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We study locally recoverable codes on algebraic curves. In 
the first part of the manuscript, we provide a bound on the 
generalized Hamming weight of these codes. In the second 
part, we propose a new family of algebraic geometric LRC 
codes, which are LRC codes from the Norm-Trace curve. 
Finally, using some properties of Hermitian codes, we improve 
the bounds on the distance proposed in Barg et al. (2015) [1]
of some Hermitian LRC codes.
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1. Introduction

The v-th generalized Hamming weight dv(C) of a linear code C is the minimum sup-
port size of v-dimensional subcodes of C. The sequence d1(C), . . . , dk(C) of generalized 
Hamming weights was introduced by Wei [37] to characterize the performance of a linear 
code on the wire-tap channel of type II. Later, the GHWs of linear codes have been used 
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in many other applications regarding the communications, as for bounding the covering 
radius of linear codes [15], in network coding [26], in the context of list decoding [7,9], 
and finally for secure secret sharing [18]. Moreover, in [2] the authors show in which way 
an arbitrary linear code gives rise to a secret sharing scheme, in [16,17] the connection 
between the trellis or state complexity of a code and its GHWs is found and in [4] the au-
thor proves the equivalence to the dimension/length profile of a code and its generalized 
Hamming weight. For these reasons, the GHWs (and their extended version, the relative
generalized Hamming weights [21,19]) play a central role in coding theory. In particular, 
generalized and relative generalized Hamming weights are studied for Reed–Muller codes 
[10,23] and for codes constructed by using an algebraic curve [6] as Goppa codes [24,38], 
Hermitian codes [12,25] and Castle codes [27].

In this paper, we provide a bound on the generalized Hamming weight of locally 
recoverable codes on the algebraic curves proposed in [1]. Moreover, we introduce a new 
family of algebraic geometric LRC codes and improve the bounds on the distance for 
some Hermitian LRC codes.

Locally recoverable codes were introduced in [8] and they have been significantly 
studied because of their applications in distributed and cloud storage systems [3,13,32,
34,35]. We recall that a code C ∈ (Fq)n has locality r if every symbol of a codeword c
can be recovered from a subset of r other symbols of c.

In other words, we consider a finite field K = Fq, where q is a power of a prime, and 
an [n, k] code C over the field K, where k = logq(|C|). For each i ∈ {1, . . . , n} and each 
a ∈ K set C(i, a) = {c ∈ C | ci = a}. For each I ⊆ {1, . . . , n} and each S ⊆ C let SI be 
the restriction of S to the coordinates in I.

Definition 1. Let C be an [n, k] code over the field K, where k = logq(|C|). Then C is 
said to have all-symbol locality r if for each a ∈ Fq and each i ∈ {1, . . . , n} there is 
Ii ⊂ {1, . . . , n} \ {i} with |Ii| � r, such that for CIi(i, a) ∩ CIi(i, a′) = ∅ for all a �= a′. 
We use the notation (n, k, r) to refer to the parameters of this code.

Note that if we receive a codeword c correct except for an erasure at i, we can recover 
the codeword by looking at its coordinates in Ii. For this reason, Ii is called a recovering 
set for the symbol ci.

Let C be an (n, k, r) code, then the distance of this code has to verify the bound 
proved in [28,8] that is d � n − k − �k/r	 + 2. The codes that achieve this bound with 
equality are called optimal LRC codes [32,34,35]. Note that when r = k, we obtain the 
Singleton bound, therefore optimal LRC codes with r = k are MDS codes.

Layout of the paper This paper is divided as follows. In Section 2 we recall the notions 
of algebraic geometric codes and the definition of algebraic geometric locally recoverable 
codes introduced in [1]. In Section 3 we provide a bound on the generalized Hamming 
weights of the latter codes. In Section 4 we propose a new family of algebraic geometric 
LRC codes, which are LRC codes from the Norm-Trace curve. Finally, in Section 5 we 
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improve the bounds on the distance proposed in [1] for some Hermitian LRC codes, using 
some properties of the Hermitian codes.

