwara, S. Lin, On complexity of trellis structure of linear block codes, IEEE Trans. Inf. Theory 39 (3) (1993) 1057-1064.
[17] T. Kasami, T. Takata, T. Fujiwara, S. Lin, On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes, IEEE Trans. Inf. Theory 39 (1) (1993) 242-245.
[18] J. Kurihara, T. Uyematsu, Strongly-secure secret sharing based on linear codes can be characterized by generalized Hamming weight, in: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2011, pp. 951-957.
[19] J. Kurihara, T. Uyematsu, R. Matsumoto, Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized hamming weight, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95 (11) (2012) 2067-2075.
[20] H. Lange, G. Martens, On the gonality sequence of an algebraic curve, Manuscr. Math. 137 (3-4) (2012) 457-473.
[21] Y. Luo, C. Mitrpant, A.J.H. Vinck, K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory 51 (3) (2005) 1222-1229.
[22] C. Marcolla, On structure and decoding of Hermitian codes, PhD thesis, University of Trento, 2013.
[23] S. Martin, O. Geil, Relative generalized Hamming weights of q-ary Reed-Muller codes, arXiv preprint, arXiv:1407.6185, 2014.
[24] C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inf. Theory 40 (6) (1994) 2092-2099.
[25] C. Munuera, D. Ramirez, The second and third generalized Hamming weights of Hermitian codes, IEEE Trans. Inf. Theory 45 (2) (1999) 709-712.
[26] C.-K. Ngai, R.W. Yeung, Z. Zhang, Network generalized hamming weight, IEEE Trans. Inf. Theory 57 (2) (2011) 1136-1143.
[27] W. Olaya-León, C. Granados-Pinzón, The second generalized hamming weight of certain Castle codes, Des. Codes Cryptogr. 76 (1) (2015) 81-87.
[28] D.S. Papailiopoulos, A.G. Dimakis, Locally repairable codes, IEEE Trans. Inf. Theory 60 (10) (2014) 5843-5855.
[29] R. Pellikaan, On the gonality of curves, abundant codes and decoding, in: Coding Theory and Algebraic Geometry, Springer, 1992, pp. 132-144.
[30] B. Poonen, Gonality of modular curves in characteristic p, Math. Res. Lett. 14 (4) (2007) 691-701.
[31] H.G. Ruck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994) 185-188.
[32] N. Silberstein, A.S. Rawat, O.O. Koyluoglu, S. Vishwanath, Optimal locally repairable codes via rank-metric codes, in: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE, 2013, pp. 1819-1823.
[33] H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.
[34] I. Tamo, A. Barg, A family of optimal locally recoverable codes, IEEE Trans. Inf. Theory 60 (8) (2014) 4661-4676.
[35] I. Tamo, D.S. Papailiopoulos, A.G. Dimakis, Optimal locally repairable codes and connections to matroid theory, in: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE, 2013, pp. 1814-1818.
[36] M. Tsfasman, S. Vlădut, D. Nogin, Algebraic Geometric Codes: Basic Notions, vol. 139, American Mathematical Soc., 1990.
[37] V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inf. Theory 37 (5) (1991) 1412-1418.
[38] K. Yang, P.V. Kumar, H. Stichtenoth, On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inf. Theory 40 (3) (1994) 913-920.

[^0]: * Corresponding author.

 E-mail addresses: ballico@science.unitn.it (E. Ballico), chiara.marcolla@unito.it (C. Marcolla).
 ${ }^{1}$ The first author is partially supported by MIUR and GNSAGA of INdAM (Italy).