2. Preliminary notions

2.1. Algebraic geometric codes

Let K = Fq be a finite field, where q is a power of a prime. Let X be a smooth 
projective absolutely irreducible nonsingular curve over K. We denote by K(X ) the 
rational functions field on X . Let D be a divisor on the curve X . We recall that the 
Riemann–Roch space associated to D is a vector space L(D) over K defined as

L(D) = {f ∈ K(X ) | (f) + D � 0} ∪ {0},

where we denote by (f) the divisor of f .
Assume that P1, . . . , Pn are rational points on X and D is a divisor such that D =

P1 + . . . + Pn. Let G be some other divisor such that supp(D) ∩ supp(G) = ∅. Then we 
can define the algebraic geometric code as follows:

Definition 2. The algebraic geometric code (or AG code) C(D, G) associated with the 
divisors D and G is defined as

C(D,G) = {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊂ Kn.

The dual C⊥(D, G) of C(D, G) is an algebraic geometric code.

In other words an algebraic geometric code is the image of the evaluation map 
Im(evD) = C(D, G), where the evaluation map evD : L(G) → Kn is given by

evD(f) = (f(P1), . . . , f(Pn)) ∈ Kn.

Note that if D = P1 + . . .+Pn and we denote by P = {P1, . . . , Pn} we can also indicate 
evD as evP .

2.2. Algebraic geometric locally recoverable codes

In this section we consider the construction of algebraic geometric locally recoverable 
codes of [1].

Let X and Y be smooth projective absolutely irreducible curves over K. Let g : X → Y
be a rational separable map of curves of degree r + 1. Since g is separable, then there 
exists a function x ∈ K(X ) such that K(X ) = K(Y)(x) and that x satisfies the equation 
xr+1 + brx

r + . . .+ b0 = 0, where bi ∈ K(Y). The function x can be considered as a map 
x : X → PK . Let h = deg(x) be the degree of x.
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We consider a subset S = {P1, . . . , Ps} ⊂ Y(K) of Fq-rational points of Y, a divisor 
Q∞ such that supp(Q∞) ∩ supp(S) = ∅ and a positive divisor D = tQ∞. We denote by

A = g−1(S) = {Pij , where i = 0, . . . , r, j = 1, . . . , s} ⊂ X (K),

where g(Pij) = Pi for all i, j and assume that bi are functions in L(niQ∞) for some 
natural numbers ni with i = 1, . . . , r.

Let {f1, . . . , fm} be a basis of the Riemann–Roch space L(D). By the Riemann–Roch 
Theorem we have that m � deg(D) + 1 − gY , where gY is the genus of Y.

From now on, we assume that m = deg(D) + 1 − gY , where deg(D) = t�, and we 
consider the K-subspace V of K(X ) of dimension rm generated by

B = {fjxi, i = 0, . . . , r − 1, j = 1, . . . ,m}.

We consider the evaluation map evA : V → K(r+1)s. Then we have the following theorem.

Theorem 1. The linear space C(D, g) = SpanK(r+1)s〈evA(B)〉 is an (n, k, r) algebraic 
geometric LRC code with parameters

n = (r + 1)s

k = rm � r(t� + 1 − gY)

d � n− t�(r + 1) − (r − 1)h.

Proof. See Theorem 3.1 of [1]. �
The AG LRC codes have an additional property. They are LRC codes (n, k, r) with 

(r + 1) | n and r | k. The set {1, . . . , n} can be divided into n/(r + 1) disjoint subsets Uj

for 1 � j � s with the same cardinality r+1. For each i the set Ii ⊆ {1, . . . , n} \{i} is the 
complement of i in the element of the partition Uj containing j, i.e. for all i, j ∈ {1, . . . , n}
either Ii = Ij or Ii ∩ Ij = ∅.

Moreover, they have also the following nice property. Fix w ∈ (K)n and denote by 
wUj

= {wι, for any ι ∈ Uj}. Suppose we receive all the symbols in Uj . There is a simple 
linear parity test on the r + 1 symbols of Uj such that if this parity check fails we know 
that at least one of the symbols in Uj is wrong. If we are guaranteed (or we assume) 
that at most one of the symbols in Uj is wrong and the parity check is OK, then all the 
symbols in Uj are correct. Moreover we can recover an erased symbol wι, with ι ∈ Uj

using a polynomial interpolation through the points of the recovering set wUj
.

3. Generalized Hamming weights of AG LRC codes

Let K be a field and let X be a smooth and geometrically connected curve of genus 
g � 2 defined over the field K. We also assume X (K) �= ∅. We recall the following 
definitions:
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Definition 3. (See [29,30].) The K-gonality γK(X ) of X over a field K is the smallest 
possible degree of a dominant rational map X → P

1
K . For any field extension L of K, we 

define also the L-gonality γL(X ) of X as the gonality of the base extension XL = X×KL. 
It is an invariant of the function field L(X ) of XL.

Moreover, for each integer i > 0, the i-th gonality γi,L(X ) of X is the minimal degree 
z such that there is R ∈ Picz(X )(L) with h0(R) � i + 1. The sequence γi,K(X ) is the 
usual gonality sequence [20]. Moreover, the integer γ1,K(X ) = γK(X ) is the K-gonality 
of X .

Let K = Fq a finite field with q elements. Let C ⊂ Kn be a linear [n, k] code over K. 
We recall that the support of C is defined as follows

supp(C) = {i | ci �= 0 for some c ∈ C}.

So �supp(C) is the number of nonzero columns in a generator matrix for C. Moreover, 
for any 1 � v � k, the v-th generalized Hamming weight of C [14, §7.10], [36, §1.1] is 
defined by

dv(C) = min{�supp(D) | D is a linear subcode of C with dim(D) = v}.

In other words, for any integer 1 � v � k, dv(C) is the v-th minimum support weights, 
i.e. the minimal integer t such that there are an [n, v] subcode D of C and a sub-
set S ⊂ {1, . . . , n} such that �(S) = t and each codeword of D has zero coordinates 
outside S. The sequence d1(C), . . . , dk(C) of generalized Hamming weights (also called 
weight hierarchy of C) is strictly increasing (see Theorem 7.10.1 of [14]). Note that d1(C)
is the minimum distance of the code C.

Let us consider X and Y smooth projective absolutely irreducible curves over K and 
let g : X → Y be a rational separable map of curves of degree r + 1. Moreover we take 
r, t, Q∞, f1, . . . , fm and A = g−1(S) defined as Section 2.2. So we can construct an 
(n, k, r) algebraic geometric LRC code C as in Theorem 1. For this code we have the 
following:

Theorem 2. Let C be an (n, k, r) algebraic geometric LRC code as in Theorem 1. For 
every integer v � 2 we have that

dv(C) � n− t�(r + 1) − (r − 1)h + γv−1,K(X ).

Proof. Take a v-dimensional linear subspace D of C and call

E ⊆ {Pij | i = 0, . . . r, j = 1, . . . , s},

the set of common zeros of all elements of D. Since n − dv(C) = �(E), we have to prove 
that t�(r + 1) + (r − 1)h − �(E) � γv−1,K(X). Fix u ∈ D \ {0} and let Fu denote the 
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zeros of u. Note that Fu is contained in the set {Pij | i = 0, . . . r, j = 1, . . . , s} by the 
definition of the code C. We have Fu ⊇ E. By the definition of the integers t, � and 
h := deg(x), we have �(Fu) � t�(r + 1) + (r − 1)h. The divisors Fu − E, u ∈ D \ {0}
form a family of linearly equivalent non-negative divisors, each of them defined over K. 
Since dim(D) = v, the definition of γv−1,K(X ) gives �(Fu) − �(E) � γv−1,K(X ). This 
inequality for a single u ∈ D \ {0} proves the theorem. �

See Remark 1 for an application of Theorem 2.

4. LRC codes from Norm-Trace curve

In this section we propose a new family of Algebraic Geometric LRC codes, that is, a 
LRC codes from the Norm-Trace curve. Moreover, we compute the Fqu-gonality of the 
Norm-Trace curve.

Let K = Fqu be a finite field, where q is a power of a prime. We consider the norm
NFqu

Fq
and the trace TrFqu

Fq
, two functions from Fqu to Fq defined as

NFqu

Fq
(x) = x1+q+···+qu−1

and TrFqu

Fq
(x) = x + xq + · · · + xqu−1

.

The Norm-Trace curve χ is the curve defined over K by the following affine equation

NFqu

Fq
(x) = TrFqu

Fq
(y),

that is,

x(qu−1)/(q−1) = yq
u−1

+ yq
u−2

+ . . . + y where x, y ∈ K. (1)

The Norm-Trace curve χ has exactly n = q2u−1 K-rational affine points (see Appendix A 
of [5]), that we denote by Pχ = {P1, . . . , Pn}. The genus of χ is g = 1

2 (qu−1−1)( q
u−1
q−1 −1). 

Note that if we consider u = 2, we obtain the Hermitian curve.
Starting from the Norm-Trace curve, we have two different ways to construct Norm-

Trace LRC codes.

Projection on x We have to construct a qu-ary (n, k, r) LRC codes. We consider the 
natural projection g(x, y) = x. Then the degree of g is qu−1 = r + 1 and the degree of y
is h = 1 + q + · · · + qu−1.

To construct the codes we consider S = Fqu and D = tQ∞ for some t � 1. Then, 
using a construction of Theorem 1 we find the parameters for these Norm-Trace LRC 
codes.

Proposition 1. A family of Norm-Trace LRC codes has the following parameters:

n = q2u−1, k = mr = (t + 1)(qu−1 − 1)
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and

d � n− tqu−1 − (qu−1 − 1)(1 + q + · · · + qu−1).

Projection on y We have to construct a qu-ary (n, k, r) LRC codes. We consider the 
other natural projection g′(x, y) = y. Then deg(g′) = 1 + q + · · · + qu−1 = r + 1. In this 
case we take S = Fqu\M , where

M = {a ∈ Fqu | aqu−1
+ aq

u−2
+ . . . + a = 0},

so r = q + · · · + qu−1 and h = deg(x) = qu−1. Then, using Theorem 1 we have the 
following

Proposition 2. A family of Norm-Trace LRC codes has the following parameters:

n = q2u−1 − qu−1, k = mr = (t + 1)(q + · · · + qu−1)

and

d � n− tqu−1 − (q + · · · + qu−1) − qu−1(qu−1 + · · · + q − 1).

For the Norm-Trace curve χ we are able to find the K-gonality of χ.

Lemma 1. Let χ be a Norm-Trace curve defined over Fqu , where u � 2. We have 
γ1,Fqu

(χ) = qu−1.

Proof. The linear projection onto the x axis has degree qu−1 and it is defined over 
Fq and hence over Fqu . Thus γ1,Fqu

(χ) � qu−1. Denote by z = γ1,Fqu
(χ) and assume 

that z � qu−1 − 1. By the definition of K-gonality, there is a non-constant morphism 
w : χ → P

1 with deg(w) = z and defined over Fqu . Since w(χ(Fqu)) ⊆ P
1(Fqu), we get 

�(χ(Fqu)) � z(qu + 1) � (qu−1 − 1)(qu + 1), that is a contradiction. �
Remark 1. By Lemma 1, we can apply Theorem 2 to the Norm-Trace curve. In fact, 
we can consider the gonality sequence over K of χ to get a lower bound on the second 
generalized Hamming weight of the two families of Norm-Trace LRC codes:

• Let t � 1 and let C be a (q2u−1, (t + 1)(qu−1 − 1), qu−1 − 1) Norm-Trace LRC code. 
Then we have

d2(C) � q2u−1 + qu−1 − tqu−1 − (qu−1 − 1)(1 + q + · · · + qu−1).

• Let t � 1 and let C be a Norm-Trace LRC code with parameters (q2u−1 − qu−1,

(t + 1)(q + · · · + qu−1), q + · · · + qu−1). Then we have

d2(C) � q2u−1 − (t− 1)qu−1 − (1 + qu−1)(q + · · · + qu−1).
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5. Hermitian LRC codes

In this section we improve the bound on the distance of Hermitian LRC codes proposed 
in [1] using some properties of Hermitian codes which are a special case of algebraic 
geometric codes.

5.1. Hermitian codes

Let us consider K = Fq2 a finite field with q2 elements. The Hermitian curve H is 
defined over K by the affine equation

xq+1 = yq + y where x, y ∈ K. (2)

This curve has genus g = q(q−1)
2 and has q3 + 1 points of degree one, namely a pole Q∞

and n = q3 rational affine points, denoted by PH = {P1, . . . , Pn} [31].

Definition 4. Let m ∈ N such that 0 � m � q3 + q2 − q − 2. Then the Hermitian code
C(m, q) is the code C(D, mQ∞) where

D =
∑

αq+1=βq+β

Pα,β

is the sum of all places of degree one (except Q∞, that is a point at infinity) of the 
Hermitian function field K(H).

By Lemma 6.4.4. of [33] we have that

Bm,q = {xiyj | qi + (q + 1)j � m, 0 � i � q2 − 1, 0 � j � q − 1},

forms a basis of L(mQ∞). For this reason, the Hermitian code C(m, q) could be seen as 
Span

Fq2
〈evPH(Bm,q)〉. Moreover, the dual of C(m, q) denoted by C(m⊥, q) = C⊥(m, q) is 

again an Hermitian code and it is well known (Proposition 8.3.2 of [33]) that the degree 
m of the divisor has the following relation with respect to m⊥:

m⊥ = n + 2g − 2 −m. (3)

The Hermitian codes can be divided in four phases [11], any of them having specific 
explicit formulas linking their dimension and their distance [22]. In particular we are 
interested in the first and the last phase of Hermitian codes, which are:

I Phase: 0 � m⊥ � q2 − 2. Then we have m⊥ = aq + b where 0 � b � a � q − 1 and 
b �= q − 1. In this case, the distance is
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{
d = a + 1 if a > b

d = a + 2 if a = b.
(4)

IV Phase: n− 1 � m⊥ � n + 2g − 2. In this case m⊥ = n + 2g − 2 − aq − b where a, b
are integers such that 0 � b � a � q − 2 and the distance is

d = n− aq − b. (5)

5.2. Bound on distance of Hermitian LRC codes

Let K = Fq2 be a finite field, where q is a power of a prime. Let X = H be the Her-
mitian curve with affine equation as in (2). We recall that this curve has q3

Fq2-rational 
affine points plus one at infinity, that we denoted by Q∞.

We consider two of the three constructions of Hermitian LRC codes proposed in [1]
and we improve the bound on distance of Hermitian LRC codes using properties of 
Hermitian codes. In particular, if we find an Hermitian code C(m, q) = CHer such that 
CLRC ⊂ CHer , then we have dLRC � dHer .

Projection on x By Proposition 4 of [1], we have a family of (n, k, r) Hermitian LRC 
codes with r = q − 1, length n = q3, dimension k = (t − 1)(q − 1) and distance d �
n −tq−(q−2)(q+1). Moreover, for these codes, S = K, D = tQ∞ for some 1 � t � q2−1
and the basis for the vector space V is

B = {xjyi | j = 0, . . . , t, i = 0, . . . , q − 2}. (6)

Using the Hermitian codes, we improve the bound on the distance for any integer t, such 
that q2 − q + 1 � t � q2 − 1.

To find an Hermitian code C(m, q) = CHer such that CLRC ⊂ CHer , we have to 
compute the set Bm,q, that is, we have to find m. After that, to compute the distance 
of C(m, q) we use (4) and (5). We consider the first Hermitian phase: 0 � m⊥ � q2 − 2, 
that is, q2 − q + 1 � t � q2 − 1.

For this phase m⊥ = aq+b, where 0 � b � a � q−1 and the distance of the Hermitian 
code is either d = a + 1 if a > b or d = a + 2 if a = b. By (6), m must be equal to 
m = qt + (q + 1)(q − 2) and by (3) we have that m⊥ = n + 2g − 2 −m = q(q2 − t). So 
b = 0 and a = q2 − t and the distance of the Hermitian code is dHer = a +1 = q2 − t +1, 
since a > b. This implies that

dLRC � q2 − t + 1, for any t � q2 − q + 1. (7)

Note that (7) improves the bound on the distance proposed in Proposition 4 of [1] since

q2 − t + 1 > q3 − tq − (q − 2)(q + 1) ⇐⇒ t(q − 1) > q(q − 1)2 + 1 ⇐⇒ t > q2 − q.

We just proved the following:
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Proposition 3. Let q2 − q + 1 � t � q2 − 1. It is possible to construct a family of (n, k, r)
Hermitian LRC codes {Ct}q2−q+1�t�q2−1 with the following parameters:

n = q3, k = (t− 1)(q − 1), r = q − 1 and d � q2 − t + 1.

Two recovering sets In [1] the authors propose an Hermitian code with two recovering 
sets of size r1 = q − 1 and r2 = q, denoted by LRC(2). They consider

L = Span{xiyj , i = 0, . . . , q − 2, j = 0, . . . , q − 1}

and a linear code C obtained by evaluating the functions in L at the points of B =
g−1(Fq2\M), where g(x, y) = x and M = {a ∈ Fq | aq + a = 0}. So |B| = q3 − q. By 
Proposition 4.3 of [1], the LRC(2) code has length n = (q2 − 1)q, dimension k = (q− 1)q
and distance

d � (q + 1)(q2 − 3q + 3) = q3 − 2q2 + 3. (8)

As before, we improve the bound on the distance using Hermitian codes that contains 
the LRC(2) code. To do this we have to find m⊥. By L, we have that m = q(q − 1) +
(q + 1)(q − 2) so we are in the fourth phase of Hermitian codes because m⊥ = n + 2g −
2 −m = q3 − q2 + q. In this case dHer = m⊥ − 2g + 2 = q3 + 2q + 2. Since |B| = q3 − q, 
we have that

dLRC � dHer − q = q3 + q + 2. (9)

Note that this bound improves bound (8). We just proved the following proposition:

Proposition 4. Let C be a linear code obtained by evaluating the functions in L at the 
points of B. Then C has the following parameters:

n = (q2 − 1)q, k = (q − 1)q, r1 = q − 1, r2 = q and d � q3 + q + 2.

Acknowledgment

The authors would like to thank the anonymous referees for their comments.

References

[1] A. Barg, I. Tamo, S. Vlădut, Locally recoverable codes on algebraic curves, arXiv preprint, arXiv:
1501.04904, 2015.

[2] H. Chen, R. Cramer, S. Goldwasser, R. De Haan, V. Vaikuntanathan, Secure computation from 
random error correcting codes, in: Advances in Cryptology-EUROCRYPT 2007, Springer, 2007, 
pp. 291–310.

[3] M. Forbes, S. Yekhanin, On the locality of codeword symbols in non-linear codes, Discrete Math. 
324 (2014) 78–84.

http://refhub.elsevier.com/S1071-5797(16)00038-1/bib627476s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib627476s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6368656E32303037736563757265s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6368656E32303037736563757265s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6368656E32303037736563757265s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib37666F72626573323031346C6F63616C697479s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib37666F72626573323031346C6F63616C697479s1


E. Ballico, C. Marcolla / Finite Fields and Their Applications 40 (2016) 61–72 71
[4] G.D. Forney, Dimension/length profiles and trellis complexity of linear block codes, IEEE Trans. 
Inf. Theory 40 (6) (1994) 1741–1752.

[5] O. Geil, On codes from Norm-Trace curves, Finite Fields Appl. 9 (2003) 351–371.
[6] O. Geil, S. Martin, R. Matsumoto, D. Ruano, Y. Luo, Relative generalized Hamming weights of 

one-point algebraic geometric codes, IEEE Trans. Inf. Theory 60 (10) (2014) 5938–5949.
[7] P. Gopalan, V. Guruswami, P. Raghavendra, List decoding tensor products and interleaved codes, 

SIAM J. Comput. 40 (5) (2011) 1432–1462.
[8] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans. 

Inf. Theory 58 (11) (2012) 6925–6934.
[9] V. Guruswami, List decoding from erasures: bounds and code constructions, IEEE Trans. Inf. 

Theory 49 (11) (2003) 2826–2833.
[10] P. Heijnen, R. Pellikaan, Generalized Hamming weights of q-ary Reed–Muller codes, in: IEEE Trans. 

Inform. Theory, 1998.
[11] T. Høholdt, J.H. van Lint, R. Pellikaan, Algebraic geometry of codes, in: V.S. Pless, W. Huffman 

(Eds.), Handbook of Coding Theory, vols. I, II, North-Holland, 1998, pp. 871–961.
[12] M. Homma, S.J. Kim, The second generalized hamming weight for two-point codes on a Hermitian 

curve, Des. Codes Cryptogr. 50 (1) (2009) 1–40.
[13] C. Huang, M. Chen, J. Li, Pyramid codes: flexible schemes to trade space for access efficiency in 

reliable data storage systems, ACM Trans. Storage (TOS) 9 (1) (2013) 3.
[14] W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 

2003.
[15] H. Janwa, A.K. Lal, On Generalized Hamming Weights and the Covering Radius of Linear Codes, 

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 2007, pp. 347–356.
[16] T. Kasami, T. Takata, T. Fujiwara, S. Lin, On complexity of trellis structure of linear block codes, 

IEEE Trans. Inf. Theory 39 (3) (1993) 1057–1064.
[17] T. Kasami, T. Takata, T. Fujiwara, S. Lin, On the optimum bit orders with respect to the state 

complexity of trellis diagrams for binary linear codes, IEEE Trans. Inf. Theory 39 (1) (1993) 242–245.
[18] J. Kurihara, T. Uyematsu, Strongly-secure secret sharing based on linear codes can be characterized 

by generalized Hamming weight, in: 2011 49th Annual Allerton Conference on Communication, 
Control, and Computing (Allerton), IEEE, 2011, pp. 951–957.

[19] J. Kurihara, T. Uyematsu, R. Matsumoto, Secret sharing schemes based on linear codes can be 
precisely characterized by the relative generalized hamming weight, IEICE Trans. Fundam. Electron. 
Commun. Comput. Sci. 95 (11) (2012) 2067–2075.

[20] H. Lange, G. Martens, On the gonality sequence of an algebraic curve, Manuscr. Math. 137 (3–4) 
(2012) 457–473.

[21] Y. Luo, C. Mitrpant, A.J.H. Vinck, K. Chen, Some new characters on the wire-tap channel of 
type II, IEEE Trans. Inf. Theory 51 (3) (2005) 1222–1229.

[22] C. Marcolla, On structure and decoding of Hermitian codes, PhD thesis, University of Trento, 2013.
[23] S. Martin, O. Geil, Relative generalized Hamming weights of q-ary Reed–Muller codes, arXiv 

preprint, arXiv:1407.6185, 2014.
[24] C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inf. 

Theory 40 (6) (1994) 2092–2099.
[25] C. Munuera, D. Ramirez, The second and third generalized Hamming weights of Hermitian codes, 

IEEE Trans. Inf. Theory 45 (2) (1999) 709–712.
[26] C.-K. Ngai, R.W. Yeung, Z. Zhang, Network generalized hamming weight, IEEE Trans. Inf. Theory 

57 (2) (2011) 1136–1143.
[27] W. Olaya-León, C. Granados-Pinzón, The second generalized hamming weight of certain Castle 

codes, Des. Codes Cryptogr. 76 (1) (2015) 81–87.
[28] D.S. Papailiopoulos, A.G. Dimakis, Locally repairable codes, IEEE Trans. Inf. Theory 60 (10) (2014) 

5843–5855.
[29] R. Pellikaan, On the gonality of curves, abundant codes and decoding, in: Coding Theory and 

Algebraic Geometry, Springer, 1992, pp. 132–144.
[30] B. Poonen, Gonality of modular curves in characteristic p, Math. Res. Lett. 14 (4) (2007) 691–701.
[31] H.G. Ruck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine 

Angew. Math. 457 (1994) 185–188.
[32] N. Silberstein, A.S. Rawat, O.O. Koyluoglu, S. Vishwanath, Optimal locally repairable codes via 

rank-metric codes, in: 2013 IEEE International Symposium on Information Theory Proceedings 
(ISIT), IEEE, 2013, pp. 1819–1823.

[33] H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.

http://refhub.elsevier.com/S1071-5797(16)00038-1/bib666F726E65793139393464696D656E73696F6Es1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib666F726E65793139393464696D656E73696F6Es1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D63642D6172742D4765696C2D31s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6765696C3230313472656C6174697665s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6765696C3230313472656C6174697665s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib676F70616C616E323031316C697374s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib676F70616C616E323031316C697374s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib39676F70616C616E323031326C6F63616C697479s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib39676F70616C616E323031326C6F63616C697479s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib677572757377616D69323030336C697374s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib677572757377616D69323030336C697374s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6865696A6E656E3139393867656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6865696A6E656E3139393867656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D63642D626F6F6B2D41475F4842s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D63642D626F6F6B2D41475F4842s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib686F6D6D61323030397365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib686F6D6D61323030397365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib31316875616E6732303133707972616D6964s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib31316875616E6732303133707972616D6964s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6870s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6870s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6A616E77613230303767656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6A616E77613230303767656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B6173616D6931393933636F6D706C6578697479s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B6173616D6931393933636F6D706C6578697479s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B6173616D69313939336F7074696D756Ds1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B6173616D69313939336F7074696D756Ds1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B75726968617261323031317374726F6E676C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B75726968617261323031317374726F6E676C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B75726968617261323031317374726F6E676C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B7572696861726132303132736563726574s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B7572696861726132303132736563726574s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6B7572696861726132303132736563726574s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6C6Ds1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6C6Ds1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6C756F32303035736F6D65s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6C756F32303035736F6D65s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D63642D7068647468657369732D6D6172636F6C6C61s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D617274696E3230313472656C6174697665s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D617274696E3230313472656C6174697665s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D756E756572613139393467656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D756E756572613139393467656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D756E75657261313939397365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6D756E75657261313939397365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6E676169323031316E6574776F726Bs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6E676169323031316E6574776F726Bs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6F6C617961323031357365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib6F6C617961323031357365636F6E64s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib3370617061696C696F706F756C6F73323031346C6F63616C6C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib3370617061696C696F706F756C6F73323031346C6F63616C6C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib70s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib70s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib7032s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D616C672D6172742D7275637374693934s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D616C672D6172742D7275637374693934s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib374473696C626572737465696E323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib374473696C626572737465696E323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib374473696C626572737465696E323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib4347432D63642D626F6F6B2D7374696368s1


72 E. Ballico, C. Marcolla / Finite Fields and Their Applications 40 (2016) 61–72
[34] I. Tamo, A. Barg, A family of optimal locally recoverable codes, IEEE Trans. Inf. Theory 60 (8) 
(2014) 4661–4676.

[35] I. Tamo, D.S. Papailiopoulos, A.G. Dimakis, Optimal locally repairable codes and connections to 
matroid theory, in: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), 
IEEE, 2013, pp. 1814–1818.

[36] M. Tsfasman, S. Vlădut, D. Nogin, Algebraic Geometric Codes: Basic Notions, vol. 139, American 
Mathematical Soc., 1990.

[37] V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inf. Theory 37 (5) (1991) 
1412–1418.

[38] K. Yang, P.V. Kumar, H. Stichtenoth, On the weight hierarchy of geometric Goppa codes, IEEE 
Trans. Inf. Theory 40 (3) (1994) 913–920.

http://refhub.elsevier.com/S1071-5797(16)00038-1/bib394474616D6F3230313466616D696C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib394474616D6F3230313466616D696C79s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib31314474616D6F323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib31314474616D6F323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib31314474616D6F323031336F7074696D616Cs1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib74766Es1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib74766Es1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib7765693139393167656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib7765693139393167656E6572616C697A6564s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib79616E6731393934776569676874s1
http://refhub.elsevier.com/S1071-5797(16)00038-1/bib79616E6731393934776569676874s1

	Higher Hamming weights for locally recoverable codes on algebraic curves
	1 Introduction
	2 Preliminary notions
	2.1 Algebraic geometric codes
	2.2 Algebraic geometric locally recoverable codes

	3 Generalized Hamming weights of AG LRC codes
	4 LRC codes from Norm-Trace curve
	5 Hermitian LRC codes
	5.1 Hermitian codes
	5.2 Bound on distance of Hermitian LRC codes

	Acknowledgment
	References


